版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
上海市徐匯區(qū)上海師大附中2023-2024學(xué)年高考?jí)狠S卷數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.?dāng)?shù)列滿足:,則數(shù)列前項(xiàng)的和為A. B. C. D.2.已知,其中是虛數(shù)單位,則對(duì)應(yīng)的點(diǎn)的坐標(biāo)為()A. B. C. D.3.函數(shù)的部分圖象如圖中實(shí)線所示,圖中圓與的圖象交于兩點(diǎn),且在軸上,則下列說(shuō)法中正確的是A.函數(shù)的最小正周期是B.函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱C.函數(shù)在單調(diào)遞增D.函數(shù)的圖象向右平移后關(guān)于原點(diǎn)成中心對(duì)稱4.拋物線方程為,一直線與拋物線交于兩點(diǎn),其弦的中點(diǎn)坐標(biāo)為,則直線的方程為()A. B. C. D.5.已知集合,,則()A. B.C. D.6.學(xué)業(yè)水平測(cè)試成績(jī)按照考生原始成績(jī)從高到低分為、、、、五個(gè)等級(jí).某班共有名學(xué)生且全部選考物理、化學(xué)兩科,這兩科的學(xué)業(yè)水平測(cè)試成績(jī)?nèi)鐖D所示.該班學(xué)生中,這兩科等級(jí)均為的學(xué)生有人,這兩科中僅有一科等級(jí)為的學(xué)生,其另外一科等級(jí)為,則該班()A.物理化學(xué)等級(jí)都是的學(xué)生至多有人B.物理化學(xué)等級(jí)都是的學(xué)生至少有人C.這兩科只有一科等級(jí)為且最高等級(jí)為的學(xué)生至多有人D.這兩科只有一科等級(jí)為且最高等級(jí)為的學(xué)生至少有人7.已知函數(shù),若,,,則a,b,c的大小關(guān)系是()A. B. C. D.8.已知函數(shù)的圖像向右平移個(gè)單位長(zhǎng)度后,得到的圖像關(guān)于軸對(duì)稱,,當(dāng)取得最小值時(shí),函數(shù)的解析式為()A. B.C. D.9.已知函數(shù),關(guān)于的方程R)有四個(gè)相異的實(shí)數(shù)根,則的取值范圍是(
)A. B. C. D.10.在中,“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件11.設(shè)函數(shù),則函數(shù)的圖像可能為()A. B. C. D.12.設(shè)函數(shù)滿足,則的圖像可能是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,若,則實(shí)數(shù)______.14.如圖,已知一塊半徑為2的殘缺的半圓形材料,O為半圓的圓心,,殘缺部分位于過(guò)點(diǎn)C的豎直線的右側(cè),現(xiàn)要在這塊材料上裁出一個(gè)直角三角形,若該直角三角形一條邊在上,則裁出三角形面積的最大值為_(kāi)_____.15.函數(shù)的最大值與最小正周期相同,則在上的單調(diào)遞增區(qū)間為_(kāi)_____.16.設(shè)為橢圓在第一象限上的點(diǎn),則的最小值為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知均為正實(shí)數(shù),函數(shù)的最小值為.證明:(1);(2).18.(12分)如圖,四邊形中,,,,沿對(duì)角線將翻折成,使得.(1)證明:;(2)求直線與平面所成角的正弦值.19.(12分)在銳角中,角A,B,C所對(duì)的邊分別為a,b,c.已知.(1)求的值;(2)當(dāng),且時(shí),求的面積.20.(12分)已知曲線的參數(shù)方程為為參數(shù),曲線的參數(shù)方程為為參數(shù)).(1)求與的普通方程;(2)若與相交于,兩點(diǎn),且,求的值.21.(12分)為了檢測(cè)某種零件的一條生產(chǎn)線的生產(chǎn)過(guò)程,從生產(chǎn)線上隨機(jī)抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)得到如圖所示的頻率分布直方圖,若尺寸落在區(qū)間之外,則認(rèn)為該零件屬“不合格”的零件,其中,s分別為樣本平均數(shù)和樣本標(biāo)準(zhǔn)差,計(jì)算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).(1)求樣本平均數(shù)的大??;(2)若一個(gè)零件的尺寸是100cm,試判斷該零件是否屬于“不合格”的零件.22.(10分)已知集合,,,將的所有子集任意排列,得到一個(gè)有序集合組,其中.記集合中元素的個(gè)數(shù)為,,,規(guī)定空集中元素的個(gè)數(shù)為.當(dāng)時(shí),求的值;利用數(shù)學(xué)歸納法證明:不論為何值,總存在有序集合組,滿足任意,,都有.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】分析:通過(guò)對(duì)an﹣an+1=2anan+1變形可知,進(jìn)而可知,利用裂項(xiàng)相消法求和即可.詳解:∵,∴,又∵=5,∴,即,∴,∴數(shù)列前項(xiàng)的和為,故選A.點(diǎn)睛:裂項(xiàng)相消法是最難把握的求和方法之一,其原因是有時(shí)很難找到裂項(xiàng)的方向,突破這一難點(diǎn)的方法是根據(jù)式子的結(jié)構(gòu)特點(diǎn),常見(jiàn)的裂項(xiàng)技巧:(1);(2);(3);(4);此外,需注意裂項(xiàng)之后相消的過(guò)程中容易出現(xiàn)丟項(xiàng)或多項(xiàng)的問(wèn)題,導(dǎo)致計(jì)算結(jié)果錯(cuò)誤.2、C【解析】
利用復(fù)數(shù)相等的條件求得,,則答案可求.【詳解】由,得,.對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,,.故選:.【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,考查復(fù)數(shù)相等的條件,是基礎(chǔ)題.3、B【解析】
根據(jù)函數(shù)的圖象,求得函數(shù),再根據(jù)正弦型函數(shù)的性質(zhì),即可求解,得到答案.【詳解】根據(jù)給定函數(shù)的圖象,可得點(diǎn)的橫坐標(biāo)為,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,當(dāng)時(shí),,即函數(shù)的一個(gè)對(duì)稱中心為,即函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱.故選B.【點(diǎn)睛】本題主要考查了由三角函數(shù)的圖象求解函數(shù)的解析式,以及三角函數(shù)的圖象與性質(zhì),其中解答中根據(jù)函數(shù)的圖象求得三角函數(shù)的解析式,再根據(jù)三角函數(shù)的圖象與性質(zhì)求解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及運(yùn)算與求解能力,屬于基礎(chǔ)題.4、A【解析】
設(shè),,利用點(diǎn)差法得到,所以直線的斜率為2,又過(guò)點(diǎn),再利用點(diǎn)斜式即可得到直線的方程.【詳解】解:設(shè),∴,又,兩式相減得:,∴,∴,∴直線的斜率為2,又∴過(guò)點(diǎn),∴直線的方程為:,即,故選:A.【點(diǎn)睛】本題考查直線與拋物線相交的中點(diǎn)弦問(wèn)題,解題方法是“點(diǎn)差法”,即設(shè)出弦的兩端點(diǎn)坐標(biāo),代入拋物線方程相減后可把弦所在直線斜率與中點(diǎn)坐標(biāo)建立關(guān)系.5、C【解析】
求出集合,計(jì)算出和,即可得出結(jié)論.【詳解】,,,.故選:C.【點(diǎn)睛】本題考查交集和并集的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.6、D【解析】
根據(jù)題意分別計(jì)算出物理等級(jí)為,化學(xué)等級(jí)為的學(xué)生人數(shù)以及物理等級(jí)為,化學(xué)等級(jí)為的學(xué)生人數(shù),結(jié)合表格中的數(shù)據(jù)進(jìn)行分析,可得出合適的選項(xiàng).【詳解】根據(jù)題意可知,名學(xué)生減去名全和一科為另一科為的學(xué)生人(其中物理化學(xué)的有人,物理化學(xué)的有人),表格變?yōu)椋何锢砘瘜W(xué)對(duì)于A選項(xiàng),物理化學(xué)等級(jí)都是的學(xué)生至多有人,A選項(xiàng)錯(cuò)誤;對(duì)于B選項(xiàng),當(dāng)物理和,化學(xué)都是時(shí),或化學(xué)和,物理都是時(shí),物理、化學(xué)都是的人數(shù)最少,至少為(人),B選項(xiàng)錯(cuò)誤;對(duì)于C選項(xiàng),在表格中,除去物理化學(xué)都是的學(xué)生,剩下的都是一科為且最高等級(jí)為的學(xué)生,因?yàn)槎际堑膶W(xué)生最少人,所以一科為且最高等級(jí)為的學(xué)生最多為(人),C選項(xiàng)錯(cuò)誤;對(duì)于D選項(xiàng),物理化學(xué)都是的最多人,所以兩科只有一科等級(jí)為且最高等級(jí)為的學(xué)生最少(人),D選項(xiàng)正確.故選:D.【點(diǎn)睛】本題考查合情推理,考查推理能力,屬于中等題.7、D【解析】
根據(jù)題意,求出函數(shù)的導(dǎo)數(shù),由函數(shù)的導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系分析可得在上為增函數(shù),又由,分析可得答案.【詳解】解:根據(jù)題意,函數(shù),其導(dǎo)數(shù)函數(shù),則有在上恒成立,則在上為增函數(shù);又由,則;故選:.【點(diǎn)睛】本題考查函數(shù)的導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,涉及函數(shù)單調(diào)性的性質(zhì),屬于基礎(chǔ)題.8、A【解析】
先求出平移后的函數(shù)解析式,結(jié)合圖像的對(duì)稱性和得到A和.【詳解】因?yàn)殛P(guān)于軸對(duì)稱,所以,所以,的最小值是.,則,所以.【點(diǎn)睛】本題主要考查三角函數(shù)的圖像變換及性質(zhì).平移圖像時(shí)需注意x的系數(shù)和平移量之間的關(guān)系.9、A【解析】=,當(dāng)時(shí)時(shí),單調(diào)遞減,時(shí),單調(diào)遞增,且當(dāng),當(dāng),
當(dāng)時(shí),恒成立,時(shí),單調(diào)遞增且,方程R)有四個(gè)相異的實(shí)數(shù)根.令=則,,即.10、C【解析】
由余弦函數(shù)的單調(diào)性找出的等價(jià)條件為,再利用大角對(duì)大邊,結(jié)合正弦定理可判斷出“”是“”的充分必要條件.【詳解】余弦函數(shù)在區(qū)間上單調(diào)遞減,且,,由,可得,,由正弦定理可得.因此,“”是“”的充分必要條件.故選:C.【點(diǎn)睛】本題考查充分必要條件的判定,同時(shí)也考查了余弦函數(shù)的單調(diào)性、大角對(duì)大邊以及正弦定理的應(yīng)用,考查推理能力,屬于中等題.11、B【解析】
根據(jù)函數(shù)為偶函數(shù)排除,再計(jì)算排除得到答案.【詳解】定義域?yàn)椋?,函?shù)為偶函數(shù),排除,排除故選【點(diǎn)睛】本題考查了函數(shù)圖像,通過(guò)函數(shù)的單調(diào)性,奇偶性,特殊值排除選項(xiàng)是常用的技巧.12、B【解析】根據(jù)題意,確定函數(shù)的性質(zhì),再判斷哪一個(gè)圖像具有這些性質(zhì).由得是偶函數(shù),所以函數(shù)的圖象關(guān)于軸對(duì)稱,可知B,D符合;由得是周期為2的周期函數(shù),選項(xiàng)D的圖像的最小正周期是4,不符合,選項(xiàng)B的圖像的最小正周期是2,符合,故選B.二、填空題:本題共4小題,每小題5分,共20分。13、-2【解析】
根據(jù)向量坐標(biāo)運(yùn)算可求得,根據(jù)平行關(guān)系可構(gòu)造方程求得結(jié)果.【詳解】由題意得:,解得:本題正確結(jié)果:【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算,關(guān)鍵是能夠利用平行關(guān)系構(gòu)造出方程.14、【解析】
分兩種情況討論:(1)斜邊在BC上,設(shè),則,(2)若在若一條直角邊在上,設(shè),則,進(jìn)一步利用導(dǎo)數(shù)的應(yīng)用和三角函數(shù)關(guān)系式恒等變形和函數(shù)單調(diào)性即可求出最大值.【詳解】(1)斜邊在上,設(shè),則,則,,從而.當(dāng)時(shí),此時(shí),符合.(2)若一條直角邊在上,設(shè),則,則,,由知.,當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減,.當(dāng),即時(shí),最大.故答案為:.【點(diǎn)睛】此題考查實(shí)際問(wèn)題中導(dǎo)數(shù),三角函數(shù)和函數(shù)單調(diào)性的綜合應(yīng)用,注意分類討論把所有情況考慮完全,屬于一般性題目.15、【解析】
利用三角函數(shù)的輔助角公式進(jìn)行化簡(jiǎn),求出函數(shù)的解析式,結(jié)合三角函數(shù)的單調(diào)性進(jìn)行求解即可.【詳解】∵,則函數(shù)的最大值為2,周期,的最大值與最小正周期相同,,得,則,當(dāng)時(shí),,則當(dāng)時(shí),得,即函數(shù)在,上的單調(diào)遞增區(qū)間為,故答案為:.【點(diǎn)睛】本題考查三角函數(shù)的性質(zhì)、單調(diào)區(qū)間,利用輔助角公式求出函數(shù)的解析式是解決本題的關(guān)鍵,同時(shí)要注意單調(diào)區(qū)間為定義域的一個(gè)子區(qū)間.16、【解析】
利用橢圓的參數(shù)方程,將所求代數(shù)式的最值問(wèn)題轉(zhuǎn)化為求三角函數(shù)最值問(wèn)題,利用兩角和的正弦公式和三角函數(shù)的性質(zhì),以及求導(dǎo)數(shù)、單調(diào)性和極值,即可得到所求最小值.【詳解】解:設(shè)點(diǎn),,其中,,由,,,可設(shè),導(dǎo)數(shù)為,由,可得,可得或,由,,可得,即,可得,由可得函數(shù)遞減;由,可得函數(shù)遞增,可得時(shí),函數(shù)取得最小值,且為,則的最小值為1.故答案為:1.【點(diǎn)睛】本題考查橢圓參數(shù)方程的應(yīng)用,利用三角函數(shù)的恒等變換和導(dǎo)數(shù)法求函數(shù)最值的方法,考查化簡(jiǎn)變形能力和運(yùn)算能力,屬于難題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)證明見(jiàn)解析【解析】
(1)運(yùn)用絕對(duì)值不等式的性質(zhì),注意等號(hào)成立的條件,即可求得最小值,再運(yùn)用柯西不等式,即可得到最小值.(2)利用基本不等式即可得到結(jié)論,注意等號(hào)成立的條件.【詳解】(1)由題意,則函數(shù),又函數(shù)的最小值為,即,由柯西不等式得,當(dāng)且僅當(dāng)時(shí)取“=”.故.(2)由題意,利用基本不等式可得,,,(以上三式當(dāng)且僅當(dāng)時(shí)同時(shí)取“=”)由(1)知,,所以,將以上三式相加得即.【點(diǎn)睛】本題主要考查絕對(duì)值不等式、柯西不等式等基礎(chǔ)知識(shí),考查運(yùn)算能力,屬于中檔題.18、(1)見(jiàn)證明;(2)【解析】
(1)取的中點(diǎn),連.可證得,,于是可得平面,進(jìn)而可得結(jié)論成立.(2)運(yùn)用幾何法或向量法求解可得所求角的正弦值.【詳解】(1)證明:取的中點(diǎn),連.∵,∴.又,∴.在中,,∴.又,∴平面,又平面,∴.(2)解法1:取的中點(diǎn),連結(jié),∵,∴,又,∴.又由題意得為等邊三角形,∴,∵,∴平面.作,則有平面,∴就是直線與平面所成的角.設(shè),則,在等邊中,.又在中,,故.在中,由余弦定理得,∴,∴直線與平面所成角的正弦值為.解法2:由題意可得,建立如圖所示的空間直角坐標(biāo)系.不妨設(shè),則在直角三角形中,可得,作于,則有平面幾何知識(shí)可得,∴.又可得,.∴,.設(shè)平面的一個(gè)法向量為,由,得,令,則得.又,設(shè)直線與平面所成的角為,則.所以直線與平面所成角的正弦值為.【點(diǎn)睛】利用向量法求解直線和平面所成角時(shí),關(guān)鍵點(diǎn)是恰當(dāng)建立空間直角坐標(biāo)系,確定斜線的方向向量和平面的法向量.解題時(shí)通過(guò)平面的法向量和直線的方向向量來(lái)求,即求出斜線的方向向量與平面的法向量所夾的銳角或鈍角的補(bǔ)角,取其余角就是斜線與平面所成的角.求解時(shí)注意向量的夾角與線面角間的關(guān)系.19、(1);(2)【解析】
(1)利用二倍角公式求解即可,注意隱含條件.(2)利用(1)中的結(jié)論,結(jié)合正弦定理和同角三角函數(shù)的關(guān)系易得的值,又由求出的值,最后由正弦定理求出的值,根據(jù)三角形的面積公式即可計(jì)算得出.【詳解】(1)由已知可得,所以,因?yàn)樵阡J角中,,所以(2)因?yàn)椋?,因?yàn)槭卿J角三角形,所以,所以.由正弦定理可得:,所以,所以【點(diǎn)睛】此類問(wèn)題是高考的??碱}型,主要考查了正弦定理、三角函數(shù)以及
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024音樂(lè)制作方與影視制作方合作合同
- 2025年度地下管線改造打井工程承包施工合同范本4篇
- 2025版車(chē)輛抵押借款合同(含貸款利率保密條款)4篇
- 二零二五年度環(huán)境應(yīng)急預(yù)案編制與演練服務(wù)合同標(biāo)準(zhǔn)3篇
- 2025年度城市軌道交通線路運(yùn)營(yíng)管理合同4篇
- 二零二五年度攤位租賃合同解除通知合同:攤位租賃合同解除通知協(xié)議4篇
- 二零二五年度集資房屋買(mǎi)賣(mài)合同編制標(biāo)準(zhǔn)6篇
- 二零二五年度時(shí)尚美甲店員工服務(wù)協(xié)議3篇
- 二零二五年度鋁單板加工企業(yè)信用評(píng)價(jià)合同3篇
- 2025年集成墻板產(chǎn)品安全認(rèn)證與市場(chǎng)準(zhǔn)入合同3篇
- GB/T 37238-2018篡改(污損)文件鑒定技術(shù)規(guī)范
- 普通高中地理課程標(biāo)準(zhǔn)簡(jiǎn)介(湘教版)
- 河道治理工程監(jiān)理通知單、回復(fù)單范本
- 超分子化學(xué)簡(jiǎn)介課件
- 高二下學(xué)期英語(yǔ)閱讀提升練習(xí)(一)
- 易制爆化學(xué)品合法用途說(shuō)明
- 【PPT】壓力性損傷預(yù)防敷料選擇和剪裁技巧
- 大氣喜慶迎新元旦晚會(huì)PPT背景
- DB13(J)∕T 242-2019 鋼絲網(wǎng)架復(fù)合保溫板應(yīng)用技術(shù)規(guī)程
- 心電圖中的pan-tompkins算法介紹
- 羊絨性能對(duì)織物起球的影響
評(píng)論
0/150
提交評(píng)論