版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆浙江省杭州北斗聯(lián)盟高三第三次測(cè)評(píng)數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.寧波古圣王陽(yáng)明的《傳習(xí)錄》專門講過易經(jīng)八卦圖,下圖是易經(jīng)八卦圖(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(“—”表示一根陽(yáng)線,“——”表示一根陰線).從八卦中任取兩卦,這兩卦的六根線中恰有四根陰線的概率為()A. B. C. D.2.已知為定義在上的奇函數(shù),若當(dāng)時(shí),(為實(shí)數(shù)),則關(guān)于的不等式的解集是()A. B. C. D.3.若雙曲線的一條漸近線與圓至多有一個(gè)交點(diǎn),則雙曲線的離心率的取值范圍是()A. B. C. D.4.若,則實(shí)數(shù)的大小關(guān)系為()A. B. C. D.5.已知向量,若,則實(shí)數(shù)的值為()A. B. C. D.6.某三棱錐的三視圖如圖所示,則該三棱錐的體積為()A. B.4C. D.57.下列幾何體的三視圖中,恰好有兩個(gè)視圖相同的幾何體是()A.正方體 B.球體C.圓錐 D.長(zhǎng)寬高互不相等的長(zhǎng)方體8.某人用隨機(jī)模擬的方法估計(jì)無理數(shù)的值,做法如下:首先在平面直角坐標(biāo)系中,過點(diǎn)作軸的垂線與曲線相交于點(diǎn),過作軸的垂線與軸相交于點(diǎn)(如圖),然后向矩形內(nèi)投入粒豆子,并統(tǒng)計(jì)出這些豆子在曲線上方的有粒,則無理數(shù)的估計(jì)值是()A. B. C. D.9.已知向量,是單位向量,若,則()A. B. C. D.10.設(shè)分別為的三邊的中點(diǎn),則()A. B. C. D.11.是定義在上的增函數(shù),且滿足:的導(dǎo)函數(shù)存在,且,則下列不等式成立的是()A. B.C. D.12.中國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中記載了公元前344年商鞅督造的一種標(biāo)準(zhǔn)量器——商鞅銅方升,其三視圖如圖所示(單位:寸),若取3,當(dāng)該量器口密閉時(shí)其表面積為42.2(平方寸),則圖中x的值為()A.3 B.3.4 C.3.8 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項(xiàng)和為,且滿足,則______14.假設(shè)10公里長(zhǎng)跑,甲跑出優(yōu)秀的概率為,乙跑出優(yōu)秀的概率為,丙跑出優(yōu)秀的概率為,則甲、乙、丙三人同時(shí)參加10公里長(zhǎng)跑,剛好有2人跑出優(yōu)秀的概率為________.15.已知,則展開式中的系數(shù)為__16.“”是“”的__________條件.(填寫“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)隨著互聯(lián)網(wǎng)金融的不斷發(fā)展,很多互聯(lián)網(wǎng)公司推出余額增值服務(wù)產(chǎn)品和活期資金管理服務(wù)產(chǎn)品,如螞蟻金服旗下的“余額寶”,騰訊旗下的“財(cái)富通”,京東旗下“京東小金庫(kù)”.為了調(diào)查廣大市民理財(cái)產(chǎn)品的選擇情況,隨機(jī)抽取1200名使用理財(cái)產(chǎn)品的市民,按照使用理財(cái)產(chǎn)品的情況統(tǒng)計(jì)得到如下頻數(shù)分布表:分組頻數(shù)(單位:名)使用“余額寶”使用“財(cái)富通”使用“京東小金庫(kù)”30使用其他理財(cái)產(chǎn)品50合計(jì)1200已知這1200名市民中,使用“余額寶”的人比使用“財(cái)富通”的人多160名.(1)求頻數(shù)分布表中,的值;(2)已知2018年“余額寶”的平均年化收益率為,“財(cái)富通”的平均年化收益率為.若在1200名使用理財(cái)產(chǎn)品的市民中,從使用“余額寶”和使用“財(cái)富通”的市民中按分組用分層抽樣方法共抽取7人,然后從這7人中隨機(jī)選取2人,假設(shè)這2人中每個(gè)人理財(cái)?shù)馁Y金有10000元,這2名市民2018年理財(cái)?shù)睦⒖偤蜑?,求的分布列及?shù)學(xué)期望.注:平均年化收益率,也就是我們所熟知的利息,理財(cái)產(chǎn)品“平均年化收益率為”即將100元錢存入某理財(cái)產(chǎn)品,一年可以獲得3元利息.18.(12分)如圖所示,直角梯形ABCD中,,,,四邊形EDCF為矩形,,平面平面ABCD.(1)求證:平面ABE;(2)求平面ABE與平面EFB所成銳二面角的余弦值.(3)在線段DF上是否存在點(diǎn)P,使得直線BP與平面ABE所成角的正弦值為,若存在,求出線段BP的長(zhǎng),若不存在,請(qǐng)說明理由.19.(12分)金秋九月,丹桂飄香,某高校迎來了一大批優(yōu)秀的學(xué)生.新生接待其實(shí)也是和社會(huì)溝通的一個(gè)平臺(tái).校團(tuán)委、學(xué)生會(huì)從在校學(xué)生中隨機(jī)抽取了160名學(xué)生,對(duì)是否愿意投入到新生接待工作進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:愿意不愿意男生6020女士4040(1)根據(jù)上表說明,能否有99%把握認(rèn)為愿意參加新生接待工作與性別有關(guān);(2)現(xiàn)從參與問卷調(diào)查且愿意參加新生接待工作的學(xué)生中,采用按性別分層抽樣的方法,選取10人.若從這10人中隨機(jī)選取3人到火車站迎接新生,設(shè)選取的3人中女生人數(shù)為,寫出的分布列,并求.附:,其中.0.050.010.0013.8416.63510.82820.(12分)已知.(1)若的解集為,求的值;(2)若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.21.(12分)設(shè)為拋物線的焦點(diǎn),,為拋物線上的兩個(gè)動(dòng)點(diǎn),為坐標(biāo)原點(diǎn).(Ⅰ)若點(diǎn)在線段上,求的最小值;(Ⅱ)當(dāng)時(shí),求點(diǎn)縱坐標(biāo)的取值范圍.22.(10分)某省新課改后某校為預(yù)測(cè)2020屆高三畢業(yè)班的本科上線情況,從該校上一屆高三(1)班到高三(5)班隨機(jī)抽取50人,得到各班抽取的人數(shù)和其中本科上線人數(shù),并將抽取數(shù)據(jù)制成下面的條形統(tǒng)計(jì)圖.(1)根據(jù)條形統(tǒng)計(jì)圖,估計(jì)本屆高三學(xué)生本科上線率.(2)已知該省甲市2020屆高考考生人數(shù)為4萬,假設(shè)以(1)中的本科上線率作為甲市每個(gè)考生本科上線的概率.(i)若從甲市隨機(jī)抽取10名高三學(xué)生,求恰有8名學(xué)生達(dá)到本科線的概率(結(jié)果精確到0.01);(ii)已知該省乙市2020屆高考考生人數(shù)為3.6萬,假設(shè)該市每個(gè)考生本科上線率均為,若2020屆高考本科上線人數(shù)乙市的均值不低于甲市,求p的取值范圍.可能用到的參考數(shù)據(jù):取,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)古典概型的概率求法,先得到從八卦中任取兩卦基本事件的總數(shù),再找出這兩卦的六根線中恰有四根陰線的基本事件數(shù),代入公式求解.【詳解】從八卦中任取兩卦基本事件的總數(shù)種,這兩卦的六根線中恰有四根陰線的基本事件數(shù)有6種,分別是(巽,坤),(兌,坤),(離,坤),(震,艮),(震,坎),(坎,艮),所以這兩卦的六根線中恰有四根陰線的概率是.故選:B【點(diǎn)睛】本題主要考查古典概型的概率,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.2、A【解析】
先根據(jù)奇函數(shù)求出m的值,然后結(jié)合單調(diào)性求解不等式.【詳解】據(jù)題意,得,得,所以當(dāng)時(shí),.分析知,函數(shù)在上為增函數(shù).又,所以.又,所以,所以,故選A.【點(diǎn)睛】本題主要考查函數(shù)的性質(zhì)應(yīng)用,側(cè)重考查數(shù)學(xué)抽象和數(shù)學(xué)運(yùn)算的核心素養(yǎng).3、C【解析】
求得雙曲線的漸近線方程,可得圓心到漸近線的距離,由點(diǎn)到直線的距離公式可得的范圍,再由離心率公式計(jì)算即可得到所求范圍.【詳解】雙曲線的一條漸近線為,即,由題意知,直線與圓相切或相離,則,解得,因此,雙曲線的離心率.故選:C.【點(diǎn)睛】本題考查雙曲線的離心率的范圍,注意運(yùn)用圓心到漸近線的距離不小于半徑,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.4、A【解析】
將化成以為底的對(duì)數(shù),即可判斷的大小關(guān)系;由對(duì)數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì),可判斷出與1的大小關(guān)系,從而可判斷三者的大小關(guān)系.【詳解】依題意,由對(duì)數(shù)函數(shù)的性質(zhì)可得.又因?yàn)?,?故選:A.【點(diǎn)睛】本題考查了指數(shù)函數(shù)的性質(zhì),考查了對(duì)數(shù)函數(shù)的性質(zhì),考查了對(duì)數(shù)的運(yùn)算性質(zhì).兩個(gè)對(duì)數(shù)型的數(shù)字比較大小時(shí),底數(shù)相同,則構(gòu)造對(duì)數(shù)函數(shù),結(jié)合對(duì)數(shù)的單調(diào)性可判斷大?。蝗粽鏀?shù)相同,則結(jié)合對(duì)數(shù)函數(shù)的圖像或者換底公式可判斷大??;若真數(shù)和底數(shù)都不相同,則可與中間值如1,0比較大小.5、D【解析】
由兩向量垂直可得,整理后可知,將已知條件代入后即可求出實(shí)數(shù)的值.【詳解】解:,,即,將和代入,得出,所以.故選:D.【點(diǎn)睛】本題考查了向量的數(shù)量積,考查了向量的坐標(biāo)運(yùn)算.對(duì)于向量問題,若已知垂直,通常可得到兩個(gè)向量的數(shù)量積為0,繼而結(jié)合條件進(jìn)行化簡(jiǎn)、整理.6、B【解析】
還原幾何體的直觀圖,可將此三棱錐放入長(zhǎng)方體中,利用體積分割求解即可.【詳解】如圖,三棱錐的直觀圖為,體積.故選:B.【點(diǎn)睛】本題主要考查了錐體的體積的求解,利用的體積分割的方法,考查了空間想象力及計(jì)算能力,屬于中檔題.7、C【解析】
根據(jù)基本幾何體的三視圖確定.【詳解】正方體的三個(gè)三視圖都是相等的正方形,球的三個(gè)三視圖都是相等的圓,圓錐的三個(gè)三視圖有一個(gè)是圓,另外兩個(gè)是全等的等腰三角形,長(zhǎng)寬高互不相等的長(zhǎng)方體的三視圖是三個(gè)兩兩不全等的矩形.故選:C.【點(diǎn)睛】本題考查基本幾何體的三視圖,掌握基本幾何體的三視圖是解題關(guān)鍵.8、D【解析】
利用定積分計(jì)算出矩形中位于曲線上方區(qū)域的面積,進(jìn)而利用幾何概型的概率公式得出關(guān)于的等式,解出的表達(dá)式即可.【詳解】在函數(shù)的解析式中,令,可得,則點(diǎn),直線的方程為,矩形中位于曲線上方區(qū)域的面積為,矩形的面積為,由幾何概型的概率公式得,所以,.故選:D.【點(diǎn)睛】本題考查利用隨機(jī)模擬的思想估算的值,考查了幾何概型概率公式的應(yīng)用,同時(shí)也考查了利用定積分計(jì)算平面區(qū)域的面積,考查計(jì)算能力,屬于中等題.9、C【解析】
設(shè),根據(jù)題意求出的值,代入向量夾角公式,即可得答案;【詳解】設(shè),,是單位向量,,,,聯(lián)立方程解得:或當(dāng)時(shí),;當(dāng)時(shí),;綜上所述:.故選:C.【點(diǎn)睛】本題考查向量的模、夾角計(jì)算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力,求解時(shí)注意的兩種情況.10、B【解析】
根據(jù)題意,畫出幾何圖形,根據(jù)向量加法的線性運(yùn)算即可求解.【詳解】根據(jù)題意,可得幾何關(guān)系如下圖所示:,故選:B【點(diǎn)睛】本題考查了向量加法的線性運(yùn)算,屬于基礎(chǔ)題.11、D【解析】
根據(jù)是定義在上的增函數(shù)及有意義可得,構(gòu)建新函數(shù),利用導(dǎo)數(shù)可得為上的增函數(shù),從而可得正確的選項(xiàng).【詳解】因?yàn)槭嵌x在上的增函數(shù),故.又有意義,故,故,所以.令,則,故在上為增函數(shù),所以即,整理得到.故選:D.【點(diǎn)睛】本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用,一般地,數(shù)的大小比較,可根據(jù)數(shù)的特點(diǎn)和題設(shè)中給出的原函數(shù)與導(dǎo)數(shù)的關(guān)系構(gòu)建新函數(shù),本題屬于中檔題.12、D【解析】
根據(jù)三視圖即可求得幾何體表面積,即可解得未知數(shù).【詳解】由圖可知,該幾何體是由一個(gè)長(zhǎng)寬高分別為和一個(gè)底面半徑為,高為的圓柱組合而成.該幾何體的表面積為,解得,故選:D.【點(diǎn)睛】本題考查由三視圖還原幾何體,以及圓柱和長(zhǎng)方體表面積的求解,屬綜合基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
對(duì)題目所給等式進(jìn)行賦值,由此求得的表達(dá)式,判斷出數(shù)列是等比數(shù)列,由此求得的值.【詳解】解:,可得時(shí),,時(shí),,又,兩式相減可得,即,上式對(duì)也成立,可得數(shù)列是首項(xiàng)為1,公比為的等比數(shù)列,可得.【點(diǎn)睛】本小題主要考查已知求,考查等比數(shù)列前項(xiàng)和公式,屬于中檔題.14、【解析】
分跑出優(yōu)秀的人為:甲、乙和甲、丙和乙、丙三種情況分別計(jì)算再求和即可.【詳解】剛好有2人跑出優(yōu)秀有三種情況:其一是只有甲、乙兩人跑出優(yōu)秀的概率為;其二是只有甲、丙兩人跑出優(yōu)秀的概率為;其三是只有乙、丙兩人跑出優(yōu)秀的概率為,三種情況相加得.即剛好有2人跑出優(yōu)秀的概率為.故答案為:【點(diǎn)睛】本題主要考查了分類方法求解事件概率的問題,屬于基礎(chǔ)題.15、1.【解析】
由題意求定積分得到的值,再根據(jù)乘方的意義,排列組合數(shù)的計(jì)算公式,求出展開式中的系數(shù).【詳解】∵已知,則,
它表示4個(gè)因式的乘積.
故其中有2個(gè)因式取,一個(gè)因式取,剩下的一個(gè)因式取1,可得的項(xiàng).
故展開式中的系數(shù).
故答案為:1.【點(diǎn)睛】本題主要考查求定積分,乘方的意義,排列組合數(shù)的計(jì)算公式,屬于中檔題.16、充分不必要【解析】
由余弦的二倍角公式可得,即或,即可判斷命題的關(guān)系.【詳解】由,所以或,所以“”是“”的充分不必要條件.故答案為:充分不必要【點(diǎn)睛】本題考查命題的充分條件與必要條件的判斷,考查余弦的二倍角公式的應(yīng)用.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)680元.【解析】
(1)根據(jù)題意,列方程,然后求解即可(2)根據(jù)題意,計(jì)算出10000元使用“余額寶”的利息為(元)和10000元使用“財(cái)富通”的利息為(元),得到所有可能的取值為560(元),700(元),840(元),然后根據(jù)所有可能的取值,計(jì)算出相應(yīng)的概率,并列出的分布列表,然后求解數(shù)學(xué)期望即可【詳解】(1)據(jù)題意,得,所以.(2)據(jù),得這被抽取的7人中使用“余額寶”的有4人,使用“財(cái)富通”的有3人.10000元使用“余額寶”的利息為(元).10000元使用“財(cái)富通”的利息為(元).所有可能的取值為560(元),700(元),840(元).,,.的分布列為560700840所以(元).【點(diǎn)睛】本題考查頻數(shù)分布表以及分布列和數(shù)學(xué)期望問題,屬于基礎(chǔ)題18、(I)見解析(II)(III)【解析】試題分析:(Ⅰ)取為原點(diǎn),所在直線為軸,所在直線為軸建立空間直角坐標(biāo)系,由題意可得平面的法向量,且,據(jù)此有,則平面.(Ⅱ)由題意可得平面的法向量,結(jié)合(Ⅰ)的結(jié)論可得,即平面與平面所成銳二面角的余弦值為.(Ⅲ)設(shè),,則,而平面的法向量,據(jù)此可得,解方程有或.據(jù)此計(jì)算可得.試題解析:(Ⅰ)取為原點(diǎn),所在直線為軸,所在直線為軸建立空間直角坐標(biāo)系,如圖,則,,,,∴,,設(shè)平面的法向量,∴不妨設(shè),又,∴,∴,又∵平面,∴平面.(Ⅱ)∵,,設(shè)平面的法向量,∴不妨設(shè),∴,∴平面與平面所成銳二面角的余弦值為.(Ⅲ)設(shè),,∴,∴,又∵平面的法向量,∴,∴,∴或.當(dāng)時(shí),,∴;當(dāng)時(shí),,∴.綜上,.19、(1)有99%把握認(rèn)為愿意參加新生接待工作與性別有關(guān);(2)詳見解析.【解析】
(1)計(jì)算得到,由此可得結(jié)論;(2)根據(jù)分層抽樣原則可得男生和女生人數(shù),由超幾何分布概率公式可求得的所有可能取值所對(duì)應(yīng)的概率,由此得到分布列;根據(jù)數(shù)學(xué)期望計(jì)算公式計(jì)算可得期望.【詳解】(1)∵的觀測(cè)值,有的把握認(rèn)為愿意參加新生接待工作與性別有關(guān).(2)根據(jù)分層抽樣方法得:男生有人,女生有人,選取的人中,男生有人,女生有人.則的可能取值有,,,,,的分布列為:.【點(diǎn)睛】本題考查獨(dú)立性檢驗(yàn)、分層抽樣、超幾何分布的分布列和數(shù)學(xué)期望的求解;關(guān)鍵是能夠明確隨機(jī)變量服從于超幾何分布,進(jìn)而利用超幾何分布概率公式求得隨機(jī)變量每個(gè)取值所對(duì)應(yīng)的概率.20、(1);(2)【解析】
(1)利用兩邊平方法解含有絕對(duì)值的不等式,再根據(jù)根與系數(shù)的關(guān)系求出的值;(2)利用絕對(duì)值不等式求出的最小值,把不等式化為只含有的不等式,求出不等式解集即可.【詳解】(1)不等式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度三方勞務(wù)派遣與派遣人員培訓(xùn)合同3篇
- 2024年度供應(yīng)鏈金融質(zhì)押擔(dān)保貸款合同3篇
- 2024年標(biāo)準(zhǔn)設(shè)備維護(hù)保養(yǎng)服務(wù)協(xié)議模板一
- 2024年版特許經(jīng)營(yíng)合同服務(wù)內(nèi)容詳解與標(biāo)的約定
- 2024年嬰幼兒奶粉OEM貼牌生產(chǎn)合作協(xié)議3篇
- 洛陽(yáng)科技職業(yè)學(xué)院《現(xiàn)代生活化學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年度版權(quán)質(zhì)押合同標(biāo)的及質(zhì)押條件和質(zhì)押期限
- 2025鄉(xiāng)鎮(zhèn)醫(yī)療機(jī)構(gòu)聘用合同
- 汽車用品貨車司機(jī)勞動(dòng)合同
- 咨詢行業(yè)客服聘用合同
- 河南省鄭州市2023-2024學(xué)年高二上學(xué)期期期末生物試題【含答案解析】
- 經(jīng)方論治冠心病九法
- 《體育校本課程的建設(shè)與開發(fā)》課題研究實(shí)施方案
- 抵制不健康讀物“讀書與人生”
- (醫(yī)學(xué)課件)帶狀皰疹PPT演示課件
- 特種設(shè)備使用單位落實(shí)使用安全主體責(zé)任監(jiān)督管理規(guī)定(第74號(hào))宣貫
- 人工智能與生命科學(xué)融合
- 小學(xué)生憤怒情緒管理策略
- 醫(yī)務(wù)科管理制度培訓(xùn)的效果評(píng)估與持續(xù)改進(jìn)
- 手術(shù)器械采購(gòu)?fù)稑?biāo)方案(技術(shù)標(biāo))
- MSOP(測(cè)量標(biāo)準(zhǔn)作業(yè)規(guī)范)測(cè)量SOP
評(píng)論
0/150
提交評(píng)論