四川省遂寧高級實驗學校2024年高三3月份模擬考試數(shù)學試題含解析_第1頁
四川省遂寧高級實驗學校2024年高三3月份模擬考試數(shù)學試題含解析_第2頁
四川省遂寧高級實驗學校2024年高三3月份模擬考試數(shù)學試題含解析_第3頁
四川省遂寧高級實驗學校2024年高三3月份模擬考試數(shù)學試題含解析_第4頁
四川省遂寧高級實驗學校2024年高三3月份模擬考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

四川省遂寧高級實驗學校2024年高三3月份模擬考試數(shù)學試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知盒中有3個紅球,3個黃球,3個白球,且每種顏色的三個球均按,,編號,現(xiàn)從中摸出3個球(除顏色與編號外球沒有區(qū)別),則恰好不同時包含字母,,的概率為()A. B. C. D.2.已知為拋物線的焦點,點在拋物線上,且,過點的動直線與拋物線交于兩點,為坐標原點,拋物線的準線與軸的交點為.給出下列四個命題:①在拋物線上滿足條件的點僅有一個;②若是拋物線準線上一動點,則的最小值為;③無論過點的直線在什么位置,總有;④若點在拋物線準線上的射影為,則三點在同一條直線上.其中所有正確命題的個數(shù)為()A.1 B.2 C.3 D.43.已知平面向量,滿足且,若對每一個確定的向量,記的最小值為,則當變化時,的最大值為()A. B. C. D.14.我國南北朝時的數(shù)學著作《張邱建算經(jīng)》有一道題為:“今有十等人,每等一人,宮賜金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中間四人未到者,亦依次更給,問各得金幾何?”則在該問題中,等級較高的二等人所得黃金比等級較低的九等人所得黃金()A.多1斤 B.少1斤 C.多斤 D.少斤5.在精準扶貧工作中,有6名男干部、5名女干部,從中選出2名男干部、1名女干部組成一個扶貧小組分到某村工作,則不同的選法共有()A.60種 B.70種 C.75種 D.150種6.已知函數(shù)在區(qū)間上恰有四個不同的零點,則實數(shù)的取值范圍是()A. B. C. D.7.已知復數(shù),若,則的值為()A.1 B. C. D.8.某三棱錐的三視圖如圖所示,則該三棱錐的體積為()A. B.4C. D.59.關(guān)于的不等式的解集是,則關(guān)于的不等式的解集是()A. B.C. D.10.已知函數(shù)的定義域為,則函數(shù)的定義域為()A. B.C. D.11.已知正四面體的內(nèi)切球體積為v,外接球的體積為V,則()A.4 B.8 C.9 D.2712.已知函數(shù),.若存在,使得成立,則的最大值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.執(zhí)行如圖所示的偽代碼,若輸出的y的值為13,則輸入的x的值是_______.14.已知直線被圓截得的弦長為2,則的值為__15.設(shè),滿足約束條件,若的最大值是10,則________.16.某四棱錐的三視圖如圖所示,那么此四棱錐的體積為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)電視傳媒公司為了解某地區(qū)觀眾對某體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查,其中女性有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.(1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否認為“體育迷”與性別有關(guān)?非體育迷體育迷合計男女1055合計(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X.若每次抽取的結(jié)果是相互獨立的,求X的分布列,期望E(X)和方差D(X).附:.P(K2≥k)0.050.01k3.8416.63518.(12分)已知函數(shù).(1)求函數(shù)的零點;(2)設(shè)函數(shù)的圖象與函數(shù)的圖象交于,兩點,求證:;(3)若,且不等式對一切正實數(shù)x恒成立,求k的取值范圍.19.(12分)已知拋物線:的焦點為,過上一點()作兩條傾斜角互補的直線分別與交于,兩點,(1)證明:直線的斜率是-1;(2)若,,成等比數(shù)列,求直線的方程.20.(12分)若函數(shù)在處有極值,且,則稱為函數(shù)的“F點”.(1)設(shè)函數(shù)().①當時,求函數(shù)的極值;②若函數(shù)存在“F點”,求k的值;(2)已知函數(shù)(a,b,,)存在兩個不相等的“F點”,,且,求a的取值范圍.21.(12分)已知函數(shù)在上的最大值為3.(1)求的值及函數(shù)的單調(diào)遞增區(qū)間;(2)若銳角中角所對的邊分別為,且,求的取值范圍.22.(10分)已知集合,,,將的所有子集任意排列,得到一個有序集合組,其中.記集合中元素的個數(shù)為,,,規(guī)定空集中元素的個數(shù)為.當時,求的值;利用數(shù)學歸納法證明:不論為何值,總存在有序集合組,滿足任意,,都有.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

首先求出基本事件總數(shù),則事件“恰好不同時包含字母,,”的對立事件為“取出的3個球的編號恰好為字母,,”,記事件“恰好不同時包含字母,,”為,利用對立事件的概率公式計算可得;【詳解】解:從9個球中摸出3個球,則基本事件總數(shù)為(個),則事件“恰好不同時包含字母,,”的對立事件為“取出的3個球的編號恰好為字母,,”記事件“恰好不同時包含字母,,”為,則.故選:B【點睛】本題考查了古典概型及其概率計算公式,考查了排列組合的知識,解答的關(guān)鍵在于正確理解題意,屬于基礎(chǔ)題.2、C【解析】

①:由拋物線的定義可知,從而可求的坐標;②:做關(guān)于準線的對稱點為,通過分析可知當三點共線時取最小值,由兩點間的距離公式,可求此時最小值;③:設(shè)出直線方程,聯(lián)立直線與拋物線方程,結(jié)合韋達定理,可知焦點坐標的關(guān)系,進而可求,從而可判斷出的關(guān)系;④:計算直線的斜率之差,可得兩直線斜率相等,進而可判斷三點在同一條直線上.【詳解】解:對于①,設(shè),由拋物線的方程得,則,故,所以或,所以滿足條件的點有二個,故①不正確;對于②,不妨設(shè),則關(guān)于準線的對稱點為,故,當且僅當三點共線時等號成立,故②正確;對于③,由題意知,,且的斜率不為0,則設(shè)方程為:,設(shè)與拋物線的交點坐標為,聯(lián)立直線與拋物線的方程為,,整理得,則,所以,則.故的傾斜角互補,所以,故③正確.對于④,由題意知,由③知,則,由,知,即三點在同一條直線上,故④正確.故選:C.【點睛】本題考查了拋物線的定義,考查了直線與拋物線的位置關(guān)系,考查了拋物線的性質(zhì),考查了直線方程,考查了兩點的斜率公式.本題的難點在于第二個命題,結(jié)合初中的“飲馬問題”分析出何時取最小值.3、B【解析】

根據(jù)題意,建立平面直角坐標系.令.為中點.由即可求得點的軌跡方程.將變形,結(jié)合及平面向量基本定理可知三點共線.由圓切線的性質(zhì)可知的最小值即為到直線的距離最小值,且當與圓相切時,有最大值.利用圓的切線性質(zhì)及點到直線距離公式即可求得直線方程,進而求得原點到直線的距離,即為的最大值.【詳解】根據(jù)題意,設(shè),則由代入可得即點的軌跡方程為又因為,變形可得,即,且所以由平面向量基本定理可知三點共線,如下圖所示:所以的最小值即為到直線的距離最小值根據(jù)圓的切線性質(zhì)可知,當與圓相切時,有最大值設(shè)切線的方程為,化簡可得由切線性質(zhì)及點到直線距離公式可得,化簡可得即所以切線方程為或所以當變化時,到直線的最大值為即的最大值為故選:B【點睛】本題考查了平面向量的坐標應(yīng)用,平面向量基本定理的應(yīng)用,圓的軌跡方程問題,圓的切線性質(zhì)及點到直線距離公式的應(yīng)用,綜合性強,屬于難題.4、C【解析】設(shè)這十等人所得黃金的重量從大到小依次組成等差數(shù)列則由等差數(shù)列的性質(zhì)得,故選C5、C【解析】

根據(jù)題意,分別計算“從6名男干部中選出2名男干部”和“從5名女干部中選出1名女干部”的取法數(shù),由分步計數(shù)原理計算可得答案.【詳解】解:根據(jù)題意,從6名男干部中選出2名男干部,有種取法,從5名女干部中選出1名女干部,有種取法,則有種不同的選法;故選:C.【點睛】本題考查排列組合的應(yīng)用,涉及分步計數(shù)原理問題,屬于基礎(chǔ)題.6、A【解析】

函數(shù)的零點就是方程的解,設(shè),方程可化為,即或,求出的導數(shù),利用導數(shù)得出函數(shù)的單調(diào)性和最值,由此可根據(jù)方程解的個數(shù)得出的范圍.【詳解】由題意得有四個大于的不等實根,記,則上述方程轉(zhuǎn)化為,即,所以或.因為,當時,,單調(diào)遞減;當時,,單調(diào)遞增;所以在處取得最小值,最小值為.因為,所以有兩個符合條件的實數(shù)解,故在區(qū)間上恰有四個不相等的零點,需且.故選:A.【點睛】本題考查復合函數(shù)的零點.考查轉(zhuǎn)化與化歸思想,函數(shù)零點轉(zhuǎn)化為方程的解,方程的解再轉(zhuǎn)化為研究函數(shù)的性質(zhì),本題考查了學生分析問題解決問題的能力.7、D【解析】由復數(shù)模的定義可得:,求解關(guān)于實數(shù)的方程可得:.本題選擇D選項.8、B【解析】

還原幾何體的直觀圖,可將此三棱錐放入長方體中,利用體積分割求解即可.【詳解】如圖,三棱錐的直觀圖為,體積.故選:B.【點睛】本題主要考查了錐體的體積的求解,利用的體積分割的方法,考查了空間想象力及計算能力,屬于中檔題.9、A【解析】

由的解集,可知及,進而可求出方程的解,從而可求出的解集.【詳解】由的解集為,可知且,令,解得,,因為,所以的解集為,故選:A.【點睛】本題考查一元一次不等式、一元二次不等式的解集,考查學生的計算求解能力與推理能力,屬于基礎(chǔ)題.10、A【解析】試題分析:由題意,得,解得,故選A.考點:函數(shù)的定義域.11、D【解析】

設(shè)正四面體的棱長為,取的中點為,連接,作正四面體的高為,首先求出正四面體的體積,再利用等體法求出內(nèi)切球的半徑,在中,根據(jù)勾股定理求出外接球的半徑,利用球的體積公式即可求解.【詳解】設(shè)正四面體的棱長為,取的中點為,連接,作正四面體的高為,則,,,設(shè)內(nèi)切球的半徑為,內(nèi)切球的球心為,則,解得:;設(shè)外接球的半徑為,外接球的球心為,則或,,在中,由勾股定理得:,,解得,,故選:D【點睛】本題主要考查了多面體的內(nèi)切球、外接球問題,考查了椎體的體積公式以及球的體積公式,需熟記幾何體的體積公式,屬于基礎(chǔ)題.12、C【解析】

由題意可知,,由可得出,,利用導數(shù)可得出函數(shù)在區(qū)間上單調(diào)遞增,函數(shù)在區(qū)間上單調(diào)遞增,進而可得出,由此可得出,可得出,構(gòu)造函數(shù),利用導數(shù)求出函數(shù)在上的最大值即可得解.【詳解】,,由于,則,同理可知,,函數(shù)的定義域為,對恒成立,所以,函數(shù)在區(qū)間上單調(diào)遞增,同理可知,函數(shù)在區(qū)間上單調(diào)遞增,,則,,則,構(gòu)造函數(shù),其中,則.當時,,此時函數(shù)單調(diào)遞增;當時,,此時函數(shù)單調(diào)遞減.所以,.故選:C.【點睛】本題考查代數(shù)式最值的計算,涉及指對同構(gòu)思想的應(yīng)用,考查化歸與轉(zhuǎn)化思想的應(yīng)用,有一定的難度.二、填空題:本題共4小題,每小題5分,共20分。13、8【解析】

根據(jù)偽代碼逆向運算求得結(jié)果.【詳解】輸入,若,則,不合題意若,則,滿足題意本題正確結(jié)果:【點睛】本題考查算法中的語言,屬于基礎(chǔ)題.14、1【解析】

根據(jù)弦長為半徑的兩倍,得直線經(jīng)過圓心,將圓心坐標代入直線方程可解得.【詳解】解:圓的圓心為(1,1),半徑,

因為直線被圓截得的弦長為2,

所以直線經(jīng)過圓心(1,1),

,解得.故答案為:1.【點睛】本題考查了直線與圓相交的性質(zhì),屬基礎(chǔ)題.15、【解析】

畫出不等式組表示的平面區(qū)域,數(shù)形結(jié)合即可容易求得結(jié)果.【詳解】畫出不等式組表示的平面區(qū)域如下所示:目標函數(shù)可轉(zhuǎn)化為與直線平行,數(shù)形結(jié)合可知當且僅當目標函數(shù)過點,取得最大值,故可得,解得.故答案為:.【點睛】本題考查由目標函數(shù)的最值求參數(shù)值,屬基礎(chǔ)題.16、【解析】

利用三視圖判斷幾何體的形狀,然后通過三視圖的數(shù)據(jù)求解幾何體的體積.【詳解】如圖:此四棱錐的高為,底面是長為,寬為2的矩形,所以體積.所以本題答案為.【點睛】本題考查幾何體與三視圖的對應(yīng)關(guān)系,幾何體體積的求法,考查空間想象能力與計算能力.解決本類題目的關(guān)鍵是準確理解幾何體的定義,真正把握幾何體的結(jié)構(gòu)特征,可以根據(jù)條件構(gòu)建幾何模型,在幾何模型中進行判斷.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)無關(guān);(2),.【解析】

(1)由頻率分布直方圖可知,在抽取的100人中,“體育迷”有25人,從而可得列聯(lián)表如下:非體育迷體育迷合計男301545女451055合計7525100將22列聯(lián)表中的數(shù)據(jù)代入公式計算,得.因為3.030<3.841,所以我們沒有充分理由認為“體育迷”與性別有關(guān).(2)由頻率分布直方圖知抽到“體育迷”的頻率為0.25,將頻率視為概率,即從觀眾中抽取一名“體育迷”的概率.由題意知X~B(3,),從而X的分布列為X0123PE(X)=np==.D(X)=np(1-p)=18、(1)x=1(2)證明見解析(3)【解析】

(1)令,根據(jù)導函數(shù)確定函數(shù)的單調(diào)區(qū)間,求出極小值,進而求解;(2)轉(zhuǎn)化思想,要證,即證,即證,構(gòu)造函數(shù)進而求證;(3)不等式對一切正實數(shù)恒成立,,設(shè),分類討論進而求解.【詳解】解:(1)令,所以,當時,,在上單調(diào)遞增;當時,,在單調(diào)遞減;所以,所以的零點為.(2)由題意,,要證,即證,即證,令,則,由(1)知,當且僅當時等號成立,所以,即,所以原不等式成立.(3)不等式對一切正實數(shù)恒成立,,設(shè),,記,△,①當△時,即時,恒成立,故單調(diào)遞增.于是當時,,又,故,當時,,又,故,又當時,,因此,當時,,②當△,即時,設(shè)的兩個不等實根分別為,,又,于是,故當時,,從而在單調(diào)遞減;當時,,此時,于是,即舍去,綜上,的取值范圍是.【點睛】(1)考查函數(shù)求導,根據(jù)導函數(shù)確定函數(shù)的單調(diào)性,零點;(2)考查轉(zhuǎn)化思想,構(gòu)造函數(shù)求極值;(3)考查分類討論思想,函數(shù)的單調(diào)性,函數(shù)的求導;屬于難題.19、(1)見解析;(2)【解析】

(1)設(shè),,由已知,得,代入中即可;(2)利用拋物線的定義將轉(zhuǎn)化為,再利用韋達定理計算.【詳解】(1)在拋物線上,∴,設(shè),,由題可知,,∴,∴,∴,∴,∴(2)由(1)問可設(shè)::,則,,,∴,∴,即(*),將直線與拋物線聯(lián)立,可得:,所以,代入(*)式,可得滿足,∴:.【點睛】本題考查直線與拋物線的位置關(guān)系的應(yīng)用,在處理直線與拋物線位置關(guān)系的問題時,通常要涉及韋達定理來求解,本題查學生的運算求解能力,是一道中檔題.20、(1)①極小值為1,無極大值.②實數(shù)k的值為1.(2)【解析】

(1)①將代入可得,求導討論函數(shù)單調(diào)性,即得極值;②設(shè)是函數(shù)的一個“F點”(),即是的零點,那么由導數(shù)可知,且,可得,根據(jù)可得,設(shè),由的單調(diào)性可得,即得.(2)方法一:先求的導數(shù),存在兩個不相等的“F點”,,可以由和韋達定理表示出,的關(guān)系,再由,可得的關(guān)系式,根據(jù)已知解即得.方法二:由函數(shù)存在不相等的兩個“F點”和,可知,是關(guān)于x的方程組的兩個相異實數(shù)根,由得,分兩種情況:是函數(shù)一個“F點”,不是函數(shù)一個“F點”,進行討論即得.【詳解】解:(1)①當時,(),則有(),令得,列表如下:x10極小值故函數(shù)在處取得極小值,極小值為1,無極大值.②設(shè)是函數(shù)的一個“F點”().(),是函數(shù)的零點.,由,得,,由,得,即.設(shè),則,所以函數(shù)在上單調(diào)增,注意到,所以方程存在唯一實根1,所以,得,根據(jù)①知,時,是函數(shù)的極小值點,所以1是函數(shù)的“F點”.綜上,得實數(shù)k的值為1.(2)由(a,b,,),可得().又函數(shù)存在不相等的兩個“F點”和,,是關(guān)于x的方程()的兩個相異實數(shù)根.又,,,即,從而,,即..,,解得.所以,實數(shù)a的取值范圍為.(2)(解法2)因為(a,b,,)所以().又因為函數(shù)存在不相等的兩個“F點”和,所以,是關(guān)于x的方程組的兩個相異實數(shù)根.由得,.(2.1)當是函數(shù)一個“F點”時,且.所以,即.又,所以,所以.又,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論