![計算機科學與技術學碩專碩-計算機視覺碩士課件-第14章_第1頁](http://file4.renrendoc.com/view11/M01/3D/34/wKhkGWXNufmAGE2JAABV7bMED5g076.jpg)
![計算機科學與技術學碩專碩-計算機視覺碩士課件-第14章_第2頁](http://file4.renrendoc.com/view11/M01/3D/34/wKhkGWXNufmAGE2JAABV7bMED5g0762.jpg)
![計算機科學與技術學碩專碩-計算機視覺碩士課件-第14章_第3頁](http://file4.renrendoc.com/view11/M01/3D/34/wKhkGWXNufmAGE2JAABV7bMED5g0763.jpg)
![計算機科學與技術學碩專碩-計算機視覺碩士課件-第14章_第4頁](http://file4.renrendoc.com/view11/M01/3D/34/wKhkGWXNufmAGE2JAABV7bMED5g0764.jpg)
![計算機科學與技術學碩專碩-計算機視覺碩士課件-第14章_第5頁](http://file4.renrendoc.com/view11/M01/3D/34/wKhkGWXNufmAGE2JAABV7bMED5g0765.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
ShapeandMatching
AndrewBender
AlexanderCobian
Topics
?ApproachesInvolvingNewDescriptors
-ShapeContexts
-MatchingLocalSelf-Similarities
?NovelMatchingTechniques
-PyramidMatchKernel
-SpatialPyramidMatching
ShapeContexts(2002)
?ShapeMatchingandObjectRecognitionUsing
ShapeContexts
-SergeBelongie
-JitendraMalik
-JanPuzicha
ShapeContexts(2002)
S5
?Asvectorsofpixelbrightnessvalues,very
different
?Asshapestohumanperception,verysimilar
Threestepstoshapematchingwith
shapecontexts
1.Findthecorrespondencebetweensetsof
pointsfromthetwoshapes
2.Usethematchestocomputeanalignment
transform
3.Computethe"distance"betweentheshapes
Threestepstoshapematchingwith
shapecontexts
1.Findthecorrespondencebetweensetsof
pointsfromthetwoshapes
2.Usethematchestocomputeanalignment
transform
3.Computethe"distance"betweentheshapes
Shapecontextsareapointdescriptorusedinstep1
Qj
~100pointsaresampledat
randomfromtheedge.
Uniformityisnotrequired!
Histogramusesbins
whichareuniformin
log-polarspace.
Rotationinvariance
?Ifrotationinvarianceisdesiredforadomain,
theshapecontextcanbecalculatedwiththe
tangentvectorasthex-axis.
?Formanydomainsthisisundesirable.
Matchingpoints
?Mustfindthedistancefromeverypointinone
imagetoeverypointintheother
?Dummypointswithaconstantedistancefrom
everyotherpointareaddedtobothsets
?Fornon-dummypoints,thecostofmatchingis
theL2norm
ShapeDistance
?Theauthorsuseaniterativemethodto
measurethemagnitudeofthetransformation
requiredtoalignthepoints
CategorizationofImages
?Prototype-basedapproach(withk-NN)
?Prototypesarechosenusingk-medoids
?kisinitializedtothenumberofcategories
?Worstcategoryissplituntiltraining
classificationerrordropsbelowacriterion
level
Application:DigitRecognition
210:58a1:
2le92Q77二
948
la-s132/015317(1
213q
?
4/z的K>
Trainingsetsize:
弓
32099T1791:2-?71879:8-?319029->4
-2772<
38s307yay
20,00034762420
e
826;0-Yb57的3
Testsetsize:-207-4:M3s2448:4T92463:2-?02583:9-?7
10,000vi夕。夕
7j
M3251:2T,34216K3476:3-?7
gs今
Error:
0.63%Z67
吊
og皿43769T44498:8-?74506:9-?7
,[夕p)
-*X叱
WI6555:2-?765729-?76577:7-416596:0-*7
I?)779
K:
LJ95067-?296419-+79730:5-*6985l:0-*6
Application:BreakingCAPTCHA
鎘爸密室浸翳感
盛最蠅瀚啜弱羲92%successrateon
EZ-Gimpy
weight
「,「「尸
again
蕊mW,-jewuL
,JI,E
承運郎總滔鎘盜種三
陛登二三中,$oxiiid^v"%;,二口匚二:甘寡
建懣遞遞逑逑11space
rice
CCF卜ATK
pwr-4**sock
Application:BreakingCAPTCHA
Mustidentify1版P
threewords.
33%successrate
onGimpy.
Application:TrademarkRetrieval
?Canbeusedto
finddifferent
shapeswithquery1:0.0862:0.1083:0.109
similarelements.至
query1:0.0662:0.0733:0.077
?UsefultoRADIO<PISTA
determinecasesqueryI:0.0462:0.1073:0.114
oftrademarkA岸
infringement.queiy1:0.0462:0.1073:0.114
Application:3DObjectRecognition
Notthemostnatural
applicationofshape
contexts.
Testexamplescan
onlybematchedtoan
imagetakenfroma
verysimilarangle.
Shapecontextconclusions
?Shapecontextisalocaldescriptorthat
describesapoint'slocationrelativetoits
neighbors
?Goodatcharacterrecognition,comparisonof
isolated2Dstructures
?Notwellsuitedtoclassificationofobjectswith
significantvariance
MatchingImages/VideoUsing
LocalSelf-Similarities(2007)
?MatchingLocalSelf-SimilaritiesacrossImages
andVideos
-EliShechtman
-MichalIrani
MatchingImages/VideoUsing
LocalSelf-Similarities(2007)
?Allofthese
imagescontain
thesameobject.
?Theimagesdo□□oo
口
notsharecolors,o口△△△A△△o
△口△口△
△o△
textures,or□△o
o△□△△°
edges.□△△△°
o□
Problem:
?PreviousDescriptorsforImageMatching:
-Pixelintensityorcolorvaluesoftheentireimage
-Pixelintensityorcolorvaluesofpartsoftheimage
一Texturefilters
-Distribution-baseddescriptors(e.g.,SIFT)
一Shapecontext
?Alloftheseassumethatthereexistsavisual
propertythatissharedbythetwoimages.
Solution:A"Self-Similarity"Descriptor
?Thefourheartimagesaresimilaronlyinthat
thelocalinternallayoutsoftheirself-
similaritiesareshared.
?Videodata(seenasacubeofpixels)isrife
withself-similarity.
GeneralApproach
?Oursmallestunitofcomparisonisthe"patch"
ratherthanthepixel.
?Patchesarecomparedtoalarger,encompassing
imageregion.
InputimageCorrelationImage
surfacedescriptor
置;
image
region?、
image百y
patchg:
GeneralApproach
?Thecomparisonresultsinacorrelationsurfacewhich
determinesnearbyareasoftheimagewhichare
similartothecurrentpatch.
?Thecorrelationsurfaceisusedtoproduceaself-
similarityimagedescriptorforthepatch.
InputimageCorrelationImage
surfacedescriptor
GeneralApproach
?Forvideodata,thepatchandregionarecubes,
astimeisthedepthdimension.
?Theresultingvideodescriptoriscylindrical.
CorrelationVideo
volumedescriptor
DescriptorGenerationProcess
Foreveryimagepatchq(e.g.,5x5pixelarea)
一Foreverypatch-sizedareacontainedintheenclosing
imageregion(eg,50x50pixelarea)
?CalculateSSDanddeterminecorrelationsurface
SSDq(x’y)
Sq@y)=exp—
max(varnoisefvarauto
?varnoiseisaconstantwhichspecifiesthelevelofacceptable
photometricvariation
1z
?vardmUitLnU(、q)isthemaximalvarianceofthedifferenceofall
patchesnearq
DescriptorGenerationProcess
?Transformeachcorrelationsurfacetolog-
polarcoordinateswith80bins(20angles,4
radialintervals)
?Thelargestvalueineachbindeterminesthe
entryinthedescriptor.
DescriptorGenerationProcess
DescriptorGenerationProcess
?Videodataadaptations:
-Imagepatchexistsinthreedimensions,butis
usuallychosentohave1framedepth(e.g.,5x5x1)
-Imageregionencompassesseveralframes(e.g.,
60x60x5)
一Thiscreatesacuboidcorrelationvolume,from
whichwegenerateacylindricaldescriptorby
binningitinloglogpolarcoordinates
PropertiesoftheSelf-Similarity
Descriptor
?Self-similaritydescriptorsarelocalfeatures
?Thelog-polarrepresentationallowsforsmall
affinedeformations(likeforshapecontexts)
?Thenatureofbinningallowsfornon-rigid
deformations
?Usingpatchesinsteadofpixelscapturesmore
meaningfulpatterns
PerformingShapeMatching
1.Calculateself-similaritydescriptorsforthe
imageatavarietyofscales(givesusinvariance
toscale)
2.Filterouttheuninformativedescriptorsforeach
scale
3.Employprobabilisticstargraphmodeltofind
theprobabilityofapatternmatchateachsite
foreachscale
4.Normalizeandcombinetheprobabilitymaps
usingaweightedaverage
Results
?Resultsrequireonlyonequeryimagewhich
canbemuchsmallerthanthetargetimages
?Processevenworkswhenoneoftheimagesis
hand-drawn
Results
Results
Sketch
Template
Inputvideo
[Sh?chtm?n-lraniCVPR
[Shechtman-lraniCVPR'07]
Our
result
Image1Image2OurMethodGLOHShapeMutual
(template)(extendedSIFT)ContextInformation
X
衣
應
Self-SimilarityConclusions
?Candiscoversimilarshapesinimagesthat
sharenocommonimageproperties
?Requiresonlyasinglequeryimagetoperform
complexshapedetection
?Hand-drawnsketchesaresufficienttofind
matches
?Videoisanaturalextension
ThePyramidMatchKernel(2005)
?ThePyramidMatchKernel:Discriminative
ClassificationwithSetsofImageFeatures
-KristenGrauman
-TrevorDarrell
ThePyramidMatchKernel(2005)
?SupportVector
Machines++
-Widelyused+
approachto+-
discriminative
classification+
-Findstheoptimal
separating
hyperplanebetween
twoclasses▼
ThePyramidMatchKernel(2005)
?Kernelscanbeusedtotransformthefeature
space(e.g.XOR)
?Kernelsaretypicallysimilaritymeasures
betweenpointsintheoriginalfeaturespace
ThePyramidMatchKernel(2005)
?Mostkernelsareusedonfixed-lengthfeature
vectorswhereorderingismeaningful
?Inimagematching,thenumberofimage
featuresdiffer,andtheorderingisarbitrary
?Furthermore,mostkernelstakepolynomial
time,whichisprohibitiveforimagematching
Desirablecharacteristicsinan
imagematchingkernel
?Capturesco-occurrences
?Ispositive-definite
?Doesnotassumeaparametricmodel
?Canhandlesetsofunequalcardinality
?Runsinsub-polynomialtime
?Nopreviousimagematchingkernelshadallfour
ofthefirstcharacteristics,andallranin
polynomialtime
GeneralApproach
?Dividethefeaturespaceintobinsofequalsize
?Repeat
-Countthefeatureswhichfallintoeachbinfor
bothimages
-Minthetwocountstofindtheoverlapineachbin
-Calculatenewmatchscorebasedonnewoverlaps
andeaseofoverlappingatthisresolution
-Createanewsetofbinswithsidelengthdouble
thatofthecurrentsidelength
GeneralApproach
n
Process
?InputspaceX
?d-dimensionalfeaturevectorsthat
-areboundedbyasphereofdiameterD
一haveaminimuminter-vectordistanceof學
Process
?FeatureExtractionAlgorithm:
W(x)=[H.1(X),H0(X),...,HL(X)]
?Harehistograms
?Listhenumberoflevelsinthepyramid
Process
?Similaritybetweentwofeaturesetsisdefinedas:
L
K△(叭叭z))={wM=
i=02
?Njisthenumberofnewmatchesacrossallbins
?Wjisthemaximumdistancethatcouldexist
betweenpointsthatmatchedatthislevel
Process
(a)Pointsets(b)Histosrampyramids(c)Intersections
Process
?Tocounteractthearbitrarynatureofthebin
borders,theentireprocessisrepeatedseveral
timeswiththeoriginrandomlyshifted.
PartialMatchCorrespondences
?Unequalcardinalitiesarenotanissue
?Algorithmmatchesthemostsimilarpairsfirst;
onlytheleastsimilarfeatureswillbe
unmatched
Results:SyntheticData
Approximationoftheoptimalbiy^ctivematching
19000
16000?Pyramidmatch
?Optimal1.6
14000
12000
o
o
u10000
g
ID
fi
6000
0.6
4000
0.4
02
50001000000
54MM10000
EqualCardinalitiesUnequalCardinalities
Results:ObjectRecognition
ObjectrecognitiononETH-80images
⑥
)。
A
o
e
n』
880
E75
u70
o65
一
七60
U
6
0
0
0
B
55
o20406080100120
Timetogenerate400x400kernelmatrix(sec)
PyramidKernelConclusions
?Bynotsearchingforspecificfeature
correspondences,thekernelcanruninless
thanpolynomialtime
?Accuracyisgenerallyhigherthanotherkernels
onbothartificialandreal-worlddata
?Canhandlearbitrary-lengthfeaturesets
SpatialPyramidMatching(2006)
?BeyondBagsofFeatures:SpatialPyramid
MatchingforRecognizingNatureScene
Categories
-SvetlanaLazebnik
一CordeliaSchmid
-JeanPonce
SpatialPyramidMatching(2006)
?Task:Wholeimageclassification
-Bagoffeaturesmethods(likepyramidkernel)are
somewhateffective,butignorefeaturelocation
?Alternatesolution:Kernel-basedrecognition
methodthatcalculatesaglobalrough
geometriccorrespondenceusingapyramid
matchingscheme
GeneralApproach
?Similarpyramidmatchingschemetoprevious
approach,but
-pyramidmatchinginimagespace
一clusteringinfeaturespace
?UsetrainingdatatoclusterfeaturesintoM
types
?Withinimage-spacebins,countoccurrences
ofeachfeaturetype
Process
?Algorithmparameters
-M=numberoffeaturetypestolearn(200)
-L=levelsinthepyramid(2)
?LearnMfeatureprototypesviak-means
clustering
?Ass
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 自考00259 公證與律師制度 考前強化練習試題庫(含答案)
- 第九屆“雄鷹杯”小動物醫(yī)師技能大賽考試題庫(含答案)
- 2025年江蘇信息職業(yè)技術學院高職單招語文2018-2024歷年參考題庫頻考點含答案解析
- 2025年武漢航海職業(yè)技術學院高職單招語文2018-2024歷年參考題庫頻考點含答案解析
- 2025年新疆交通職業(yè)技術學院高職單招語文2018-2024歷年參考題庫頻考點含答案解析
- 房地產(chǎn)獨家銷售代理合同范本
- 全新外包服務合同中英文下載年
- 借款合作協(xié)議合同范本
- 兼職健身教練聘用合同
- 皮卡車租賃合同
- 2024年全國職業(yè)院校技能大賽高職組(研學旅行賽項)考試題庫(含答案)
- 電器儀表人員培訓課件
- 2025年中小學春節(jié)安全教育主題班會課件
- 計量經(jīng)濟學練習題
- 2025年全國高考體育單招考試模擬政治試卷試題(含答案詳解)
- 傳統(tǒng)春節(jié)習俗
- 反走私課件完整版本
- 四年級下冊數(shù)學知識點總結
- (人衛(wèi)版第九版?zhèn)魅静W總論(一))課件
- 《批判性思維原理和方法》全套教學課件
- 經(jīng)歷是流經(jīng)裙邊的水
評論
0/150
提交評論