2024屆高三新高考改革數(shù)學(xué)適應(yīng)性練習(xí)(九省聯(lián)考題型)(含答案)_第1頁
2024屆高三新高考改革數(shù)學(xué)適應(yīng)性練習(xí)(九省聯(lián)考題型)(含答案)_第2頁
2024屆高三新高考改革數(shù)學(xué)適應(yīng)性練習(xí)(九省聯(lián)考題型)(含答案)_第3頁
2024屆高三新高考改革數(shù)學(xué)適應(yīng)性練習(xí)(九省聯(lián)考題型)(含答案)_第4頁
2024屆高三新高考改革數(shù)學(xué)適應(yīng)性練習(xí)(九省聯(lián)考題型)(含答案)_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

屆高三新高考改革數(shù)學(xué)適應(yīng)性練習(xí)(九省聯(lián)考題型)數(shù)學(xué)試題卷注意事項:1.本卷共4頁,四大題19小題,滿分150分,答題時間120分鐘;2.答題時須在答題卡上填涂所選答案(選擇題),或用黑色字跡的簽字筆規(guī)范書寫答案與步驟(非選擇題),答在本試題卷上或草稿紙上的答案均屬無效;3.考試結(jié)束時,考生須一并上交本試題卷,答題卡與草稿紙。一、單選題(本題共8小題,每小題5分,共40分,在每小題給出的四個選項中,只有一項是符合題目要求的.)1.某校高三年級一名學(xué)生一學(xué)年以來七次月考物理成績(滿分100分)依次為84,78,82,84,86,89,96,則這名學(xué)生七次月考物理成績的第70百分位數(shù)為(

)A.86 B.84 C.96 D.892.已知中心在原點,焦點在y軸上的雙曲線的離心率為,則它的漸近線方程為(

)A. B.C. D.3.已知兩條直線,與兩個平面,,下列命題正確的是(

)A.若,,則B.若,,則C.若,,則D.若,,則4.為了普及黨史知識,某校舉行了黨史知識考試,試卷中只有兩道題目,已知甲同學(xué)答對每題的概率都為p,乙同學(xué)答對每題的概率都為,且在考試中每人各題答題結(jié)果互不影響.已知每題甲、乙兩人同時答對的概率為,恰有一人答對的概率為.則甲、乙兩人共答對至少3道題的概率是(

)A. B. C. D.5.在數(shù)列中,已知,則的前10項的和為(

)A.1023 B.1024 C.2046 D.20476.瑞士數(shù)學(xué)家歐拉在《三角形的幾何學(xué)》一書中提出:任意三角形的外心?重心?垂心在同一條直線上,這條直線被稱為歐拉線.已知的頂點,若直線與的歐拉線垂直,則直線與的歐拉線的交點坐標(biāo)為(

)A. B. C. D.7.已知函數(shù),若在存在零點,則實數(shù)值可以是(

)A. B. C. D.8.?dāng)?shù)學(xué)中有許多形狀優(yōu)美,寓意獨特的幾何體,圖1所示的禮品包裝盒就是其中之一.該禮品包裝盒可以看成是一個十面體,其中上、下底面為全等的正方形,所有的側(cè)面是全等的等腰三角形.將長方體的上底面繞著其中心旋轉(zhuǎn)45°得到如圖2所示的十面體.已知,,,過直線作平面,則十面體外接球被平面所截的截面圓面積的最小值是(

)A. B. C. D.二、多項選擇題(本題共3小題,每小題6分,共18分.在每小題給出的選項中,有多項符合題目要求.全部選對的得6分,有選錯的得0分,若只有2個正確選項,每選對一個得3分;若只有3個正確選項,每選對一個得2分.)9.已知函數(shù),給出下列四個選項,正確的有(

).A.函數(shù)的最小正周期是B.函數(shù)在區(qū)間上是減函數(shù)C.函數(shù)的圖象關(guān)于點對稱D.函數(shù)的圖象可由函數(shù)的圖象向右平移個單位,再向下平移1個單位得到.10.已知圓,點在圓外,以線段為直徑作圓,與圓相交于兩點,則(

)A.直線均與圓相切B.若,則直線的方程為C.當(dāng)時,點在圓上運動D.當(dāng)時,點在圓上運動11.是自然對數(shù)的底數(shù),,,已知,則下列結(jié)論一定正確的是(

)A.若,則 B.若,,則C.若,則 D.若,則三、填空題(本題共3小題,每小題5分,共15分.)12.已知集合,則.13.如圖所示,在等腰直角三角形ABC中,∠C為直角,BC=2,EF∥BC,沿EF把面AEF折起,使面AEF⊥面EFBC,當(dāng)四棱錐A-CBFE的體積最大時,EF的長為.14.已知函數(shù),,其中,,若的最小值為2,則實數(shù)的取值范圍是.四、解答題(本題共5小題,共77分.解答應(yīng)寫出文字說明,證明過程或演算步驟.)15.(13分)已知函數(shù)在與處都取得極值.(1)求,的值;(2)若對任意,恒成立,求實數(shù)的取值范圍.16.(15分)“雙減”政策明確指出要通過閱讀等活動,充分用好課后服務(wù)時間,為學(xué)有余力的學(xué)生拓展學(xué)習(xí)空間.同學(xué)甲和同學(xué)乙約定周一到周日每天的閱讀時間不能比前一天少.某周甲乙兩人每天的閱讀時間(單位:min),如下表所示,其中學(xué)生甲周日的閱讀時間m忘了記錄,但知道.周一周二周三周四周五周六周日序號x1234567甲的閱讀時間y/min152020253036m乙的閱讀時間z/min16222526323535(1)求同學(xué)甲的本周閱讀時間之和超過同學(xué)乙的本周閱讀時間之和的概率;(2)根據(jù)同學(xué)甲本周前5天的閱讀時間,求其閱讀時間y關(guān)于序號x的線性回歸方程,并估計同學(xué)甲周日閱讀時間m的值.參考公式:回歸方程中斜率與截距的最小二乘估計公式分別為:,.17.(15分)如圖,幾何體中,為等腰梯形,為矩形,,平面平面.(1)證明:;(2)求直線與平面所成角的大小.18.(17分)橢圓的焦點、是雙曲線的頂點,其頂點是雙曲線的焦點.雙曲線的漸近線是,橢圓與雙曲線有一個交點,的周長為.(1)求橢圓與雙曲線的標(biāo)準(zhǔn)方程;(2)設(shè)直線交雙曲線于、兩點,交直線于點,若.證明:為的中點;(3)過點作一動直線交橢圓于A、兩點,記.若在線段上取一點,使得,求點的軌跡方程.19.(17分)已知定義域為的函數(shù).當(dāng)時,若(,)是增函數(shù),則稱是一個“函數(shù)”.(1)判斷函數(shù)()是否為函數(shù),并說明理由;(2)若定義域為的函數(shù)滿足,解關(guān)于的不等式;(3)設(shè)是滿足下列條件的定義域為的函數(shù)組成的集合:①對任意,都是函數(shù);②,.若對一切和所有成立,求實數(shù)的最大值.參考答案:1.A【分析】利用百分位數(shù)的定義分析求解即可.【詳解】因為.所以這名學(xué)生七次月考物理成績的第70百分位數(shù)為86.故選:A.2.C【分析】根據(jù)離心率求出,再根據(jù)雙曲線的漸近線方程即可得解.【詳解】設(shè)雙曲線的方程為,因為,所以,則,所以漸近線方程為.故選:C.3.D【解析】根據(jù)線線、線面、面面位置關(guān)系,結(jié)合選項,進行逐一分析即可求得.【詳解】對:若,,則的位置關(guān)系不確定,故錯誤;對:若,,則的關(guān)系可以平行,可以垂直,故錯誤;對:若,,則的位置關(guān)系不確定,故錯誤;對:若,,且,故可得//,故正確.故選:D.【點睛】本題考查線線,線面,面面位置關(guān)系的判斷,屬基礎(chǔ)題.4.C【分析】利用相互獨立事件、互斥事件概率公式求出,再利用利用相互獨立事件、互斥事件求解作答.【詳解】依題意,,而,解得,,設(shè)“甲同學(xué)答對了i題”,“乙同學(xué)答對了i題”,(),則,,,,甲、乙兩人共答對至少3道題的事件,因此,所以甲、乙兩人共答對至少3道題的概率是.故選:C【點睛】關(guān)鍵點睛:利用概率加法公式及乘法公式求概率,把要求概率的事件分拆成兩兩互斥事件的和,相互獨立事件的積是解題的關(guān)鍵.5.C【分析】利用,表示出的前10項的和,通過等比數(shù)列前n項和公式求解即可.【詳解】,,,,,則的前10項的和為.故選:C.6.B【分析】由題求出歐拉線方程,即可得直線l方程,后可得交點坐標(biāo).【詳解】由的頂點坐標(biāo),可知其重心為.注意到,直線BC斜率不存在,則為直角三角形,則其垂心為其直角頂點,則歐拉線方程為:.因其與垂直,則.則,則直線與的歐拉線的交點坐標(biāo)滿足,即交點為.故選:B7.D【分析】根據(jù)題意得,令,,則函數(shù)在上存在零點等價于與的圖像有交點,再根據(jù)的單調(diào)性求解即可.【詳解】根據(jù)題意,令,所以,令,,則函數(shù)在上存在零點等價于與的圖像有交點.,令,,則,故在上單調(diào)遞增,因為,,所以存在唯一的,使得,即,即,,所以當(dāng)時,,,單調(diào)遞減,當(dāng)時,,,單調(diào)遞增,所以,又時,,故,,所以.故選:D.【點睛】利用導(dǎo)數(shù)研究函數(shù)零點的核心是根據(jù)題意構(gòu)造合適的函數(shù),通過研究函數(shù)的單調(diào)性,進而確定函數(shù)大致圖形,數(shù)形結(jié)合,有助于簡化題目.8.C【分析】根據(jù)給定的幾何體,確定出球心O的位置,求出球半徑,再建立空間直角坐標(biāo)系求出點O到直線距離,進而求出最小截面圓半徑作答.【詳解】依題意,四邊形是正方形,令正方形與正方形中心分別為,連接,因為正方形與正方形在同一平面內(nèi),且有相同中心,因此它們有相同的外接圓,從而十面體與長方體的外接球相同,球心O是線段的中點,如圖,取中點M,連接,因為,則,顯然,又平面,則平面,而平面,平面,即有,平面,則平面,平面與平面有公共點,顯然平面與平面為同一平面,有,而,,在直角梯形中,過作于I,,球O的半徑,過D作平面,以點D為原點,射線分別為軸非負(fù)半軸,建立空間直角坐標(biāo)系,則,,由已知得,即,,,則點到直線的距離有:,球O被過直線的平面所截的截面圓最小時,球心O到平面的距離最大,即為點到直線的距離,截得的最小截面圓半徑為,而,則,所以截得的截面圓面積的最小值是.故選:C【點睛】關(guān)鍵點睛:解決與球有關(guān)的內(nèi)切或外接問題時,關(guān)鍵是確定球心的位置,再利用球的截面小圓性質(zhì)求解.9.AB【分析】利用三角恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的周期性、單調(diào)性、圖象的對稱性,函數(shù)的圖象變換規(guī)律,得出結(jié)論.【詳解】∵對A,因為,則的最小正周期,結(jié)論正確.對B,當(dāng)時,,則在上是減函數(shù),結(jié)論正確.對C,因為,得到函數(shù)圖象的一個對稱中心為,結(jié)論不正確.對D,函數(shù)的圖象可由函數(shù)的圖象向左平移個單位再向下平移1個單位得到,結(jié)論不正確.故正確結(jié)論有A,B,故選:AB.【點睛】本題主要考查三角恒等變換,正弦函數(shù)的周期性、單調(diào)性、圖象的對稱性,函數(shù)的圖象變換規(guī)律,屬于基礎(chǔ)題.10.ABC【分析】根據(jù)圓的幾何性質(zhì)判斷A選項的正確性,結(jié)合圓與圓相交弦所在直線方程判斷B選項的正確性,通過求動點的軌跡方程來判斷CD選項的正確性.【詳解】A選項,由于是圓的直徑,所以,所以直線均與圓相切,A選項正確.B選項,,,圓的半徑為,則,所以圓的方程為,由、兩式相減并化簡得,所以B選項正確.C選項,,,所以在圓上運動,C選項正確.D選項,|PA|=|PB|=3,|OP|=32+42故選:ABC11.BC【分析】由題可得單調(diào)性,.A選項,通過取可構(gòu)造反例;B選項,由題可得,結(jié)合單調(diào)性可判斷選項;C選項,當(dāng)時,顯然正確;當(dāng)時,在時,,則此時,后結(jié)合單調(diào)性可判斷選項;D選項,通過取可構(gòu)造反例.【詳解】構(gòu)造函數(shù).則,當(dāng)時,;時,.即在上單調(diào)遞減,在上單調(diào)遞增.又由題.A選項,取,則,因在上單調(diào)遞增,則滿足題意,但此時,故A錯誤;B選項,若,,則,又由題可知,且在上單調(diào)遞增,則,故B正確;C選項,若,當(dāng)時,,滿足題意;當(dāng)時,構(gòu)造函數(shù),注意到當(dāng)時,,又,則.又因,則.因,在上單調(diào)遞增,則.綜上,若,則,故C正確;D選項,取,則,又在上單調(diào)遞減,則滿足題意,但此時,故D錯誤.故選:BC【點睛】關(guān)鍵點精:本題涉及證明不等式,常需通過觀察找到題目中的相同結(jié)構(gòu),進而構(gòu)造出需要的函數(shù),此外此題作為選擇題,找到合適的反例可幫助我們快速解決問題.12.【分析】本題考查的集合的運算,需要對并集的概念進行了解.【詳解】.所以答案應(yīng)填:.【點睛】并集是取兩集合內(nèi)的所有元素并且相同元素只取一個.13./【分析】由題意推出AE⊥平面BCEF,設(shè)EF=x,則AE=x,EC=2-x,表示出四棱錐A﹣CBFE的體積,利用導(dǎo)數(shù)求其最值,即可得答案.【詳解】由題意可知AEC是等腰直角三角形,EF∥BC,沿EF把面AEF折起,使面AEF⊥面EFBC,,平面AEF平面EFBC=EF,平面AEF,故AE⊥平面BCEF,設(shè)EF=x,則AE=x,EC=2-x,四棱錐A﹣CBFE的體積:V,(),,由,解得x,當(dāng)x∈(0,)時,,當(dāng)x∈(,2)時,,∴當(dāng)時,四棱錐A﹣CBFE的體積最大,即EF的長為.故答案為:.14.【分析】根據(jù)討論函數(shù)單調(diào)性,再根據(jù)單調(diào)性確定函數(shù)最值,最后根據(jù)最值確定的取值范圍.【詳解】①當(dāng)時,在上單調(diào)遞增,所以,因此滿足題意;②當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減(i)當(dāng)時,在上單調(diào)遞增,所以,則,,所以,,,,,,或或;(ii)當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減,所以,即,;綜上,的取值范圍為.故答案為:15.(1);(2).【解析】(1)求出的導(dǎo)數(shù),由題可知,,由此可求出;(2)利用的導(dǎo)數(shù)求出其在的單調(diào)性,進而求出其最大值,滿足即可求出.【詳解】解:(1)由題可知:,∵函數(shù)在,處取得極值,∴,,∴,解得.(2)由(1)可得,令,,,,即:在單調(diào)遞增,在,單調(diào)遞減,又,∴在上單調(diào)遞減,在上單調(diào)遞增上單調(diào)遞減,,,又,,∴要使對任意,恒成立,則.【點睛】本題考查根據(jù)極值點求參數(shù),考查利用導(dǎo)數(shù)解決不等式的恒成立問題,屬于中檔題.16.(1)(2),36【分析】(1)求出甲同學(xué)的閱讀時間之和的可能性,乙同學(xué)的閱讀時間之和,求出概率(2)將表格數(shù)據(jù)代入公式求出回歸方程,令即可求出m的值【詳解】(1)依題意.,則m的取值一共有25個不同結(jié)果,它們等可能.令,解得,因此,當(dāng)甲這一周的閱讀時間超過乙這一周的閱讀時間時,m的取值一共有15個不同結(jié)果,所以甲這一周的閱讀時間超乙這一周的閱讀時間的概率為.(2),計算得:,,∴

將代入估計:17.(1)證明見解析(2)【分析】(1)過點作的垂線,垂足為,連接,根據(jù)平面平面可得平面,再由線面垂直的性質(zhì)和勾股定理可得答案;(2)建立空間直角坐標(biāo)系,求出、平面的法向量,由線面角的向量求法可得答案.【詳解】(1)如圖,過點作的垂線,垂足為,連接,由已知可得,平面平面,平面平面平面,平面,平面,;(2)建立如圖所示空間直角坐標(biāo)系,則,

,設(shè)平面的法向量為,則,令得,設(shè)直線與平面所成角為,則,,即直線與平面所成角的大小為.18.(1),(2)證明見詳解(3)【分析】(1)根據(jù)題意結(jié)合橢圓的定義以及雙曲線的漸近線分析運算;(2)根據(jù)題意利用點差法分析運算;(3)根據(jù)題意討論直線的斜率是否為0,結(jié)合韋達定理以及向量的線性運算分析運算.【詳解】(1)設(shè)橢圓的半焦距為,雙曲線的實軸長、虛軸長、焦距依次為、、,則可得,因為雙曲線的焦點在x軸上,且漸近線是,則,即,可得,即,所以,又因為點在橢圓上,則的周長為,解得,可得,所以橢圓的標(biāo)準(zhǔn)方程為,雙曲線的標(biāo)準(zhǔn)方程.

(2)設(shè),則的中點,由題意可知:,則,可得,因為在雙曲線上,則,兩式相減可得,整理得,即,又因為,則,且點均在直線上,則點即為點,即為的中點.(3)設(shè),當(dāng)直線的斜率為0時,則,可得,因為,則,解得,又因為,則,解得,即;當(dāng)直線的斜率不為0時,可設(shè)直線的方程為,可得,聯(lián)立方程,消去x得,則,解得或,可得,因為,則,整理得,由,可得,又因為,則,整理得;綜上所述

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論