版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
陜西省西安市碑林區(qū)教育局2024屆數(shù)學(xué)高二第二學(xué)期期末綜合測試試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.對于實數(shù),下列結(jié)論中正確的是()A.若,則B.若,則C.若,則D.若,,則2.2021年起,新高考科目設(shè)置采用“”模式,普通高中學(xué)生從高一升高二時將面臨著選擇物理還是歷史的問題,某校抽取了部分男、女學(xué)生調(diào)查選科意向,制作出如右圖等高條形圖,現(xiàn)給出下列結(jié)論:①樣本中的女生更傾向于選歷史;②樣本中的男生更傾向于選物理;③樣本中的男生和女生數(shù)量一樣多;④樣本中意向物理的學(xué)生數(shù)量多于意向歷史的學(xué)生數(shù)量.根據(jù)兩幅條形圖的信息,可以判斷上述結(jié)論正確的有()A.1個 B.2個 C.3個 D.4個3.在等差數(shù)列中,且,則的最大值等于()A.3 B.4 C.6 D.94.有一個偶數(shù)組成的數(shù)陣排列如下:248142232…610162434……12182636………202838…………3040……………42…………………則第20行第4列的數(shù)為()A.546 B.540 C.592 D.5985.已知定義在上的奇函數(shù),滿足,當(dāng)時,,若函數(shù),在區(qū)間上有10個零點,則的取值范圍是()A. B. C. D.6.在中,角A,B,C的對邊分別為,若,則的形狀為A.正三角形 B.等腰三角形或直角三角形C.直角三角形 D.等腰直角三角形7.若實數(shù)a,b滿足a+b<0,則()A.a(chǎn),b都小于0B.a(chǎn),b都大于0C.a(chǎn),b中至少有一個大于0D.a(chǎn),b中至少有一個小于08.已知函數(shù)在區(qū)間內(nèi)沒有極值點,則的取值范圍為A. B. C. D.9.的展開式中,系數(shù)最小的項為()A.第6項 B.第7項 C.第8項 D.第9項10.從4種蔬菜品種中選出3種,分別種植在不同土質(zhì)的3塊土地上,不同的種植方法共有()A.12種 B.24種 C.36種 D.48種11.三棱錐的棱長全相等,是中點,則直線與直線所成角的正弦值為()A. B. C. D.12.已知函數(shù),若,則的最大值是()A. B.- C. D.--二、填空題:本題共4小題,每小題5分,共20分。13.有甲、乙、丙三項不同任務(wù),甲需由人承擔(dān),乙、丙各需由人承擔(dān),從人中選派人承擔(dān)這三項任務(wù),不同的選法共有__________種.(用數(shù)字作答)14.設(shè)α是第二象限角,P(x,4)為其終邊上的一點,且cosα=x,則tanα=________.15.已知冪函數(shù)的圖象經(jīng)過點,則實數(shù)α的值是_______.16.在棱長為的正方體中,是棱的中點,則到平面的距離等于_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,內(nèi)角,,所對的邊分別為,,.已知,,.(Ⅰ)求的值;(Ⅱ)求的值.18.(12分)骰子是一種質(zhì)地均勻的正方體玩具,它的六個面上分別刻有1到6的點數(shù).甲、乙兩人玩一種“比手氣”的游戲.游戲規(guī)則如下:在一局游戲中,兩人都分別拋擲同一顆骰子兩次,若某人兩次骰子向上的點數(shù)之差的絕對值不大于2,就稱他這局“好手氣”.(1)求甲在一局游戲中獲得“好手氣”的概率;(2)若某人獲得“好手氣”的局?jǐn)?shù)比對方多,稱他“手氣好”.現(xiàn)甲、乙兩人共進(jìn)行了3局“比手氣”游戲,求甲“手氣好”的概率.19.(12分)一個口袋里裝有7個白球和1個紅球,從口袋中任取5個球.(1)共有多少種不同的取法?(2)其中恰有一個紅球,共有多少種不同的取法?(3)其中不含紅球,共有多少種不同的取法?20.(12分)已知函數(shù)在處有極值.(1)求的解析式.(2)求函數(shù)在上的最值.21.(12分)如圖,三棱柱ABC-A1B1C1中,CA=CB,AB="A"A1,∠BAA1=60°.(Ⅰ)證明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直線A1C與平面BB1C1C所成角的正弦值.22.(10分)已知拋物線,為其焦點,過的直線與拋物線交于、兩點.(1)若,求點的坐標(biāo);(2)若線段的中垂線交軸于點,求證:為定值;(3)設(shè),直線、分別與拋物線的準(zhǔn)線交于點、,試判斷以線段為直徑的圓是否過定點?若是,求出定點的坐標(biāo);若不是,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】試題分析:對于A.若,若則故A錯;對于B.若,取則是假命題;C.若,取,則是錯誤的,D.若,則取,又,所以,又因為同號,則考點:不等式的性質(zhì)的應(yīng)用2、B【解題分析】
分析條形圖,第一幅圖從性別方面看選物理歷史的人數(shù)的多少,第二幅圖從選物理歷史的人數(shù)上觀察男女人數(shù)的多少,【題目詳解】由圖2知樣本中的男生數(shù)量多于女生數(shù)量,由圖1有物理意愿的學(xué)生數(shù)量多于有歷史意愿的學(xué)生數(shù)量,樣本中的男生更傾向物理,女生也更傾向物理,所以②④正確,故選:B.【題目點撥】本題考查條形圖的認(rèn)識,只要分清楚條形圖中不同的顏色代表的意義即可判別.3、B【解題分析】
先由等差數(shù)列的求和公式,得到,再由基本不等式,即可求出結(jié)果.【題目詳解】因為在等差數(shù)列中,所以,即,又,所以,當(dāng)且僅當(dāng)時,的最大值為4.故選B。【題目點撥】本題主要考查基本不等式求積的最大值,熟記等差數(shù)列的求和公式以及基本不等式即可,屬于??碱}型.4、A【解題分析】分析:觀察數(shù)字的分布情況,可知從右上角到左下角的一列數(shù)成公差為2的等差數(shù)列,想求第20行第4列的數(shù),只需求得23行第一個數(shù)再減去即可,進(jìn)而歸納每一行第一個數(shù)的規(guī)律即可得出結(jié)論.詳解:順著圖中直線的方向,從上到下依次成公差為2的等差數(shù)列,要想求第20行第4列的數(shù),只需求得23行第一個數(shù)再減去即可.觀察可知第1行的第1個數(shù)為:;第2行第1個數(shù)為:;第3行第1個數(shù)為:.……第23行第1個數(shù)為:.所以第20行第4列的數(shù)為.故選A.點睛:此題考查歸納推理,解題的關(guān)鍵是通過觀察得出數(shù)字的排列規(guī)律,是中檔題.5、A【解題分析】
由得出函數(shù)的圖象關(guān)于點成中心對稱以及函數(shù)的周期為,由函數(shù)為奇函數(shù)得出,并由周期性得出,然后作出函數(shù)與函數(shù)的圖象,列舉前個交點的橫坐標(biāo),結(jié)合第個交點的橫坐標(biāo)得出實數(shù)的取值范圍.【題目詳解】由可知函數(shù)的圖象關(guān)于點成中心對稱,且,所以,,所以,函數(shù)的周期為,由于函數(shù)為奇函數(shù),則,則,作出函數(shù)與函數(shù)的圖象如下圖所示:,則,于是得出,,由圖象可知,函數(shù)與函數(shù)在區(qū)間上從左到右個交點的橫坐標(biāo)分別為、、、、、、、、、,第個交點的橫坐標(biāo)為,因此,實數(shù)的取值范圍是,故選A.【題目點撥】本題考查方程的根與函數(shù)的零點個數(shù)問題,一般這類問題轉(zhuǎn)化為兩個函數(shù)圖象的交點個數(shù)問題,在畫函數(shù)的圖象時,要注意函數(shù)的奇偶性、對稱性、周期性對函數(shù)圖象的影響,屬于難題.6、C【解題分析】
根據(jù)題目分別為角A,B,C的對邊,且可知,利用邊化角的方法,將式子化為,利用三角形的性質(zhì)將化為,化簡得,推出,從而得出的形狀為直角三角形.【題目詳解】由題意知,由正弦定理得又展開得,又角A,B,C是三角形的內(nèi)角又綜上所述,的形狀為直角三角形,故答案選C.【題目點撥】本題主要考查了解三角形的相關(guān)問題,主要根據(jù)正余弦定理,利用邊化角或角化邊,若轉(zhuǎn)化成角時,要注意的應(yīng)用.7、D【解題分析】假設(shè)a,b都不小于0,即a≥0,b≥0,則a+b≥0,這與a+b<0相矛盾,因此假設(shè)錯誤,即a,b中至少有一個小于0.8、D【解題分析】
利用三角恒等變換化簡函數(shù)的解析式,再根據(jù)正弦函數(shù)的極值點,可得2kπ2ωπ4ωπ2kπ,或2kπ2ωπ4ωπ2kπ,k∈Z,由此求得ω的取值范圍.【題目詳解】∵函數(shù)=sin2ωx﹣2?1=sin2ωxcos2ωx+1=2sin(2ωx)+1在區(qū)間(π,2π)內(nèi)沒有極值點,∴2kπ2ωπ4ωπ2kπ,或2kπ2ωπ4ωπ2kπ,k∈Z.解得kω,或kω,令k=0,可得ω∈故選D.【題目點撥】本題主要考查三角恒等變換,正弦函數(shù)的極值點,屬于中檔題.9、C【解題分析】由題設(shè)可知展開式中的通項公式為,其系數(shù)為,當(dāng)為奇數(shù)時展開式中項的系數(shù)最小,則,即第8項的系數(shù)最小,應(yīng)選答案C。10、B【解題分析】
由分步計數(shù)原理計算可得答案.【題目詳解】根據(jù)題意,分2步進(jìn)行分析:①、先在4種蔬菜品種中選出3種,有種取法,②、將選出的3種蔬菜對應(yīng)3塊不同土質(zhì)的土地,有種情況,則不同的種植方法有種;故選:B.【題目點撥】本題考查計數(shù)原理的運用,注意本題問題要先抽取,再排列.11、C【解題分析】分析:取中點,連接,由三角形中位線定理可得,直線與所成的角即為直線與直線所成角,利用余弦定理及平方關(guān)系可得結(jié)果.詳解:如圖,取中點,連接,分別為的中點,則為三角形的中位線,,直線與所成的角即為直線與直線所成角,三棱錐的棱長全相等,設(shè)棱長為,則,在等邊三角形中,為的中點,為邊上的高,,同理可得,在三角形中,,,直線與直線所成角的正弦值為,故選C.點睛:本題主要考查異面直線所成的角,屬于中檔題題.求異面直線所成的角的角先要利用三角形中位線定理以及平行四邊形找到,異面直線所成的角,然后利用直角三角形的性質(zhì)及余弦定理求解,如果利用余弦定理求余弦,因為異面直線所成的角是直角或銳角,所以最后結(jié)果一定要取絕對值.12、A【解題分析】
設(shè),可分別用表示,進(jìn)而可得到的表達(dá)式,構(gòu)造函數(shù),通過求導(dǎo)判斷單調(diào)性可求出的最大值.【題目詳解】設(shè),則,則,,故.令,則,因為時,和都是減函數(shù),所以函數(shù)在上單調(diào)遞減.由于,故時,;時,.則當(dāng)時,取得最大值,.即的最大值為.故答案為A.【題目點撥】構(gòu)造函數(shù)是解決本題的關(guān)鍵,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,考查了學(xué)生分析問題、解決問題的能力與計算能力,屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13、60【解題分析】分析:先從5人中選4人(組合),再給4個人分派3項任務(wù),甲需2人,乙、丙各需由人。詳解:先從5人中選4人(組合),再給4個人分派3項任務(wù),甲需2人,乙、丙各需由人(乙、丙派的人不一樣故要排列)。共有60種。點睛:分配問題,先分組(組合)后分派(排列)。14、-【解題分析】
先根據(jù)已知和三角函數(shù)的坐標(biāo)定義得到cosα=x=,解方程解答x的值,再利用三角函數(shù)的坐標(biāo)定義求tanα的值.【題目詳解】因為α是第二象限角,所以cosα=x<0,即x<0.又cosα=x=,解得x=-3,所以tanα==-.故答案為-【題目點撥】(1)本題主要考查三角函數(shù)的坐標(biāo)定義,意在考查學(xué)生對該知識的掌握水平和分析推理能力.(2)點p(x,y)是角終邊上的任意的一點(原點除外),r代表點到原點的距離,則sin=cos=,tan=.15、【解題分析】
由冪函數(shù)的定義,把代入可求解.【題目詳解】點在冪函數(shù)的圖象上,,,故答案為:【題目點撥】本題考查冪函數(shù)的定義.冪函數(shù)的性質(zhì):(1)冪函數(shù)在上都有定義;(2)冪函數(shù)的圖象過定點;(3)當(dāng)時,冪函數(shù)的圖象都過點和,且在上單調(diào)遞增;(4)當(dāng)時,冪函數(shù)的圖象都過點,且在上單調(diào)遞減;(5)當(dāng)為奇數(shù)時,冪函數(shù)為奇函數(shù);當(dāng)為偶數(shù)時,冪函數(shù)為偶函數(shù).16、【解題分析】
由題意畫出正方體,求出的面積,利用等體積法求解到平面的距離.【題目詳解】由題意,畫出正方體如圖所示,,點是中點,所以,在中,,,,所以,,所以,設(shè)到平面的距離為,由,得,解得,.故答案為:【題目點撥】本題主要考查求點到平面距離的方法、棱錐體積公式、余弦定理和三角形面積公式的應(yīng)用,考查等體積法的應(yīng)用和學(xué)生的轉(zhuǎn)化和計算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)【解題分析】
(Ⅰ)由于,計算出再通過正弦定理即得答案;(Ⅱ)可先求出,然后利用和差公式即可求得答案.【題目詳解】(Ⅰ)解:,且,∴,又,∴,由正弦定理,得,∴的值為.(Ⅱ)由題意可知,,∴,.【題目點撥】本題主要考查三角恒等變換,正弦定理的綜合應(yīng)用,意在考查學(xué)生的分析能力,計算能力,難度不大.18、(1);(2).【解題分析】
(1)根據(jù)題意,分別求出先后拋擲同一顆骰子兩次,以及獲得“好手氣”所包含的基本事件個數(shù),基本事件個數(shù)比即為所求概率;(2)根據(jù)題意,得到甲、乙兩人共進(jìn)行了3局“比手氣”游戲,則甲“手氣好”共包含三種情況:甲獲得3次“好手氣”,乙少于3次;甲獲得2次“好手氣”,乙少于2次;甲獲得1次“好手氣”,乙獲得0次;再由題中數(shù)據(jù),即可求出結(jié)果.【題目詳解】(1)由題意,甲先后拋擲同一顆骰子兩次,共有種情況;獲得“好手氣”包含:,共種情況,因此甲在一局游戲中獲得“好手氣”的概率為;(2)由(1)可得,甲乙在一局游戲中獲得“好手氣”的概率均為;現(xiàn)甲、乙兩人共進(jìn)行了3局“比手氣”游戲,則甲“手氣好”共包含三種情況:甲獲得3次“好手氣”,乙少于3次;甲獲得2次“好手氣”,乙少于2次;甲獲得1次“好手氣”,乙獲得0次;所以甲“手氣好”的概率為:.【題目點撥】本題主要考查獨立重復(fù)試驗的概率,以及古典概型的概率計算,屬于常考題型.19、(1)56;(2)35;(3)21【解題分析】
分析:(1)從口袋里的個球中任取個球,利用組合數(shù)的計算公式,即可求解.(2)從口袋里的個球中任取個球,其中恰有一個紅球,可以分兩步完成:第一步,從個白球中任取個白球,第二步,把個紅球取出,即可得到答案.(3)從口袋里任取個球,其中不含紅球,只需從個白球中任取個白球即可得到結(jié)果.詳解:(1)從口袋里的個球中任取個球,不同取法的種數(shù)是(2)從口袋里的個球中任取個球,其中恰有一個紅球,可以分兩步完成:第一步,從個白球中任取個白球,有種取法;第二步,把個紅球取出,有種取法.故不同取法的種數(shù)是:(3)從口袋里任取個球,其中不含紅球,只需從個白球中任取個白球即可,不同取法的種數(shù)是.點睛:本題主要考查了組合及組合數(shù)的應(yīng)用,其中認(rèn)真分析題意,合理選擇組合及組合數(shù)的公式是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,以及推理與計算能力.20、(1)(2)最大值為為【解題分析】分析:(1)先求出函數(shù)的導(dǎo)數(shù),根據(jù),聯(lián)立方程組解出的值,即可得到的解析式;(2)求出,分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間,利用單調(diào)性可得函數(shù)的極值,然后求出的值,與極值比較大小即可求得函數(shù)的最值.詳解:(1)由題意:,又由此得:經(jīng)驗證:∴(2)由(1)知,又所以最大值為為點睛:本題主要考查利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性以及函數(shù)的極值與最值,屬于中檔題.求函數(shù)極值的步驟:(1)確定函數(shù)的定義域;(2)求導(dǎo)數(shù);(3)解方程求出函數(shù)定義域內(nèi)的所有根;(4)列表檢查在的根左右兩側(cè)值的符號,如果左正右負(fù)(左增右減),那么在處取極大值,如果左負(fù)右正(左減右增),那么在處取極小值.(5)如果只有一個極值點,則在該處即是極值也是最值;(6)如果求閉區(qū)間上的最值還需要比較端點值的函數(shù)值與極值的大小.21、(1)見解析(2).【解題分析】
試題分析:(Ⅰ)取AB的中點O,連接OC,OA1,A1B,由已知可證OA1⊥AB,AB⊥平面OA1C,進(jìn)而可得AB⊥A1C;(Ⅱ)易證OA,OA1,OC兩兩垂直.以O(shè)為坐標(biāo)原點,的方向為x軸的正向,||為單位長,建立坐標(biāo)系,可得,,的坐標(biāo),設(shè)=(x,y,z)為平面BB1C1C的法向量,則,可解得=(,1,﹣1),可求|cos<,>|,即為所求正弦值.解:(Ⅰ)取AB的中點O,連接OC,OA1,A1B,因為CA=CB,所以O(shè)C⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B為等邊三角形,所以O(shè)A1⊥AB,又因為OC∩OA1=O,所以AB⊥平面OA1C,又A1C?平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交線為AB,所以O(shè)C⊥平面AA1B1B,故OA,OA1,OC兩兩垂直.以O(shè)為坐標(biāo)原點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年酒店用品買賣協(xié)議
- 2024年房屋租賃三方協(xié)議樣本
- 店鋪裝修設(shè)計與施工一體化協(xié)議模板
- 2024年度勞動力成本協(xié)議樣本
- DB11∕T 1697-2019 動力鋰離子蓄電池制造業(yè)綠色工廠評價要求
- 2024年度中央空調(diào)系統(tǒng)翻新工程協(xié)議
- 2024商業(yè)采購協(xié)議模板全面指南
- 2024年輔導(dǎo)班家長服務(wù)協(xié)議
- 2024水電站施工協(xié)議化文件
- 文書模板-《創(chuàng)建健康企業(yè)協(xié)議書》
- 水系統(tǒng)中央空調(diào)工程材料清單
- 小學(xué)六年級數(shù)學(xué)上冊口算題300道(全)
- 《干粉滅火器檢查卡》
- 校園監(jiān)控值班記錄表(共2頁)
- 試樁施工方案 (完整版)
- 走中國工業(yè)化道路的思想及成就
- ESTIC-AU40使用說明書(中文100版)(共138頁)
- 河北省2012土建定額說明及計算規(guī)則(含定額總說明)解讀
- Prolog語言(耐心看完-你就入門了)
- 保霸線外加電流深井陽極地床陰極保護(hù)工程施工方案
- 藍(lán)色商務(wù)大氣感恩同行集團(tuán)公司20周年慶典PPT模板
評論
0/150
提交評論