




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
*3垂徑定理第三章圓逐點(diǎn)學(xué)練本節(jié)小結(jié)作業(yè)提升學(xué)習(xí)目標(biāo)本節(jié)要點(diǎn)1學(xué)習(xí)流程2垂徑定理的推論知識點(diǎn)感悟新知1垂徑定理1.垂徑定理:垂直于弦的直徑平分弦,并且平分弦所對的兩條弧.特別提醒1.“垂直于弦的直徑”中的“直徑”,其實(shí)質(zhì)是:過圓心且垂直于弦的線段、直線均可.2.“兩條弧”是指弦所對的劣弧和優(yōu)弧或兩個半圓.感悟新知2.示例:如圖3-3-1,CD⊥AB
于點(diǎn)E,CD是⊙O
的直徑,那么可用幾何語言表述為感悟新知如圖3-3-2,弦CD
垂直于⊙O
的直徑AB,垂足為點(diǎn)H,且CD=2,BD=,則AB
的長為()A.2B.3C.4D.5例1B感悟新知解題秘方:構(gòu)造垂徑定理的基本圖形解題.把半徑、圓心到弦的垂線段、弦的一半構(gòu)建在一個直角三角形里是解題的關(guān)鍵.解:連接OD,如圖3-3-2.∵CD⊥AB,CD=2,∴CH=DH=.感悟新知在Rt△BHD
中,由勾股定理,得BH=1.設(shè)⊙O的半徑為r,在Rt△OHD
中,OH2+HD2=OD2,即(r-1)2+()2=r2,解得r=.∴AB=3.利用勾股定理列方程感悟新知1-1.[中考·瀘州]如圖,AB
是⊙O
的直徑,OD垂直于弦AC于點(diǎn)D,DO
的延長線交⊙O
于點(diǎn)E.若AC=4
,DE=4,則BC
的長是()A.1
B.
C.2D.4C感悟新知如圖3-3-3,在⊙O
中,AB
為⊙O的弦,C,D
是直線AB
上的兩點(diǎn),且AC=BD.求證:△OCD
為等腰三角形.例2感悟新知解題秘方:構(gòu)建垂徑定理的基本圖形結(jié)合線段垂直平分線的性質(zhì)證明.作垂直于弦的半徑(或直徑)或連半徑是常用的作輔助線的方法.感悟新知證明:過點(diǎn)O
作OM⊥AB,垂足為M,如圖3-3-3.∵OM⊥AB,∴
AM=BM.∵AC=BD,∴CM=DM.又∵OM⊥CD,∴OC=OD.∴△OCD
為等腰三角感悟新知2-1.如圖,已知在以點(diǎn)O
為圓心的兩個同心圓中,大圓的弦AB交小圓于點(diǎn)C,D.若大圓的半徑R=10,小圓的半徑r=8,且圓心O
到直線AB
的距離為6,求AC
的長.感悟新知知識點(diǎn)垂徑定理的推論感悟新知21.推論平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧.感悟新知2.示例如圖3-3-4,CD
是⊙O
的直徑,AB
是弦(非直徑),AB與CD
相交于點(diǎn)E,且AE=BE,那么CD
垂直于AB,并且AC
=CB,AD=DB
.可用幾何語言表述為︵︵︵︵感悟新知拓寬視野對于圓中的一條直線,如果具備下列五個條件中的任意兩個,那么一定具備其他三個:(1)過圓心;(2)垂直于弦;(3)平分弦(非直徑);(4)平分弦所對的劣??;(5)平分弦所對的優(yōu)弧.簡記為“知二推三”.感悟新知如圖3-3-5,AB,CD是⊙O
的弦,M,N
分別為AB,CD
的中點(diǎn),且∠
AMN=∠CNM.求證:AB=CD.例3解題秘方:緊扣弦的中點(diǎn)作符合垂徑定理推論的基本圖形,再結(jié)合全等三角形的判定和性質(zhì)進(jìn)行證明.感悟新知證明:如圖3-3-5,連接OM,ON,OA,OC.∵O為圓心,且M,N
分別為AB,CD
的中點(diǎn),∴AB=2AM,CD=2CN,OM⊥AB,ON⊥CD.∴∠OMA=∠ONC=90°.∵∠AMN=∠CNM,∴∠OMN=∠ONM.∴OM=ON.又∵
OA=OC,∴Rt△OAM≌Rt△OCN(HL).∴AM=CN.∴AB=CD.感悟新知3-1.如圖,⊙O
的弦AB=12,M
是AB
的中點(diǎn),且OM=2,則⊙O的半徑等于________.感悟新知如圖3-3-6,要把殘破的圓片復(fù)制完整.已知弧上的三點(diǎn)A,B,C,用尺規(guī)作圖找出ABC所在圓的圓心(保留作圖痕跡).解題秘方:緊扣垂徑定理的推論,利用垂直平分弦的直線經(jīng)過圓心來找圓心.例4︵感悟新知解:如圖3-3-6,連接AB,BC,分別作AB,BC的垂直平分線,兩條垂直平分線的交點(diǎn)即為所求圓的圓心.感悟新知4-1.一塊圓形宣傳標(biāo)志牌如圖所示,點(diǎn)A,B,C
在⊙O
上,CD
垂直平分AB
于點(diǎn)D.現(xiàn)測得AB=8dm,DC=2dm,則圓形標(biāo)志牌的半徑為_______.5dm感悟新知如圖3-3-7,一條公路的轉(zhuǎn)彎處是一段圓弧(AB),點(diǎn)O
是這段弧所在圓的圓心,點(diǎn)C
是AB的中點(diǎn),半徑OC
與AB相交于點(diǎn)D,AB=120m,CD=20m,求這段彎路所在圓的半徑.例5解題秘方:緊扣垂徑定理的推論,利用“平分弧,且經(jīng)過圓心”推出“垂直平分弦”,結(jié)合勾股定理求出半徑的長.︵︵感悟新知解:連接OB,如圖3-3-7.∵點(diǎn)C
是AB的中點(diǎn),∴
OC⊥AB,AD=BD=AB=60m.設(shè)OB=OC=rm,在Rt△OBD中,OB2=OD2+BD2,∴r2=(r-20)2+602,∴r=100,即這段彎路所在圓的半徑為1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 買賣集體老石器合同范本
- 付款合同范本含金額
- 代購代付款合同范例
- 加工合同范本叫
- led標(biāo)識維護(hù)合同范本
- 保險基金合同范本
- 個人電器購買合同范本
- 加油站活動合同范本
- 代用茶采購合同范本
- 保安解聘合同范本
- 2025安徽蕪湖市運(yùn)達(dá)軌道交通建設(shè)運(yùn)營限公司招聘129人高頻重點(diǎn)模擬試卷提升(共500題附帶答案詳解)
- 月度安全生產(chǎn)例會匯報(bào)材料
- 2025年春季學(xué)期學(xué)校團(tuán)委工作計(jì)劃(附團(tuán)委工作安排表)
- 2025公文寫作考試題庫(含參考答案)
- 2025年湖南科技職業(yè)學(xué)院高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- (正式版)SH∕T 3548-2024 石油化工涂料防腐蝕工程施工及驗(yàn)收規(guī)范
- 政府機(jī)關(guān)保安服務(wù)項(xiàng)目整體服務(wù)方案
- 小學(xué)科學(xué)冀人版六年級下冊全冊同步練習(xí)含答案
- 酒店前臺績效考核表
- 精神發(fā)育遲滯的護(hù)理查房
- 簡易施工方案模板范本
評論
0/150
提交評論