2024屆北京市東城區(qū)北京第二十二中學(xué)高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第1頁
2024屆北京市東城區(qū)北京第二十二中學(xué)高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第2頁
2024屆北京市東城區(qū)北京第二十二中學(xué)高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第3頁
2024屆北京市東城區(qū)北京第二十二中學(xué)高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第4頁
2024屆北京市東城區(qū)北京第二十二中學(xué)高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆北京市東城區(qū)北京第二十二中學(xué)高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.tan570°=()A. B.- C. D.2.已知定義在上的函數(shù)滿足,且在上是增函數(shù),不等式對(duì)于恒成立,則的取值范圍是A. B. C. D.3.如圖,正方體的底面與正四面體的底面在同一平面上,且,若正方體的六個(gè)面所在的平面與直線相交的平面?zhèn)€數(shù)分別記為,則下列結(jié)論正確的是()A. B. C. D.4.設(shè)函數(shù)在上可導(dǎo),其導(dǎo)函數(shù)為,若函數(shù)在處取得極大值,則函數(shù)的圖象可能是()A. B.C. D.5.已知全集,函數(shù)的定義域?yàn)?,集合,則下列結(jié)論正確的是A. B.C. D.6.在中,角,,的對(duì)邊分別為,,,若,,,則()A. B.3 C. D.47.如圖是一個(gè)幾何體的三視圖,則該幾何體的體積為()A. B. C. D.8.已知實(shí)數(shù),滿足,則的最大值等于()A.2 B. C.4 D.89.音樂,是用聲音來展現(xiàn)美,給人以聽覺上的享受,熔鑄人們的美學(xué)趣味.著名數(shù)學(xué)家傅立葉研究了樂聲的本質(zhì),他證明了所有的樂聲都能用數(shù)學(xué)表達(dá)式來描述,它們是一些形如的簡(jiǎn)單正弦函數(shù)的和,其中頻率最低的一項(xiàng)是基本音,其余的為泛音.由樂聲的數(shù)學(xué)表達(dá)式可知,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波.下列函數(shù)中不能與函數(shù)構(gòu)成樂音的是()A. B. C. D.10.若的展開式中的系數(shù)為150,則()A.20 B.15 C.10 D.2511.已知,,,則()A. B.C. D.12.已知集合,,則集合的真子集的個(gè)數(shù)是()A.8 B.7 C.4 D.3二、填空題:本題共4小題,每小題5分,共20分。13.在一次醫(yī)療救助活動(dòng)中,需要從A醫(yī)院某科室的6名男醫(yī)生、4名女醫(yī)生中分別抽調(diào)3名男醫(yī)生、2名女醫(yī)生,且男醫(yī)生中唯一的主任醫(yī)師必須參加,則不同的選派案共有________種.(用數(shù)字作答)14.若實(shí)數(shù)滿足不等式組,則的最小值是___15.在平面直角坐標(biāo)系中,點(diǎn)在單位圓上,設(shè),且.若,則的值為________________.16.某大學(xué)、、、四個(gè)不同的專業(yè)人數(shù)占本???cè)藬?shù)的比例依次為、、、,現(xiàn)欲采用分層抽樣的方法從這四個(gè)專業(yè)的總?cè)藬?shù)中抽取人調(diào)查畢業(yè)后的就業(yè)情況,則專業(yè)應(yīng)抽取_________人.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面是直角梯形且∥,側(cè)面為等邊三角形,且平面平面.(1)求平面與平面所成的銳二面角的大??;(2)若,且直線與平面所成角為,求的值.18.(12分)已知函數(shù),.(1)當(dāng)時(shí),判斷是否是函數(shù)的極值點(diǎn),并說明理由;(2)當(dāng)時(shí),不等式恒成立,求整數(shù)的最小值.19.(12分)已知函數(shù).(1)解不等式;(2)記函數(shù)的最大值為,若,證明:.20.(12分)如圖,在直三棱柱中,,點(diǎn)P,Q分別為,的中點(diǎn).求證:(1)PQ平面;(2)平面.21.(12分)設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若不等式恒成立,求實(shí)數(shù)a的取值范圍.22.(10分)改革開放40年,我國經(jīng)濟(jì)取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識(shí)也需要不斷加強(qiáng).為了解某城市不同性別駕駛員的交通安全意識(shí),某小組利用假期進(jìn)行一次全市駕駛員交通安全意識(shí)調(diào)查.隨機(jī)抽取男女駕駛員各50人,進(jìn)行問卷測(cè)評(píng),所得分?jǐn)?shù)的頻率分布直方圖如圖所示.規(guī)定得分在80分以上為交通安全意識(shí)強(qiáng).安全意識(shí)強(qiáng)安全意識(shí)不強(qiáng)合計(jì)男性女性合計(jì)(Ⅰ)求的值,并估計(jì)該城市駕駛員交通安全意識(shí)強(qiáng)的概率;(Ⅱ)已知交通安全意識(shí)強(qiáng)的樣本中男女比例為4:1,完成2×2列聯(lián)表,并判斷有多大把握認(rèn)為交通安全意識(shí)與性別有關(guān);(Ⅲ)在(Ⅱ)的條件下,從交通安全意識(shí)強(qiáng)的駕駛員中隨機(jī)抽取2人,求抽到的女性人數(shù)的分布列及期望.附:,其中0.0100.0050.0016.6357.87910.828

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

直接利用誘導(dǎo)公式化簡(jiǎn)求解即可.【詳解】tan570°=tan(360°+210°)=tan210°=tan(180°+30°)=tan30°=.故選:A.【點(diǎn)睛】本題考查三角函數(shù)的恒等變換及化簡(jiǎn)求值,主要考查誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.2、A【解析】

根據(jù)奇偶性定義和性質(zhì)可判斷出函數(shù)為偶函數(shù)且在上是減函數(shù),由此可將不等式化為;利用分離變量法可得,求得的最大值和的最小值即可得到結(jié)果.【詳解】為定義在上的偶函數(shù),圖象關(guān)于軸對(duì)稱又在上是增函數(shù)在上是減函數(shù),即對(duì)于恒成立在上恒成立,即的取值范圍為:本題正確選項(xiàng):【點(diǎn)睛】本題考查利用函數(shù)的奇偶性和單調(diào)性求解函數(shù)不等式的問題,涉及到恒成立問題的求解;解題關(guān)鍵是能夠利用函數(shù)單調(diào)性將函數(shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,從而利用分離變量法來處理恒成立問題.3、A【解析】

根據(jù)題意,畫出幾何位置圖形,由圖形的位置關(guān)系分別求得的值,即可比較各選項(xiàng).【詳解】如下圖所示,平面,從而平面,易知與正方體的其余四個(gè)面所在平面均相交,∴,∵平面,平面,且與正方體的其余四個(gè)面所在平面均相交,∴,∴結(jié)合四個(gè)選項(xiàng)可知,只有正確.故選:A.【點(diǎn)睛】本題考查了空間幾何體中直線與平面位置關(guān)系的判斷與綜合應(yīng)用,對(duì)空間想象能力要求較高,屬于中檔題.4、B【解析】

由題意首先確定導(dǎo)函數(shù)的符號(hào),然后結(jié)合題意確定函數(shù)在區(qū)間和處函數(shù)的特征即可確定函數(shù)圖像.【詳解】函數(shù)在上可導(dǎo),其導(dǎo)函數(shù)為,且函數(shù)在處取得極大值,當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.時(shí),,時(shí),,當(dāng)或時(shí),;當(dāng)時(shí),.故選:【點(diǎn)睛】根據(jù)函數(shù)取得極大值,判斷導(dǎo)函數(shù)在極值點(diǎn)附近左側(cè)為正,右側(cè)為負(fù),由正負(fù)情況討論圖像可能成立的選項(xiàng),是判斷圖像問題常見方法,有一定難度.5、A【解析】

求函數(shù)定義域得集合M,N后,再判斷.【詳解】由題意,,∴.故選A.【點(diǎn)睛】本題考查集合的運(yùn)算,解題關(guān)鍵是確定集合中的元素.確定集合的元素時(shí)要注意代表元形式,集合是函數(shù)的定義域,還是函數(shù)的值域,是不等式的解集還是曲線上的點(diǎn)集,都由代表元決定.6、B【解析】由正弦定理及條件可得,即.,∴,由余弦定理得。∴.選B。7、A【解析】

根據(jù)三視圖可得幾何體為直三棱柱,根據(jù)三視圖中的數(shù)據(jù)直接利用公式可求體積.【詳解】由三視圖可知幾何體為直三棱柱,直觀圖如圖所示:其中,底面為直角三角形,,,高為.∴該幾何體的體積為故選:A.【點(diǎn)睛】本題考查三視圖及棱柱的體積,屬于基礎(chǔ)題.8、D【解析】

畫出可行域,計(jì)算出原點(diǎn)到可行域上的點(diǎn)的最大距離,由此求得的最大值.【詳解】畫出可行域如下圖所示,其中,由于,,所以,所以原點(diǎn)到可行域上的點(diǎn)的最大距離為.所以的最大值為.故選:D【點(diǎn)睛】本小題主要考查根據(jù)可行域求非線性目標(biāo)函數(shù)的最值,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.9、C【解析】

由基本音的諧波的定義可得,利用可得,即可判斷選項(xiàng).【詳解】由題,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波,由,可知若,則必有,故選:C【點(diǎn)睛】本題考查三角函數(shù)的周期與頻率,考查理解分析能力.10、C【解析】

通過二項(xiàng)式展開式的通項(xiàng)分析得到,即得解.【詳解】由已知得,故當(dāng)時(shí),,于是有,則.故選:C【點(diǎn)睛】本題主要考查二項(xiàng)式展開式的通項(xiàng)和系數(shù)問題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.11、C【解析】

利用二倍角公式,和同角三角函數(shù)的商數(shù)關(guān)系式,化簡(jiǎn)可得,即可求得結(jié)果.【詳解】,所以,即.故選:C.【點(diǎn)睛】本題考查三角恒等變換中二倍角公式的應(yīng)用和弦化切化簡(jiǎn)三角函數(shù),難度較易.12、D【解析】

轉(zhuǎn)化條件得,利用元素個(gè)數(shù)為n的集合真子集個(gè)數(shù)為個(gè)即可得解.【詳解】由題意得,,集合的真子集的個(gè)數(shù)為個(gè).故選:D.【點(diǎn)睛】本題考查了集合的化簡(jiǎn)和運(yùn)算,考查了集合真子集個(gè)數(shù)問題,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

首先選派男醫(yī)生中唯一的主任醫(yī)師,由題意利用排列組合公式即可確定不同的選派案方法種數(shù).【詳解】首先選派男醫(yī)生中唯一的主任醫(yī)師,然后從名男醫(yī)生、名女醫(yī)生中分別抽調(diào)2名男醫(yī)生、名女醫(yī)生,故選派的方法為:.故答案為.【點(diǎn)睛】解排列組合問題要遵循兩個(gè)原則:一是按元素(或位置)的性質(zhì)進(jìn)行分類;二是按事情發(fā)生的過程進(jìn)行分步.具體地說,解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置).14、-1【解析】作出可行域,如圖:由得,由圖可知當(dāng)直線經(jīng)過A點(diǎn)時(shí)目標(biāo)函數(shù)取得最小值,A(1,0)所以-1故答案為-115、【解析】

根據(jù)三角函數(shù)定義表示出,由同角三角函數(shù)關(guān)系式結(jié)合求得,而,展開后即可由余弦差角公式求得的值.【詳解】點(diǎn)在單位圓上,設(shè),由三角函數(shù)定義可知,因?yàn)椋瑒t,所以由同角三角函數(shù)關(guān)系式可得,所以故答案為:.【點(diǎn)睛】本題考查了三角函數(shù)定義,同角三角函數(shù)關(guān)系式的應(yīng)用,余弦差角公式的應(yīng)用,屬于中檔題.16、【解析】

求出專業(yè)人數(shù)在、、、四個(gè)專業(yè)總?cè)藬?shù)的比例后可得.【詳解】由題意、、、四個(gè)不同的專業(yè)人數(shù)的比例為,故專業(yè)應(yīng)抽取的人數(shù)為.故答案為:1.【點(diǎn)睛】本題考查分層抽樣,根據(jù)分層抽樣的定義,在各層抽取樣本數(shù)量是按比例抽取的.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)分別取的中點(diǎn)為,易得兩兩垂直,以所在直線為軸建立空間直角坐標(biāo)系,易得為平面的法向量,只需求出平面的法向量為,再利用計(jì)算即可;(2)求出,利用計(jì)算即可.【詳解】(1)分別取的中點(diǎn)為,連結(jié).因?yàn)椤?,所以?因?yàn)?,所?因?yàn)閭?cè)面為等邊三角形,所以又因?yàn)槠矫嫫矫?,平面平面,平面,所以平面,所以兩兩垂?以為空間坐標(biāo)系的原點(diǎn),分別以所在直線為軸建立如圖所示的空間直角坐標(biāo)系,因?yàn)?,則,,.設(shè)平面的法向量為,則,即.取,則,所以.又為平面的法向量,設(shè)平面與平面所成的銳二面角的大小為,則,所以平面與平面所成的銳二面角的大小為.(2)由(1)得,平面的法向量為,所以成.又直線與平面所成角為,所以,即,即,化簡(jiǎn)得,所以,符合題意.【點(diǎn)睛】本題考查利用向量坐標(biāo)法求面面角、線面角,涉及到面面垂直的性質(zhì)定理的應(yīng)用,做好此類題的關(guān)鍵是準(zhǔn)確寫出點(diǎn)的坐標(biāo),是一道中檔題.18、(1)是函數(shù)的極大值點(diǎn),理由詳見解析;(2)1.【解析】

(1)將直接代入,對(duì)求導(dǎo)得,由于函數(shù)單調(diào)性不好判斷,故而構(gòu)造函數(shù),繼續(xù)求導(dǎo),判斷導(dǎo)函數(shù)在左右兩邊的正負(fù)情況,最后得出,是函數(shù)的極大值點(diǎn);(2)利用題目已有條件得,再證明時(shí),不等式恒成立,即證,從而可知整數(shù)的最小值為1.【詳解】解:(1)當(dāng)時(shí),.令,則當(dāng)時(shí),.即在內(nèi)為減函數(shù),且∴當(dāng)時(shí),;當(dāng)時(shí),.∴在內(nèi)是增函數(shù),在內(nèi)是減函數(shù).綜上,是函數(shù)的極大值點(diǎn).(2)由題意,得,即.現(xiàn)證明當(dāng)時(shí),不等式成立,即.即證令則∴當(dāng)時(shí),;當(dāng)時(shí),.∴在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,的最大值為.∴當(dāng)時(shí),.即當(dāng)時(shí),不等式成立.綜上,整數(shù)的最小值為.【點(diǎn)睛】本題考查學(xué)生利用導(dǎo)數(shù)處理函數(shù)的極值,最值,判斷函數(shù)的單調(diào)性,由此來求解函數(shù)中的參數(shù)的取值范圍,對(duì)學(xué)生要求較高,然后需要學(xué)生能構(gòu)造新函數(shù)處理恒成立問題,為難題19、(1);(2)證明見解析【解析】

(1)將函數(shù)整理為分段函數(shù)形式可得,進(jìn)而分類討論求解不等式即可;(2)先利用絕對(duì)值不等式的性質(zhì)得到的最大值為3,再利用均值定理證明即可.【詳解】(1)①當(dāng)時(shí),恒成立,;②當(dāng)時(shí),,即,;③當(dāng)時(shí),顯然不成立,不合題意;綜上所述,不等式的解集為.(2)由(1)知,于是由基本不等式可得(當(dāng)且僅當(dāng)時(shí)取等號(hào))(當(dāng)且僅當(dāng)時(shí)取等號(hào))(當(dāng)且僅當(dāng)時(shí)取等號(hào))上述三式相加可得(當(dāng)且僅當(dāng)時(shí)取等號(hào)),,故得證.【點(diǎn)睛】本題考查解絕對(duì)值不等式和利用均值定理證明不等式,考查絕對(duì)值不等式的最值的應(yīng)用,解題關(guān)鍵是掌握分類討論解決帶絕對(duì)值不等式的方法,考查了分析能力和計(jì)算能力,屬于中檔題.20、(1)見解析(2)見解析【解析】

(1)取的中點(diǎn)D,連結(jié),.根據(jù)線面平行的判定定理即得;(2)先證,,和都是平面內(nèi)的直線且交于點(diǎn),由(1)得,再結(jié)合線面垂直的判定定理即得.【詳解】(1)取的中點(diǎn)D,連結(jié),.在中,P,D分別為,中點(diǎn),,且.在直三棱柱中,,.Q為棱的中點(diǎn),,且.,.四邊形為平行四邊形,從而.又平面,平面,平面.(2)在直三棱柱中,平面.又平面,.,D為中點(diǎn),.由(1)知,,.又,平面,平面,平面.【點(diǎn)睛】本題考查線面平行的判定定理,以及線面垂直的判定定理,難度不大.21、(1)(2)【解析】

(1)利用分段討論法去掉絕對(duì)值,結(jié)合圖象,從而求得不等式的解集;(2)求出函數(shù)的最小值,把問題化為,從而求得的取值范圍.【詳解】(1)當(dāng)時(shí),則所以不等式的解集為.(2)等價(jià)于,而,故等價(jià)于,所以或,即或,所以實(shí)數(shù)a的取值范圍為.【點(diǎn)睛】本題考查含有絕對(duì)值的不等式解法、不等式恒成立問題,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論