版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆福建省泉州市晉江區(qū)安海片區(qū)數(shù)學八年級第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.在?ABCD中,對角線AC,BD交于點O,下列結(jié)論錯誤的是()A.∠ABO=∠CDO B.∠BAD=∠BCDC.AB=CD D.AC⊥BD2.下列命題中的假命題是()A.過直線外一點有且只有一條直線與這條直線平行B.平行于同一直線的兩條直線平行C.直線y=2x﹣1與直線y=2x+3一定互相平行D.如果兩個角的兩邊分別平行,那么這兩個角相等3.如圖,在平面直角坐標系xOy中,A(0,2),B(0,6),動點C在直線y=x上.若以A、B、C三點為頂點的三角形是等腰三角形,則點C的個數(shù)是()A.6 B.5 C.4 D.34.如圖,四邊形ABCD是平行四邊形,O是對角線AC與BD的交點,AB⊥AC,若AB=8,AC=12,則BD的長是()A.16 B.18 C.20 D.225.在一次科技作品制作比賽中,某小組8件作品的成績(單位:分)分別是:7、10、9、8、7、9、9、8,對這組數(shù)據(jù),下列說法正確的是()A.眾數(shù)是9 B.中位數(shù)是8 C.平均數(shù)是8 D.方差是76.如圖,矩形ABCD中,E是AD的中點,將沿直線BE折疊后得到,延長BG交CD于點F若,則FD的長為()A.3 B. C. D.7.如果有意義,那么()A.a(chǎn)≥ B.a(chǎn)≤ C.a(chǎn)≥﹣ D.a(chǎn)8.下列各式中正確的是A. B.C. D.9.如圖,把線段AB經(jīng)過平移得到線段CD,其中A,B的對應(yīng)點分別為C,D.已知A(﹣1,0),B(﹣2,3),C(2,1),則點D的坐標為()A..(1,4) B..(1,3) C..(2,4) D..(2,3)10.如圖,有兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤(每個轉(zhuǎn)盤均被等分),同時轉(zhuǎn)動這兩個轉(zhuǎn)盤,待轉(zhuǎn)盤停止后,兩個指針同時指在偶數(shù)上的概率是()A. B. C. D.二、填空題(每小題3分,共24分)11.在中,,,將繞點A按順時針方向旋轉(zhuǎn)得到旋轉(zhuǎn)角為,點B,點C的對應(yīng)點分別為點D,點E,過點D作直線AB的垂線,垂足為F,過點E作直線AC的垂線,垂足為P,當時,點P與點C之間的距離是________.12.菱形中,,,以為邊長作正方形,則點到的距離為_________.13.如果一個正整數(shù)能表示為兩個正整數(shù)的平方差,那么稱這個正整數(shù)為“智慧數(shù)”,例如,3=22﹣12,5=32﹣22,7=42﹣32,8=32﹣12…,因此3,5,7,8…都是“智慧數(shù)”在正整數(shù)中,從1開始,第2018個智慧數(shù)是_____.14.如圖,點B是反比例函數(shù)()圖象上一點,過點B作x軸的平行線,交軸于點A,點C是軸上一點,△ABC的面積是2,則=______.15.如圖,已知雙曲線y=kx(k>0)經(jīng)過直角三角形OAB斜邊OB的中點D,與直角邊AB相交于點C.若△OBC的面積為3,則k=_____16.若代數(shù)式在實數(shù)范圍內(nèi)有意義,則x的取值范圍是_______.17.一只不透明的袋子中裝有4個小球,分別標有數(shù)字2,3,4,,這些球除數(shù)字外都相同.甲、乙兩人每次同時從袋中各隨機摸出1個球,并計算摸出的這2個小球上數(shù)字之和.記錄后都將小球放回袋中攪勻,進行重復實驗.實驗數(shù)據(jù)如下表:摸球總次數(shù)1020306090120180240330450“和為7”出現(xiàn)的頻數(shù)19142426375882109150“和為7”出現(xiàn)的頻率0.100.450.470.400.290.310.320.340.330.33試估計出現(xiàn)“和為7”的概率為________.18.如圖,A,B的坐標為(1,0),(0,2),若將線段AB平移至A1B1,則a﹣b的值為____.三、解答題(共66分)19.(10分)已知:正方形ABCD,E為平面內(nèi)任意一點,連接DE,將線段DE繞點D順時針旋轉(zhuǎn)90°得到DG,連接EC,AG.(1)當點E在正方形ABCD內(nèi)部時,①根據(jù)題意,在圖1中補全圖形;②判斷AG與CE的數(shù)量關(guān)系與位置關(guān)系并寫出證明思路.(2)當點B,D,G在一條直線時,若AD=4,DG=,求CE的長.(可在備用圖中畫圖)20.(6分)大家看過中央電視臺“購物街”節(jié)目嗎?其中有一個游戲環(huán)節(jié)是大轉(zhuǎn)輪比賽,轉(zhuǎn)輪上平均分布著5、10、15、20一直到100共20個數(shù)字.選手依次轉(zhuǎn)動轉(zhuǎn)輪,每個人最多有兩次機會.選手轉(zhuǎn)動的數(shù)字之和最大不超過100者為勝出;若超過100則成績無效,稱為“爆掉”.(1)某選手第一次轉(zhuǎn)到了數(shù)字5,再轉(zhuǎn)第二次,則他兩次數(shù)字之和為100的可能性有多大?(2)現(xiàn)在某選手第一次轉(zhuǎn)到了數(shù)字65,若再轉(zhuǎn)第二次了則有可能“爆掉”,請你分析“爆掉”的可能性有多大?21.(6分)順次連接四邊形各邊中點所得的四邊形叫中點四邊形.回答下列問題:(1)只要原四邊形的兩條對角線______,就能使中點四邊形是菱形;(2)只要原四邊形的兩條對角線______,就能使中點四邊形是矩形;(3)請你設(shè)計一個中點四邊形為正方形,但原四邊形又不是正方形的四邊形,把它畫出來.22.(8分)如圖,在平行四邊形ABCD中,DB=DA,點F是AB的中點,連接DF并延長,交CB的延長線于點E,連接AE.(1)求證:△AFD≌△BFE;(2)求證:四邊形AEBD是菱形;(3)若DC=,tan∠DCB=3,求菱形AEBD的面積.23.(8分)(題文)如圖,四邊形ABCD中,AB//CD,AC平分∠BAD,CE//AD交AB于E.求證:四邊形AECD是菱形.24.(8分)如圖,直線l1的解析式為y=-x+4,直線l2的解析式為y=x-2,l1和l2的交點為點B.(1)直接寫出點B坐標;(2)平行于y軸的直線交x軸于點M,交直線l1于E,交直線l2于F.①分別求出當x=2和x=4時EF的值.②直接寫出線段EF的長y與x的函數(shù)關(guān)系式,并畫出函數(shù)圖像L.③在②的條件下,如果直線y=kx+b與L只有一個公共點,直接寫出k的取值范圍.25.(10分)分解因式:(1);(2)。26.(10分)如圖,矩形ABCD的對角線相交于點O,DE∥AC,CE∥BD.(1)求證:四邊形OCED是菱形;(2)若點E到CD的距離為2,CD=3,試求出矩形ABCD的面積.
參考答案一、選擇題(每小題3分,共30分)1、D【解題分析】
由四邊形ABCD是平行四邊形,根據(jù)平行四邊形的對邊平行且相等,對角相等;兩直線平行,內(nèi)錯角相等;即可求得答案.【題目詳解】解:∵四邊形ABCD是平行四邊形,
∴AB=CD,AD=BC,AB∥CD,∠BAD=∠BCD,∴∠ABO=∠CDO.所以A、B、C正確.
故選:D.【題目點撥】本題考查平行四邊形的性質(zhì).注意平行四邊形的對邊相等,對角相等,對角線互相平分定理的應(yīng)用是解此題的關(guān)鍵.2、D【解題分析】
根據(jù)平行公理即可判斷A、根據(jù)兩直線平行的判定可以判定B、C;根據(jù)平行線的性質(zhì)即可判定D.【題目詳解】A.過直線外一點有且只有一條直線與這條直線平行,正確.B.平行于同一直線的兩條直線平行,正確;C.直線y=2x?1與直線y=2x+3一定互相平行,正確;D.如果兩個角的兩邊分別平行,那么這兩個角相等,錯誤;應(yīng)該是如果兩個角的兩邊分別平行,那么這兩個角相等或互補;故選D.【題目點撥】本題考查的知識點是命題與定理,解題關(guān)鍵是通過舉反例證明命題的正確性.3、D【解題分析】
根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得AB的垂直平分線與直線y=x的交點為點C1,即可求得C的坐標,再求出AB的長,以點A為圓心,以AB的長為半徑畫弧,與直線y=x的交點為C2,C3,過點B作BD⊥直線y=x,垂足為D,則△OBD是等腰直角三角形,根據(jù)勾股定理求出點B到直線y=x的距離為,由>4,可知以點B為圓心,以AB的長為半徑畫弧,與直線y=x沒有交點,據(jù)此即可求得答案.【題目詳解】如圖,AB的垂直平分線與直線y=x相交于點C1,∵A(0,2),B(0,6),∴AB=6﹣2=4,以點A為圓心,以AB的長為半徑畫弧,與直線y=x的交點為C2,C3,過點B作BD⊥直線y=x,垂足為D,則△OBD是等腰直角三角形,∴BD=OD,∵OB=6,BD2+OD2=OB2,∴BD=,即點B到直線y=x的距離為,∵>4,∴以點B為圓心,以AB的長為半徑畫弧,與直線y=x沒有交點,綜上所述,點C的個數(shù)是1+2=3,故選D.【題目點撥】本題考查了等腰三角形的判定,坐標與圖形性質(zhì),勾股定理的應(yīng)用,作出圖形,利用數(shù)形結(jié)合的思想求解更形象直觀.4、C【解題分析】試題分析:根據(jù)平行四邊形的性質(zhì)可得AO=6,則根據(jù)Rt△AOB的勾股定理得出BO=10,則BD=2BO=20.考點:平行四邊形的性質(zhì)5、A【解題分析】
根據(jù)眾數(shù)、中位數(shù)、平均數(shù)、方差的計算方法計算即可.【題目詳解】解:8件作品的成績(單位:分)按從小到大的順序排列為:7、7、8、8、9、9、9、10,9出現(xiàn)了3次,次數(shù)最多,故眾數(shù)為9,中位數(shù)為(8+9)÷2=8.5,平均數(shù)=(7×2+8×2+9×3+10)÷8=8.375,方差S2=[2×(7-8.375)2+2×(8-8.375)2+3×(9-8.375)2+(10-8.375)2]=0.1.所以A正確,B、C、D均錯誤.故選A.【題目點撥】本題考查了平均數(shù),中位數(shù),眾數(shù)與方差的求法.平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù),它是反映數(shù)據(jù)集中趨勢的一項指標;中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(或最中間兩個數(shù)的平均數(shù));一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù);一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù),叫做這組數(shù)據(jù)的方差,方差是用來衡量一組數(shù)據(jù)波動大小的量.6、C【解題分析】
根據(jù)點E是AD的中點以及翻折的性質(zhì)可以求出AE=DE=EG,然后利用“HL”證明△EDF和△EGF全等,根據(jù)全等三角形對應(yīng)邊相等可證得DF=GF;設(shè)FD=x,表示出FC、BF,然后在Rt△BCF中,利用勾股定理列式進行計算即可得解.【題目詳解】∵E是AD的中點,∴AE=DE,∵△ABE沿BE折疊后得到△GBE∴AE=EG,AB=BG,∴ED=EG,∵在矩形ABCD中,∴∠A=∠D=90°,∴∠EGF=90°,∵在Rt△EDF和Rt△EGF中,,∴Rt△EDF≌Rt△EGF(HL),∴DF=FG,設(shè)DF=x,則BF=6+x,CF=6-x,在Rt△BCF中,102+(6-x)2=(6+x)2,解得x=.故選C.【題目點撥】本題考查了矩形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理的應(yīng)用,翻折的性質(zhì),熟記性質(zhì),找出三角形全等的條件ED=EG是解題的關(guān)鍵.7、C【解題分析】
被開方數(shù)為非負數(shù),列不等式求解即可.【題目詳解】根據(jù)題意得:,解得.故選:.【題目點撥】本題考查二次根式有意義的條件,二次根式的被開方數(shù)是非負數(shù).8、D【解題分析】
原式利用平方根、立方根定義計算即可求出值.【題目詳解】A.原式=3,不符合題意;B.原式=|-3|=3,不符合題意;C.原式不能化簡,不符合題意;D.原式=2-=,符合題意,故選D.【題目點撥】本題考查了立方根,以及算術(shù)平方根,熟練掌握各自的性質(zhì)是解題的關(guān)鍵.9、A【解題分析】
根據(jù)點A、C的坐標確定出平移規(guī)律,然后根據(jù)規(guī)律求解點D的坐標即可.【題目詳解】∵A(﹣1,0)的對應(yīng)點C的坐標為(2,1),∴平移規(guī)律為橫坐標加3,縱坐標加1,∵點B(﹣2,3)的對應(yīng)點為D,∴D的坐標為(1,4).故選A.【題目點撥】本題考查了坐標與圖形變化﹣平移,平移中點的變化規(guī)律是:橫坐標右移加,左移減;縱坐標上移加,下移減,本題根據(jù)對應(yīng)點的坐標確定出平移規(guī)律是解題的關(guān)鍵.10、B【解題分析】
根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有可能的結(jié)果與兩個指針同時指在偶數(shù)上的情況,再利用概率公式即可求得答案.【題目詳解】根據(jù)題意列樹狀圖得:∵共有25可能出現(xiàn)的情況,兩個指針同時指在偶數(shù)上的情況有6種,∴兩個指針同時指在偶數(shù)上的概率為:,故選B【題目點撥】本題考查了列表法與樹狀圖法求概率的知識,概率=所求情況數(shù)與總情況數(shù)之比.熟練掌握列表法與樹狀圖法及概率公式是解題關(guān)鍵.二、填空題(每小題3分,共24分)11、3或1.【解題分析】
由旋轉(zhuǎn)的性質(zhì)可知△ACB≌△AED,推出∠CAB=∠EAD=∠CBA,則當∠DAF=∠CBA時,分兩種情況,一種是A,F(xiàn),E三點在同一直線上,另一種是D,A,C在同一條直線上,可分別求出CP的長度.【題目詳解】解:∵AC=BC=10,
∴∠CAB=∠CBA,
由旋轉(zhuǎn)的性質(zhì)知,△ACB≌△AED,
∴AE=AC=10,∠CAB=∠EAD=∠CBA,
①∵∠DAF=∠CBA,
∴∠DAF=∠EAD,
∴A,F(xiàn),E三點在同一直線上,如圖1所示,
過點C作CH⊥AB于H,
則AH=BH=AB=7,
∵EP⊥AC,
∴∠EPA=∠CHA=90°,
又∵∠CAH=∠EAP,CA=EA,
∴△CAH≌△EAP(AAS),
∴AP=AH=7,
∴PC=AC-AP=10-7=3;
②當D,A,C在同一條直線上時,如圖2,
∠DAF=∠CAB=∠CBA,
此時AP=AD=AB=7,
∴PC=AC+AP=10+7=1.
故答案為:3或1.【題目點撥】本題考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì),全等三角形的判定等,解題的關(guān)鍵是能夠分類討論,求出兩種情況的結(jié)果.12、5+或5-.【解題分析】
分兩種情況討論:①當正方形ACFE邊EF在AC左側(cè)時,②當正方形ACFE邊EF在AC右側(cè)時.【題目詳解】解:∵四邊形ABCD是菱形,∠B=60°,
∴△ACD是等邊三角形,且DO⊥AC.
∵菱形的邊長為5,
∴DO==
分兩種情況討論:
①當正方形ACFE邊EF在AC左側(cè)時,
過D點作DH2⊥EF,DH2長度表示點D到EF的距離,
DH2=5+DO=5+;
②當正方形ACFE邊EF在AC右側(cè)時,
過D點作DH1⊥EF,DH1長度表示點D到EF的距離,
DH1=5-DO=5-.
故答案為:5+或5-.【題目點撥】本題考查菱形的性質(zhì)、正方形的性質(zhì)、等邊三角形的判定和性質(zhì),同時考查了分類討論思想.解決此類問題要借助畫圖分析求解.13、1693【解題分析】
如果一個數(shù)是智慧數(shù),就能表示為兩個正整數(shù)的平方差,設(shè)這兩個數(shù)分別m、n,設(shè)m>n,即智慧數(shù)=m1-n1=(m+n)(m-n),因為m,n是正整數(shù),因而m+n和m-n就是兩個自然數(shù).要判斷一個數(shù)是否是智慧數(shù),可以把這個數(shù)分解因數(shù),分解成兩個整數(shù)的積,看這兩個數(shù)能否寫成兩個正整數(shù)的和與差.【題目詳解】解:1不能表示為兩個正整數(shù)的平方差,所以1不是“智慧數(shù)”.對于大于1的奇正整數(shù)1k+1,有1k+1=(k+1)1-k1(k=1,1,…).所以大于1的奇正整數(shù)都是“智慧數(shù)”.
對于被4整除的偶數(shù)4k,有4k=(k+1)1-(k-1)1(k=1,3,…).
即大于4的被4整除的數(shù)都是“智慧數(shù)”,而4不能表示為兩個正整數(shù)平方差,所以4不是“智慧數(shù)”.
對于被4除余1的數(shù)4k+1(k=0,1,1,3,…),設(shè)4k+1=x1-y1=(x+y)(x-y),其中x,y為正整數(shù),
當x,y奇偶性相同時,(x+y)(x-y)被4整除,而4k+1不被4整除;
當x,y奇偶性相異時,(x+y)(x-y)為奇數(shù),而4k+1為偶數(shù),總得矛盾.
所以不存在自然數(shù)x,y使得x1-y1=4k+1.即形如4k+1的數(shù)均不為“智慧數(shù)”.
因此,在正整數(shù)列中前四個正整數(shù)只有3為“智慧數(shù)”,此后,每連續(xù)四個數(shù)中有三個“智慧數(shù)”.
因為1017=(1+3×671),4×(671+1)=1691,
所以1693是第1018個“智慧數(shù)”,
故答案為:1693.【題目點撥】本題考查平方差公式,有一定的難度,主要是對題中新定義的理解與把握.14、1【解題分析】
根據(jù)在反比例函數(shù)的圖象上任意一點向坐標軸作垂線,這一點和垂足以及坐標原點所構(gòu)成的三角形的面積是|k|=2,再根據(jù)反比例函數(shù)的圖象位于第一象限即可求出k的值.【題目詳解】連接OB.∵AB∥x軸,∴S△AOB=S△ACB=2,根據(jù)題意可知:S△AOB|k|=2,又反比例函數(shù)的圖象位于第一象限,k>0,則k=1.故答案為1.【題目點撥】本題考查了反比例函數(shù)系數(shù)k的幾何意義,過雙曲線上的任意一點分別向兩條坐標軸作垂線,與坐標軸圍成的矩形面積就等于|k|.本知識點是中考的重要考點,同學們應(yīng)高度關(guān)注.15、2【解題分析】解:過D點作DE⊥x軸,垂足為E,∵Rt△OAB中,∠OAB=90°,∴DE∥AB,∵D為Rt△OAB斜邊OB的中點D,∴DE為Rt△OAB的中位線,∵△OED∽△OAB,∴兩三角形的相似比為,∵雙曲線,可知,,由,得,解得16、【解題分析】先根據(jù)二次根式有意義的條件列出關(guān)于x的不等式,求出x的取值范圍即可.解:∵在實數(shù)范圍內(nèi)有意義,∴x-1≥2,解得x≥1.故答案為x≥1.本題考查的是二次根式有意義的條件,即被開方數(shù)大于等于2.17、0.33【解題分析】
由于大量試驗中“和為7”出現(xiàn)的頻數(shù)穩(wěn)定在0.3附近,據(jù)圖表,可估計“和為7”出現(xiàn)的概率為3.1,3.2,3.3等均可.【題目詳解】出現(xiàn)和為7的概率是:0.33(或0.31,0.32,0.34均正確);故答案為:0.33【題目點撥】此題考查利用頻率估計概率,解題關(guān)鍵在于看懂圖中數(shù)據(jù)18、1【解題分析】試題解析:由B點平移前后的縱坐標分別為2、4,可得B點向上平移了2個單位,由A點平移前后的橫坐標分別是為1、3,可得A點向右平移了2個單位,由此得線段AB的平移的過程是:向上平移1個單位,再向右平移1個單位,所以點A、B均按此規(guī)律平移,由此可得a=2,b=2,故a-b=1.【題目點撥】本題考查了坐標系中點、線段的平移規(guī)律,在平面直角坐標系中,圖形的平移與圖形上某點的平移相同.平移中點的變化規(guī)律是:橫坐標右移加,左移減;縱坐標上移加,下移減.三、解答題(共66分)19、(1)①見解析;②AG=CE,AG⊥CE,理由見解析;(2)CE的長為或【解題分析】
(1)①根據(jù)題意補全圖形即可;
②先判斷出∠GDA=∠EDC,進而得出△AGD≌△CED,即可得出AG=CE,延長CE分別交AG、AD于點F、H,判斷出∠AFH=∠HDC=90°即可得出結(jié)論;
(2)分兩種情況,①當點G在線段BD的延長線上時,②當點G在線段BD上時,構(gòu)造直角三角形利用勾股定理即可得出結(jié)論.【題目詳解】解:(1)當點E在正方形ABCD內(nèi)部時,①依題意,補全圖形如圖1:②AG=CE,AG⊥CE.
理由:
在正方形ABCD,
∴AD=CD,∠ADC=90°,
∵由DE繞著點D順時針旋轉(zhuǎn)90°得DG,
∴∠GDE=∠ADC=90°,GD=DE,
∴∠GDA=∠EDC
在△AGD和△CED中,,
∴△AGD≌△CED,
∴AG=CE.
如圖2,延長CE分別交AG、AD于點F、H,
∵△AGD≌△CED,
∴∠GAD=∠ECD,
∵∠AHF=∠CHD,
∴∠AFH=∠HDC=90°,
∴AG⊥CE.
(2)①當點G在線段BD的延長線上時,如圖3所示.
過G作GM⊥AD于M.
∵BD是正方形ABCD的對角線,
∴∠ADB=∠GDM=45°.
∵GM⊥AD,DG=∴MD=MG=2,
∴AM=AD+DM=6
在Rt△AMG中,由勾股定理得:AG==,同(1)可證△AGD≌△CED,
∴CE=AG=
②當點G在線段BD上時,如圖4所示,
過G作GM⊥AD于M.
∵BD是正方形ABCD的對角線,
∴∠ADG=45°
∵GM⊥AD,DG=∴MD=MG=2,
∴AM=AD-MD=2
在Rt△AMG中,由勾股定理得:AG==,同(1)可證△AGD≌△CED,
∴CE=AG=.故CE的長為或.【題目點撥】此題是四邊形綜合題,主要考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),勾股定理,解(1)的關(guān)鍵是判斷出△AGD≌△CED,解(2)的關(guān)鍵是構(gòu)造直角三角形,是一道中考??碱}.20、(1);(2).【解題分析】試題分析:(1)求出第二次轉(zhuǎn)到95的可能性,即為兩次數(shù)字之和為100的可能性;(2)求出轉(zhuǎn)到數(shù)字在35以上的總個數(shù),利用所求情況數(shù)(35以上的總個數(shù))與總情況數(shù)(20)作比即可.(1)由題意分析可得:要使他兩次數(shù)字之和為100,則第二次必須轉(zhuǎn)到95,因為總共有20個數(shù)字,所以他兩次數(shù)字之和為100的可能性為
.(2)由題意分析可得:轉(zhuǎn)到數(shù)字35以上就會“爆掉”,共有13種情況,因為總共有20個數(shù)字,所以“爆掉”的可能性為.點睛:本題考查了可能性大小,用到的知識點為:可能性等于所求情況數(shù)與總情況數(shù)之比.21、(1)相等;(2)垂直;(3)見解析【解題分析】
(1)根據(jù)菱形的判定定理即可得到結(jié)論;(2)根據(jù)矩形的判定定理即可得到結(jié)論;(3)根據(jù)三角形的中位線平行于第三邊并等于第三邊的一半,先判斷出AC=BD,又正方形的四個角都是直角,可以得到正方形的鄰邊互相垂直,然后證出AC與BD垂直,即可得到四邊形ABCD滿足的條件.【題目詳解】解:(1)順次連接對角線相等的四邊形的四邊中點得到的是菱形;(2)順次連接對角線垂直的四邊形的四邊中點得到的是矩形;(3)如圖,已知點E、F、G、H分別為四邊形ABCD的邊AB、BC、CD、DA的中點,AC=BD且AC⊥BD,則四邊形EFGH為正方形,∵E、F分別是四邊形ABCD的邊AB、BC的中點,∴EF∥AC,EF=AC,同理,EH∥BD,EH=BD,GF=BD,GH=AC,∵AC=BD,∴EF=EH=GH=GF,∴平行四邊形ABCD是菱形.∵AC⊥BD,∴EF⊥EH,∴四邊形EFGH是正方形,故順次連接對角線相等且垂直的四邊形的四邊中點得到的四邊形是正方形,故答案為:相等,垂直.【題目點撥】本題考查了中點四邊形的判定,以及三角形的中位線定理和矩形的性質(zhì),正確證明四邊形EFMN是平行四邊形是關(guān)鍵.22、(1)見解析;(2)見解析;(3)S菱形AEBD=1.【解題分析】
(1)根據(jù)平行四邊形的性質(zhì)和全等三角形的判定證明即可;(2)由△AFD≌△BFE,推出AD=BE,可知四邊形AEBD是平行四邊形,再根據(jù)BD=AD可得結(jié)論;(3)解直角三角形求出EF的長即可解決問題;【題目詳解】解:(1)∵四邊形ABCD是平行四邊形,∴AD∥CE,∴∠DAF=∠EBF,∵∠AFD=∠EFB,AF=FB,∴△AFD≌△BFE(AAS);(2)∵△AFD≌△BFE,∴AD=EB,∵AD∥EB,∴四邊形AEBD是平行四邊形,∵BD=AD,∴四邊形AEBD是菱形.(3)∵四邊形ABCD是平行四邊形,∴CD=AB=,AB∥CD,∴∠ABE=∠DCB,∴tan∠ABE=tan∠DCB=3,∵四邊形AEBD是菱形,∴AB⊥DE,AF=FB,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 宅基地轉(zhuǎn)讓合同8篇2
- 2024購房補貼借款合同范本2
- 2024個人借款合同范本「無息」
- 《環(huán)境保護法講座》課件
- 蘇州科技大學天平學院《裝飾基礎(chǔ)》2022-2023學年第一學期期末試卷
- 蘇州科技大學天平學院《智能制造技術(shù)與系統(tǒng)》2022-2023學年第一學期期末試卷
- 2024上海市房屋轉(zhuǎn)租合同的范本
- 蘇州科技大學天平學院《舞蹈編導二》2022-2023學年第一學期期末試卷
- 廣告投放與市場競爭考核試卷
- 智慧工廠的解決方案
- 基礎(chǔ)會計教材電子版
- 【課件】讀后續(xù)寫:思維導圖情節(jié)構(gòu)建 課件-2023屆高三英語寫作專項
- 政府機關(guān)辦公樓物業(yè)管理服務(wù)方案專業(yè)完整版
- 風險分級管控清單(完整版)
- 醫(yī)院服務(wù)-PPT課件
- SYB創(chuàng)業(yè)培訓全課件(ppt)
- 危險化學品儲存、經(jīng)營企業(yè)專業(yè)檢查表(長輸管線)
- GB∕T 24694-2021 玻璃容器 白酒瓶質(zhì)量要求
- 下肢動脈硬化閉塞癥臨床路徑
- 精裝修驗房最全表格
- 實例兩點透視ppt課件
評論
0/150
提交評論