版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
安徽省合肥市七中、合肥十中聯(lián)考2024年高考數(shù)學(xué)一模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,,,,則在方向上的投影是()A.4 B.3 C.-4 D.-32.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是由一個棱柱挖去一個棱錐后的幾何體的三視圖,則該幾何體的體積為A.72 B.64 C.48 D.323.已知等差數(shù)列的前項和為,,,則()A.25 B.32 C.35 D.404.在直角中,,,,若,則()A. B. C. D.5.射線測厚技術(shù)原理公式為,其中分別為射線穿過被測物前后的強度,是自然對數(shù)的底數(shù),為被測物厚度,為被測物的密度,是被測物對射線的吸收系數(shù).工業(yè)上通常用镅241()低能射線測量鋼板的厚度.若這種射線對鋼板的半價層厚度為0.8,鋼的密度為7.6,則這種射線的吸收系數(shù)為()(注:半價層厚度是指將已知射線強度減弱為一半的某種物質(zhì)厚度,,結(jié)果精確到0.001)A.0.110 B.0.112 C. D.6.已知等差數(shù)列中,,則()A.20 B.18 C.16 D.147.已知拋物線上一點到焦點的距離為,分別為拋物線與圓上的動點,則的最小值為()A. B. C. D.8.設(shè)函數(shù),若在上有且僅有5個零點,則的取值范圍為()A. B. C. D.9.盒中有6個小球,其中4個白球,2個黑球,從中任取個球,在取出的球中,黑球放回,白球則涂黑后放回,此時盒中黑球的個數(shù),則()A., B.,C., D.,10.如圖,在平行四邊形中,為對角線的交點,點為平行四邊形外一點,且,,則()A. B.C. D.11.在中,角所對的邊分別為,已知,.當(dāng)變化時,若存在最大值,則正數(shù)的取值范圍為A. B. C. D.12.某人造地球衛(wèi)星的運行軌道是以地心為一個焦點的橢圓,其軌道的離心率為,設(shè)地球半徑為,該衛(wèi)星近地點離地面的距離為,則該衛(wèi)星遠(yuǎn)地點離地面的距離為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若函數(shù)恰有4個零點,則實數(shù)的取值范圍是________.14.定義在封閉的平面區(qū)域內(nèi)任意兩點的距離的最大值稱為平面區(qū)域的“直徑”.已知銳角三角形的三個點,,,在半徑為的圓上,且,分別以各邊為直徑向外作三個半圓,這三個半圓和構(gòu)成平面區(qū)域,則平面區(qū)域的“直徑”的最大值是__________.15.過直線上一點作圓的兩條切線,切點分別為,,則的最小值是______.16.若函數(shù)為自然對數(shù)的底數(shù))在和兩處取得極值,且,則實數(shù)的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的通項,數(shù)列為等比數(shù)列,且,,成等差數(shù)列.(1)求數(shù)列的通項;(2)設(shè),求數(shù)列的前項和.18.(12分)如圖,已知,分別是正方形邊,的中點,與交于點,,都垂直于平面,且,,是線段上一動點.(1)當(dāng)平面,求的值;(2)當(dāng)是中點時,求四面體的體積.19.(12分)在開展學(xué)習(xí)強國的活動中,某校高三數(shù)學(xué)教師成立了黨員和非黨員兩個學(xué)習(xí)組,其中黨員學(xué)習(xí)組有4名男教師、1名女教師,非黨員學(xué)習(xí)組有2名男教師、2名女教師,高三數(shù)學(xué)組計劃從兩個學(xué)習(xí)組中隨機各選2名教師參加學(xué)校的挑戰(zhàn)答題比賽.(1)求選出的4名選手中恰好有一名女教師的選派方法數(shù);(2)記X為選出的4名選手中女教師的人數(shù),求X的概率分布和數(shù)學(xué)期望.20.(12分)設(shè)函數(shù).(1)若,求實數(shù)的取值范圍;(2)證明:,恒成立.21.(12分)在①,②,③這三個條件中任選一個,補充在下面問題中.若問題中的正整數(shù)存在,求的值;若不存在,說明理由.設(shè)正數(shù)等比數(shù)列的前項和為,是等差數(shù)列,__________,,,,是否存在正整數(shù),使得成立?22.(10分)(某工廠生產(chǎn)零件A,工人甲生產(chǎn)一件零件A,是一等品、二等品、三等品的概率分別為,工人乙生產(chǎn)一件零件A,是一等品、二等品、三等品的概率分別為.己知生產(chǎn)一件一等品、二等品、三等品零件A給工廠帶來的效益分別為10元、5元、2元.(1)試根據(jù)生產(chǎn)一件零件A給工廠帶來的效益的期望值判斷甲乙技術(shù)的好壞;(2)為鼓勵工人提高技術(shù),工廠進(jìn)行技術(shù)大賽,最后甲乙兩人進(jìn)入了決賽.決賽規(guī)則是:每一輪比賽,甲乙各生產(chǎn)一件零件A,如果一方生產(chǎn)的零件A品級優(yōu)干另一方生產(chǎn)的零件,則該方得分1分,另一方得分-1分,如果兩人生產(chǎn)的零件A品級一樣,則兩方都不得分,當(dāng)一方總分為4分時,比賽結(jié)束,該方獲勝.Pi+4(i=4,3,2,…,4)表示甲總分為i時,最終甲獲勝的概率.①寫出P0,P8的值;②求決賽甲獲勝的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】分析:根據(jù)平面向量的數(shù)量積可得,再結(jié)合圖形求出與方向上的投影即可.詳解:如圖所示:,,,又,,在方向上的投影是:,故選D.點睛:本題考查了平面向量的數(shù)量積以及投影的應(yīng)用問題,也考查了數(shù)形結(jié)合思想的應(yīng)用問題.2、B【解析】
由三視圖可知該幾何體是一個底面邊長為4的正方形,高為5的正四棱柱,挖去一個底面邊長為4,高為3的正四棱錐,利用體積公式,即可求解。【詳解】由題意,幾何體的三視圖可知該幾何體是一個底面邊長為4的正方形,高為5的正四棱柱,挖去一個底面邊長為4,高為3的正四棱錐,所以幾何體的體積為,故選B。【點睛】本題考查了幾何體的三視圖及體積的計算,在由三視圖還原為空間幾何體的實際形狀時,要根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線。求解以三視圖為載體的空間幾何體的表面積與體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)公式求解。3、C【解析】
設(shè)出等差數(shù)列的首項和公差,即可根據(jù)題意列出兩個方程,求出通項公式,從而求得.【詳解】設(shè)等差數(shù)列的首項為,公差為,則,解得,∴,即有.故選:C.【點睛】本題主要考查等差數(shù)列的通項公式的求法和應(yīng)用,涉及等差數(shù)列的前項和公式的應(yīng)用,屬于容易題.4、C【解析】
在直角三角形ABC中,求得,再由向量的加減運算,運用平面向量基本定理,結(jié)合向量數(shù)量積的定義和性質(zhì):向量的平方即為模的平方,化簡計算即可得到所求值.【詳解】在直角中,,,,,
,
若,則故選C.【點睛】本題考查向量的加減運算和數(shù)量積的定義和性質(zhì),主要是向量的平方即為模的平方,考查運算能力,屬于中檔題.5、C【解析】
根據(jù)題意知,,代入公式,求出即可.【詳解】由題意可得,因為,所以,即.所以這種射線的吸收系數(shù)為.故選:C【點睛】本題主要考查知識的遷移能力,把數(shù)學(xué)知識與物理知識相融合;重點考查指數(shù)型函數(shù),利用指數(shù)的相關(guān)性質(zhì)來研究指數(shù)型函數(shù)的性質(zhì),以及解指數(shù)型方程;屬于中檔題.6、A【解析】
設(shè)等差數(shù)列的公差為,再利用基本量法與題中給的條件列式求解首項與公差,進(jìn)而求得即可.【詳解】設(shè)等差數(shù)列的公差為.由得,解得.所以.故選:A【點睛】本題主要考查了等差數(shù)列的基本量求解,屬于基礎(chǔ)題.7、D【解析】
利用拋物線的定義,求得p的值,由利用兩點間距離公式求得,根據(jù)二次函數(shù)的性質(zhì),求得,由取得最小值為,求得結(jié)果.【詳解】由拋物線焦點在軸上,準(zhǔn)線方程,則點到焦點的距離為,則,所以拋物線方程:,設(shè),圓,圓心為,半徑為1,則,當(dāng)時,取得最小值,最小值為,故選D.【點睛】該題考查的是有關(guān)距離的最小值問題,涉及到的知識點有拋物線的定義,點到圓上的點的距離的最小值為其到圓心的距離減半徑,二次函數(shù)的最小值,屬于中檔題目.8、A【解析】
由求出范圍,結(jié)合正弦函數(shù)的圖象零點特征,建立不等量關(guān)系,即可求解.【詳解】當(dāng)時,,∵在上有且僅有5個零點,∴,∴.故選:A.【點睛】本題考查正弦型函數(shù)的性質(zhì),整體代換是解題的關(guān)鍵,屬于基礎(chǔ)題.9、C【解析】
根據(jù)古典概型概率計算公式,計算出概率并求得數(shù)學(xué)期望,由此判斷出正確選項.【詳解】表示取出的為一個白球,所以.表示取出一個黑球,,所以.表示取出兩個球,其中一黑一白,,表示取出兩個球為黑球,,表示取出兩個球為白球,,所以.所以,.故選:C【點睛】本小題主要考查離散型隨機變量分布列和數(shù)學(xué)期望的計算,屬于中檔題.10、D【解析】
連接,根據(jù)題目,證明出四邊形為平行四邊形,然后,利用向量的線性運算即可求出答案【詳解】連接,由,知,四邊形為平行四邊形,可得四邊形為平行四邊形,所以.【點睛】本題考查向量的線性運算問題,屬于基礎(chǔ)題11、C【解析】
因為,,所以根據(jù)正弦定理可得,所以,,所以,其中,,因為存在最大值,所以由,可得,所以,所以,解得,所以正數(shù)的取值范圍為,故選C.12、A【解析】
由題意畫出圖形,結(jié)合橢圓的定義,結(jié)合橢圓的離心率,求出橢圓的長半軸a,半焦距c,即可確定該衛(wèi)星遠(yuǎn)地點離地面的距離.【詳解】橢圓的離心率:,(c為半焦距;a為長半軸),設(shè)衛(wèi)星近地點,遠(yuǎn)地點離地面距離分別為r,n,如圖:則所以,,故選:A【點睛】本題主要考查了橢圓的離心率的求法,注意半焦距與長半軸的求法,是解題的關(guān)鍵,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
函數(shù)恰有4個零點,等價于函數(shù)與函數(shù)的圖象有四個不同的交點,畫出函數(shù)圖象,利用數(shù)形結(jié)合思想進(jìn)行求解即可.【詳解】函數(shù)恰有4個零點,等價于函數(shù)與函數(shù)的圖象有四個不同的交點,畫出函數(shù)圖象如下圖所示:由圖象可知:實數(shù)的取值范圍是.故答案為:【點睛】本題考查了已知函數(shù)零點個數(shù)求參數(shù)取值范圍問題,考查了數(shù)形結(jié)合思想和轉(zhuǎn)化思想.14、【解析】
先找到平面區(qū)域內(nèi)任意兩點的最大值為,再利用三角恒等變換化簡即可得到最大值.【詳解】由已知及正弦定理,得,所以,,取AB中點E,AC中點F,BC中點G,如圖所示顯然平面區(qū)域任意兩點距離最大值為,而,當(dāng)且僅當(dāng)時,等號成立.故答案為:.【點睛】本題考查正弦定理在平面幾何中的應(yīng)用問題,涉及到距離的最值問題,在處理這類問題時,一定要數(shù)形結(jié)合,本題屬于中檔題.15、【解析】
由切線的性質(zhì),可知,切由直角三角形PAO,PBO,即可設(shè),進(jìn)而表示,由圖像觀察可知進(jìn)而求出x的范圍,再用的式子表示,整理后利用換元法與雙勾函數(shù)求出最小值.【詳解】由題可知,,設(shè),由切線的性質(zhì)可知,則顯然,則或(舍去)因為令,則,由雙勾函數(shù)單調(diào)性可知其在區(qū)間上單調(diào)遞增,所以故答案為:【點睛】本題考查在以直線與圓的位置關(guān)系為背景下求向量數(shù)量積的最值問題,應(yīng)用函數(shù)形式表示所求式子,進(jìn)而利用分析函數(shù)單調(diào)性或基本不等式求得最值,屬于較難題.16、【解析】
先將函數(shù)在和兩處取得極值,轉(zhuǎn)化為方程有兩不等實根,且,再令,將問題轉(zhuǎn)化為直線與曲線有兩交點,且橫坐標(biāo)滿足,用導(dǎo)數(shù)方法研究單調(diào)性,作出簡圖,求出時,的值,進(jìn)而可得出結(jié)果.【詳解】因為,所以,又函數(shù)在和兩處取得極值,所以是方程的兩不等實根,且,即有兩不等實根,且,令,則直線與曲線有兩交點,且交點橫坐標(biāo)滿足,又,由得,所以,當(dāng)時,,即函數(shù)在上單調(diào)遞增;當(dāng),時,,即函數(shù)在和上單調(diào)遞減;當(dāng)時,由得,此時,因此,由得.故答案為【點睛】本題主要考查導(dǎo)數(shù)的應(yīng)用,已知函數(shù)極值點間的關(guān)系求參數(shù)的問題,通常需要將函數(shù)極值點,轉(zhuǎn)化為導(dǎo)函數(shù)對應(yīng)方程的根,再轉(zhuǎn)化為直線與曲線交點的問題來處理,屬于??碱}型.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)根據(jù),,成等差數(shù)列以及為等比數(shù)列,通過直接對進(jìn)行賦值計算出的首項和公比,即可求解出的通項公式;(2)的通項公式符合等差乘以等比的形式,采用錯位相減法進(jìn)行求和.【詳解】(1)數(shù)列為等比數(shù)列,且,,成等差數(shù)列.設(shè)數(shù)列的公比為,,,解得(2),,,,.【點睛】本題考查等差、等比數(shù)列的綜合以及錯位相減法求和的應(yīng)用,難度一般.判斷是否適合使用錯位相減法,可根據(jù)數(shù)列的通項公式是否符合等差乘以等比的形式來判斷.18、(1).(2)【解析】
(1)利用線面垂直的性質(zhì)得出,進(jìn)而得出,利用相似三角形的性質(zhì),得出,從而得出的值;(2)利用線面垂直的判定定理得出平面,進(jìn)而得出四面體的體積,計算出,,即可得出四面體的體積.【詳解】(1)因為平面,平面,所以又因為,都垂直于平面,所以又,分別是正方形邊,的中點,且,所以.(2)因為,分別是正方形邊,的中點,所以又因為,都垂直于平面,平面,所以因為平面,所以平面所以,四面體的體積,所以.【點睛】本題主要考查了線面垂直的性質(zhì)定理的應(yīng)用,以及求棱錐的體積,屬于中檔題.19、(1)28種;(2)分布見解析,.【解析】
(1)分這名女教師分別來自黨員學(xué)習(xí)組與非黨員學(xué)習(xí)組,可得恰好有一名女教師的選派方法數(shù);(2)X的可能取值為,再求出X的每個取值的概率,可得X的概率分布和數(shù)學(xué)期望.【詳解】解:(1)選出的4名選手中恰好有一名女生的選派方法數(shù)為種.(2)X的可能取值為0,1,2,3.,,,.故X的概率分布為:X0123P所以.【點睛】本題主要考查組合數(shù)與組合公式及離散型隨機變量的期望和方差,相對不難,注意運算的準(zhǔn)確性.20、(1)(2)證明見解析【解析】
(1)將不等式化為,利用零點分段法,求得不等式的解集.(2)將要證明的不等式轉(zhuǎn)化為證,恒成立,由的最小值為,得到只要證,即證,利用絕對值不等式和基本不等式,證得上式成立.【詳解】(1)∵,∴,即當(dāng)時,不等式化為,∴當(dāng)時,不等式化為,此時無解當(dāng)時,不等式化為,∴綜上,原不等式的解集為(2)要證,恒成立即證,恒成立∵的最小值為-2,∴只需證,即證又∴成立,∴原題得證【點睛】本題考查絕對值不等式的性質(zhì)、解法,基本不等式等知識;考查推理論證能力、運算求解能力;考查化歸與轉(zhuǎn)化,分類與整合思想.21、見解析【解析】
根據(jù)等差數(shù)列性質(zhì)及、,可求得等差數(shù)列的通項公式,由即可求得的值;根據(jù)等式,變形可得,分別討論?、佗冖壑械囊粋€,結(jié)合等比數(shù)列通項
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Windows Server網(wǎng)絡(luò)管理項目教程(Windows Server 2022)(微課版)3.2 DHCP-任務(wù)1 安裝DHCP服務(wù)器
- 醫(yī)院感控新視野-從理論到實踐的全面掌握
- 高中語文第4單元古代傳記第11課廉頗藺相如列傳課件新人教版必修
- 2024-2025學(xué)年八年級上學(xué)期地理期中模擬試卷(湘教版+含答案解析)
- 江蘇省揚州市寶應(yīng)縣2023-2024學(xué)年八年級上學(xué)期期中語文試卷(含答案解析)
- 小學(xué)假期安全教育教案
- 二級建造師施工管理課件第3章題
- 高中語文第6單元觀察與批判13林教頭風(fēng)雪山神廟裝在套子里的人課件新人教版必修下冊
- 高中語文唐宋詞5第十一課一蓑煙雨任平生-抒志詠懷課件語文版選修唐宋詩詞鑒賞
- 2024至2030年中國擦手紙盒數(shù)據(jù)監(jiān)測研究報告
- 剖宮產(chǎn)瘢痕妊娠護(hù)理查房
- 縫紉機的培訓(xùn)課件
- 半導(dǎo)體智能制造與自動化技術(shù)
- 高速清障救援培訓(xùn)課件
- 民宿溫泉旅游可行性方案
- 電視劇導(dǎo)演職業(yè)規(guī)劃案例
- 投標(biāo)報價承諾書
- TLT軸流風(fēng)機液壓缸結(jié)構(gòu)及工作原理介紹
- 武術(shù)套路冬季訓(xùn)練計劃書
- 消防員心理培訓(xùn)課件
- ccu實習(xí)生出科個人小結(jié)
評論
0/150
提交評論