版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
山東省微山縣二中2024屆高一上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.已知函數(shù),則的大致圖像為()A. B.C. D.2.計算cos(-780°)的值是()A.- B.-C. D.3.已知函數(shù),且,則A. B.C. D.4.下列關(guān)系中正確個數(shù)是()①②③④A.1 B.2C.3 D.45.下列說法正確的是()A.向量與共線,與共線,則與也共線B.任意兩個相等的非零向量的始點與終點是一個平行四邊形的四個頂點C.向量與不共線,則與都是非零向量D.有相同起點的兩個非零向量不平行6.已知,,且,則的最小值為()A. B.C.2 D.17.設(shè)函數(shù),若關(guān)于方程有個不同實根,則實數(shù)的取值范圍為()A. B.C. D.8.函數(shù)y=的單調(diào)遞減區(qū)間是()A.(-∞,1) B.[1,+∞)C.(-∞,-1) D.(-1,+∞)9.已知為鈍角,且,則()A. B.C. D.10.如圖,,下列等式中成立的是()A. B.C. D.11.已知在正四面體ABCD中,E是AD的中點,P是棱AC上的一動點,BP+PE的最小值為,則該四面體內(nèi)切球的體積為()A.π B.πC.4π D.π12.設(shè),,則下面關(guān)系中正確的是()A B.C. D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.若xlog23=1,則9x+3﹣x=_____14.函數(shù)一段圖象如圖所示,這個函數(shù)的解析式為______________.15.筒車亦稱為“水轉(zhuǎn)筒車”,一種以流水為動力,取水灌田的工具,筒車發(fā)明于隋而盛于唐,距今已有1000多年的歷史.如圖,假設(shè)在水流量穩(wěn)定的情況下,一個半徑為3米的筒車按逆時針方向做每6分鐘轉(zhuǎn)一圈的勻速圓周運動,筒車的軸心O距離水面BC的高度為1.5米,設(shè)筒車上的某個盛水筒P的切始位置為點D(水面與筒車右側(cè)的交點),從此處開始計時,t分鐘時,該盛水筒距水面距離為,則___________16.函數(shù)的單調(diào)遞增區(qū)間為________________.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.如圖所示,在四棱錐中,底面是正方形,側(cè)棱底面,,是的中點,過點作交于點.(1)證明:平面;(2)證明:平面;(3)求三棱錐的體積.18.已知函數(shù)且.(1)求函數(shù)的定義域;(2)判斷的奇偶性并予以證明;(3)若0<a<1,解關(guān)于x的不等式.19.已知tanα<0,(1)若求的值;(2)若求tanα的值.20.已知,,且.(1)求的值;(2)求β.21.如圖所示,一塊形狀為四棱柱的木料,分別為的中點.(1)要經(jīng)過和將木料鋸開,在木料上底面內(nèi)應(yīng)怎樣畫線?請說明理由;(2)若底面是邊長為2菱形,,平面,且,求幾何體的體積.22.已知為的三個內(nèi)角,向量與向量共線,且角為銳角.(1)求角的大??;(2)求函數(shù)的值域.
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、B【解析】計算的值即可判斷得解.【詳解】解:由題得,所以排除選項A,D.,所以排除選項C.故選:B2、C【解析】直接利用誘導(dǎo)公式以及特殊角的三角函數(shù)求解即可【詳解】cos(-780°)=cos780°=cos60°=故選C【點睛】本題考查余弦函數(shù)的應(yīng)用,三角函數(shù)的化簡求值,考查計算能力3、A【解析】,,,,.故選:A.4、A【解析】根據(jù)集合的概念、數(shù)集的表示判斷【詳解】是有理數(shù),是實數(shù),不是正整數(shù),是無理數(shù),當(dāng)然不是整數(shù).只有①正確故選:A【點睛】本題考查元素與集合的關(guān)系,掌握常用數(shù)集的表示是解題關(guān)鍵5、C【解析】根據(jù)共線向量(即平行向量)定義即可求解.【詳解】解:對于A:可能是零向量,故選項A錯誤;對于B:兩個向量可能在同一條直線上,故選項B錯誤;對于C:因為與任何向量都是共線向量,所以選項C正確;對于D:平行向量可能在同一條直線上,故選項D錯誤故選:C.6、A【解析】由已知條件得出,再將代數(shù)式與相乘,展開后利用基本不等式可求得的最小值.【詳解】已知,且,,由基本不等式可得,當(dāng)且僅當(dāng)時,等號成立,因此,的最小值為.故選:A.【點睛】本題考查利用基本不等式求代數(shù)式的最值,考查的妙用,考查計算能力,屬于基礎(chǔ)題.7、B【解析】等價于,即或,轉(zhuǎn)化為與和圖象交點的個數(shù)為個,作出函數(shù)的圖象,數(shù)形結(jié)合即可求解【詳解】作出函數(shù)的圖象如下圖所示變形得,由此得或,方程只有兩根所以方程有三個不同實根,則,故選:B【點睛】易錯點點睛:本題的易錯點為函數(shù)的圖像無限接近直線,即方程只有兩根,另外難點在于方程的變形,即因式分解8、A【解析】令t=-x2+2x﹣1,則y,故本題即求函數(shù)t的增區(qū)間,再結(jié)合二次函數(shù)的性質(zhì)可得函數(shù)t的增區(qū)間【詳解】令t=-x2+2x﹣1,則y,故本題即求函數(shù)t的增區(qū)間,由二次函數(shù)的性質(zhì)可得函數(shù)t的增區(qū)間為(-∞,1),所以函數(shù)的單調(diào)遞減區(qū)間為(-∞,1).故答案為A【點睛】本題主要考查指數(shù)函數(shù)和二次函數(shù)的單調(diào)性,考查復(fù)合函數(shù)的單調(diào)性,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.9、C【解析】先求出,再利用和角的余弦公式計算求解.【詳解】∵為鈍角,且,∴,∴故選:C【點睛】本題主要考查同角的平方關(guān)系,考查和角的余弦公式的應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平.10、B【解析】本題首先可結(jié)合向量減法的三角形法則對已知條件中的進行化簡,化簡為然后化簡并代入即可得出答案【詳解】因為,所以,所以,即,故選B【點睛】本題考查的知識點是平面向量的基本定理,考查向量減法的三角形法則,考查數(shù)形結(jié)合思想與化歸思想,是簡單題11、D【解析】首先設(shè)正四面體的棱長為,將側(cè)面和沿邊展開成平面圖形,根據(jù)題意得到的最小值為,從而得到,根據(jù)等體積轉(zhuǎn)化得到內(nèi)切球半徑,再計算其體積即可.【詳解】設(shè)正四面體的棱長為,將側(cè)面和沿邊展開成平面圖形,如圖所示:則的最小值為,解得.如圖所示:為正四面體的高,,正四面體高.所以正四面體的體積.設(shè)正四面體內(nèi)切球的球心為,半徑為,如圖所示:則到正四面體四個面的距離相等,都等于,所以正四面體的體積,解得.所以內(nèi)切球的體積.故選:D12、D【解析】根據(jù)元素與集合關(guān)系,集合與集合的關(guān)系判斷即可得解.【詳解】解:因為,,所以,.故選:D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、【解析】由已知條件可得x=log32,即3x=2,再結(jié)合分?jǐn)?shù)指數(shù)冪的運算即可得解.【詳解】解:∵,∴x=log32,則3x=2,∴9x=4,,∴,故答案為:【點睛】本題考查了指數(shù)與對數(shù)形式的互化,重點考查了分?jǐn)?shù)指數(shù)冪的運算,屬基礎(chǔ)題.14、【解析】由圖象的最大值求出A,由周期求出ω,通過圖象經(jīng)過(,0),求出φ,從而得到函數(shù)的解析式【詳解】由函數(shù)的圖象可得A=2,T==4π,∴解得ω=∵圖象經(jīng)過(,0),∴可得:φ=2kπ,k∈Z,解得:φ=2kπ,k∈Z,取k=0∴φ,故答案為:y=2sin(x)15、【解析】根據(jù)圖象及所給條件確定振幅、周期、,再根據(jù)時求即可得解.【詳解】由題意知,,,,當(dāng)時,,,即,,所以,故答案為:16、【解析】函數(shù)由,復(fù)合而成,求出函數(shù)的定義域,根據(jù)復(fù)合函數(shù)的單調(diào)性即可得結(jié)果.【詳解】函數(shù)由,復(fù)合而成,單調(diào)遞減令,解得或,即函數(shù)的定義域為,由二次函數(shù)的性質(zhì)知在是減函數(shù),在上是增函數(shù),由復(fù)合函數(shù)的單調(diào)性判斷知函數(shù)的單調(diào)遞增區(qū)間,故答案為.【點睛】本題考查用復(fù)合函數(shù)的單調(diào)性求單調(diào)區(qū)間,此題外層是一對數(shù)函數(shù),故要先解出函數(shù)的定義域,在定義域上研究函數(shù)的單調(diào)區(qū)間,這是本題易失分點,切記!三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1)見解析;(2)見解析;(3).【解析】(1)連接交于點,連接,利用中位線定理得出∥,故平面;(2)由⊥底面,得,結(jié)合得平面,于是,結(jié)合得平面,故而,結(jié)合,即可得出平面;;(3)依題意,可得試題解析:(1)連接交于點,連接∵底面是正方形,∴點是的中點又為的中點,∴∥又平面,平面,∴∥平面.(2)∵⊥底面,平面,∴∵底面是正方形,∴.又,平面,平面,∴平面.又平面,∴∵,是的中點,∴.又平面,平面,,∴平面.而平面∴.又,且,又平面,平面,∴平面.(Ⅲ)∵是的中點,.【點睛】本題考查了線面平行的判定,線面垂直的判定與性質(zhì),棱錐的體積計算.正確運用定理是證明的關(guān)鍵.18、(1)(2)奇函數(shù).(3)【解析】(1)根據(jù)對數(shù)的真數(shù)應(yīng)大于0,列出不等式組可得函數(shù)的定義域;(2)函數(shù)為奇函數(shù),利用可得結(jié)論;(3)不等式等價于,利用對數(shù)函數(shù)的單調(diào)性得,解不等式即可.試題解析:(1)由題得,所以函數(shù)的定義域為;(2)函數(shù)為奇函數(shù).證明:由(1)知函數(shù)的定義域關(guān)于原點對稱,且,所以函數(shù)為奇函數(shù);(3)由可得,即,又0<a<1,所以,故,即,解得,所以原不等式的解集為.點睛:本題主要考查了對數(shù)函數(shù)的定義域,函數(shù)奇偶性的證明,以及指數(shù)函數(shù)、對數(shù)函數(shù)的不等式解法,注重對基礎(chǔ)的考查;要使對數(shù)函數(shù)有意義,需滿足真數(shù)部分大于0,函數(shù)奇偶性的證明即判斷和的關(guān)系,而對于指、對數(shù)類型的不等式主要是依據(jù)函數(shù)的單調(diào)性求解.19、(1);(2)或【解析】(1)利用同角三角函數(shù)的基本關(guān)系求得的值,可得的值,再利用誘導(dǎo)公式求得要求式子的值(2)利用同角三角函數(shù)的基本關(guān)系求得,由此求得的值【詳解】(1),,為第四象限角,,,(2),,,或【點睛】本題主要考查同角三角函數(shù)的基本關(guān)系,誘導(dǎo)公式,屬于基礎(chǔ)題20、(1);.【解析】(1)先根據(jù),且,求出,再求;(2)先根據(jù),,求出,再根據(jù)求解即可.【詳解】(1)因且,所以,所以.(2)因為,所以,又因為,所以,,所以.【點睛】三角函數(shù)求值有三類,(1)“給角求值”:一般所給出的角都是非特殊角,從表面上來看是很難的,但仔細(xì)觀察非特殊角與特殊角總有一定關(guān)系,解題時,要利用觀察得到的關(guān)系,結(jié)合公式轉(zhuǎn)化為特殊角并且消除非特殊角的三角函數(shù)而得解.(2)“給值求值”:給出某些角的三角函數(shù)式的值,求另外一些角的三角函數(shù)值,解題關(guān)鍵在于“變角”,使其角相同或具有某種關(guān)系.(3)“給值求角”:實質(zhì)是轉(zhuǎn)化為“給值求值”,先求角的某一函數(shù)值,再求角的范圍,確定角21、(1)見解析(2)3【解析】(1)根據(jù)面面平行的性質(zhì),兩個平行平面,被第三個平面所截,截得的交線互相平行,故得到就是應(yīng)畫的線;(2)幾何體是由三棱錐和四棱錐組成,分割成兩個棱錐求體積即可解析:(1)連接,則就是應(yīng)畫的線;事實上,連接,在四棱柱中,因為分別為的中點,所以,,所以平行四邊形,所以,又在四棱柱中,所以,所以點共面,又面,所以就是應(yīng)畫線.(2)幾何體是由三棱錐和四棱錐組成.因為底面是邊長為的菱形,,平面,連接,即為三棱錐的高,又,所以,連接,為四棱錐的高,又,所以,所以幾何體的體積為.22、(1);(2).【解析】(1)根據(jù)平行向量的坐標(biāo)關(guān)系即可得到(2﹣2sinA)(1+sinA)﹣(sinA+cosA)(sinA﹣cosA)=0,這樣即可解出tan2A,結(jié)合A為銳角,即可求出A;(2)由B+C便得C,從而得到,利用二倍角的余弦公式及兩角差的正余弦公式即可化簡原函數(shù)y=1+sin(B),由前面知0,從而可得到B的范圍,結(jié)合正弦函數(shù)的圖象即可得到的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 課題申報書:高等教育促進產(chǎn)教融合型城市建設(shè)的機制創(chuàng)新研究
- 上海杉達學(xué)院《數(shù)字產(chǎn)品研發(fā)與設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海農(nóng)林職業(yè)技術(shù)學(xué)院《經(jīng)濟效益審計》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海農(nóng)林職業(yè)技術(shù)學(xué)院《電化學(xué)原理及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海旅游高等??茖W(xué)校《醫(yī)學(xué)史》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海立信會計金融學(xué)院《康養(yǎng)建筑設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 上??萍即髮W(xué)《電化學(xué)及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海交通大學(xué)《機器人控制系統(tǒng)》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海建設(shè)管理職業(yè)技術(shù)學(xué)院《中級宏觀經(jīng)濟學(xué)(英語)》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海濟光職業(yè)技術(shù)學(xué)院《框架與應(yīng)用開發(fā)》2023-2024學(xué)年第一學(xué)期期末試卷
- 護理質(zhì)控輸液查對制度
- 2024三方物流園區(qū)租賃與運營管理合同3篇
- 【MOOC】例解宏觀經(jīng)濟統(tǒng)計學(xué)-江西財經(jīng)大學(xué) 中國大學(xué)慕課MOOC答案
- 《中國的土地政策》課件
- 【MOOC】電工學(xué)-西北工業(yè)大學(xué) 中國大學(xué)慕課MOOC答案
- 專題12 簡·愛-2024年中考語文復(fù)習(xí)文學(xué)名著必考篇目分層訓(xùn)練(原卷版)
- 【高考語文】2024年全國高考新課標(biāo)I卷-語文試題評講
- 客戶滿意度論文開題報告
- 2024-2025學(xué)年八年級上冊歷史期末復(fù)習(xí)選擇題(解題指導(dǎo)+專項練習(xí))原卷版
- 課桌椅人體工程學(xué)
- 中石油系統(tǒng)員工安全培訓(xùn)
評論
0/150
提交評論