新設(shè)計(jì)一輪復(fù)習(xí)數(shù)學(xué)(文)通用版課時(shí)跟蹤檢測(二)命題及其關(guān)系充分條件與必要條件_第1頁
新設(shè)計(jì)一輪復(fù)習(xí)數(shù)學(xué)(文)通用版課時(shí)跟蹤檢測(二)命題及其關(guān)系充分條件與必要條件_第2頁
新設(shè)計(jì)一輪復(fù)習(xí)數(shù)學(xué)(文)通用版課時(shí)跟蹤檢測(二)命題及其關(guān)系充分條件與必要條件_第3頁
新設(shè)計(jì)一輪復(fù)習(xí)數(shù)學(xué)(文)通用版課時(shí)跟蹤檢測(二)命題及其關(guān)系充分條件與必要條件_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

課時(shí)跟蹤檢測(二)命題及其關(guān)系、充分條件與必要條件1.已知命題p:“正數(shù)a的平方不等于0”,命題q:“若a不是正數(shù),則它的平方等于0”,則q是p的()A.逆命題 B.否命題C.逆否命題 D.否定解析:選B命題p:“正數(shù)a的平方不等于0”可寫成“若a是正數(shù),則它的平方不等于0”,從而q是p的否命題.2.命題“若x2+3x-4=0,則x=4”的逆否命題及其真假性為()A.“若x=4,則x2+3x-4=0”為真命題B.“若x≠4,則x2+3x-4≠0”為真命題C.“若x≠4,則x2+3x-4≠0”為假命題D.“若x=4,則x2+3x-4=0”為假命題解析:選C根據(jù)逆否命題的定義可以排除A、D,因?yàn)閤2+3x-4=0,所以x=-4或1,故原命題為假命題,即逆否命題為假命題.3.原命題為“若z1,z2互為共軛復(fù)數(shù),則|z1|=|z2|”,關(guān)于其逆命題,否命題,逆否命題真假性的判斷依次如下,正確的是()A.真,假,真 B.假,假,真C.真,真,假 D.假,假,假解析:選B當(dāng)z1,z2互為共軛復(fù)數(shù)時(shí),設(shè)z1=a+bi(a,b∈R),則z2=a-bi,則|z1|=|z2|=eq\r(a2+b2),所以原命題為真,故其逆否命題為真.取z1=1,z2=i,滿足|z1|=|z2|,但是z1,z2不互為共軛復(fù)數(shù),所以其逆命題為假,故其否命題也為假.4.(2018·北京高考)設(shè)a,b,c,d是非零實(shí)數(shù),則“ad=bc”是“a,b,c,d成等比數(shù)列”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件解析:選Ba,b,c,d是非零實(shí)數(shù),若a<0,d<0,b>0,c>0,且ad=bc,則a,b,c,d不成等比數(shù)列(可以假設(shè)a=-2,d=-3,b=2,c=3).若a,b,c,d成等比數(shù)列,則由等比數(shù)列的性質(zhì)可知ad=bc.所以“ad=bc”是“a,b,c,d成等比數(shù)列”的必要而不充分條件.5.已知命題α:如果x<3,那么x<5;命題β:如果x≥3,那么x≥5;命題γ:如果x≥5,那么x≥3.關(guān)于這三個(gè)命題之間的關(guān)系中,下列說法正確的是()①命題α是命題β的否命題,且命題γ是命題β的逆命題;②命題α是命題β的逆命題,且命題γ是命題β的否命題;③命題β是命題α的否命題,且命題γ是命題α的逆否命題.A.①③ B.②C.②③ D.①②③解析:選A本題考查命題的四種形式,逆命題是把原命題中的條件和結(jié)論互換,否命題是把原命題的條件和結(jié)論都加以否定,逆否命題是把原命題中的條件與結(jié)論先都否定然后互換所得,故①正確,②錯(cuò)誤,③正確.6.(2018·北京高考)設(shè)a,b均為單位向量,則“|a-3b|=|3a+b|”是“a⊥b”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件解析:選C由|a-3b|=|3a+b|,得(a-3b)2=(3a+b)2,即a2+9b2-6a·b=9a2+b2+6a·b.因?yàn)閍,b均為單位向量,所以a2=b2=1,所以a·b=0,能推出a⊥b.由a⊥b得|a-3b|=eq\r(10),|3a+b|=eq\r(10),能推出|a-3b|=|3a+b|,所以“|a-3b|=|3a+b|”是“a⊥b”的充分必要條件.7.如果x,y是實(shí)數(shù),那么“x≠y”是“cosx≠cosy”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件解析:選C設(shè)集合A={(x,y)|x≠y},B={(x,y)|cosx≠cosy},則A的補(bǔ)集C={(x,y)|x=y(tǒng)},B的補(bǔ)集D={(x,y)|cosx=cosy},顯然CD,所以BA.于是“x≠y”是“cosx≠cosy”的必要不充分條件.8.(2019·湘東五校聯(lián)考)“不等式x2-x+m>0在R上恒成立”的一個(gè)必要不充分條件是()A.m>eq\f(1,4) B.0<m<1C.m>0 D.m>1解析:選C若不等式x2-x+m>0在R上恒成立,則Δ=(-1)2-4m<0,解得m>eq\f(1,4),因此當(dāng)不等式x2-x+m>0在R上恒成立時(shí),必有m>0,但當(dāng)m>0時(shí),不一定推出不等式在R上恒成立,故所求的必要不充分條件可以是m>0.9.在△ABC中,“A=B”是“tanA=tanB”的________條件.解析:由A=B,得tanA=tanB,反之,若tanA=tanB,則A=B+kπ,k∈Z.∵0<A<π,0<B<π,∴A=B,故“A=B”是“tanA=tanB”的充要條件.答案:充要10.在命題“若m>-n,則m2>n2”的逆命題、否命題、逆否命題中,假命題的個(gè)數(shù)是________.解析:若m=2,n=3,則2>-3,但22<32,所以原命題為假命題,則逆否命題也為假命題,若m=-3,n=-2,則(-3)2>(-2)2,但-3<2,所以逆命題是假命題,則否命題也是假命題.故假命題的個(gè)數(shù)為3.答案:311.已知p(x):x2+2x-m>0,若p(1)是假命題,p(2)是真命題,則實(shí)數(shù)m的取值范圍為________.解析:因?yàn)閜(1)是假命題,所以1+2-m≤0,解得m≥3.又p(2)是真命題,所以4+4-m>0,解得m<8.故實(shí)數(shù)m的取值范圍為[3,8).答案:[3,8)12.(2019·齊魯名校調(diào)研)給出下列說法:①“若x+y=eq\f(π,2),則sinx=cosy”的逆命題是假命題;②“在△ABC中,sinB>sinC是B>C的充要條件”是真命題;③“a=1”是“直線x-ay=0與直線x+ay=0互相垂直”的充要條件;④命題“若x<-1,則x2-2x-3>0”的否命題為“若x≥-1,則x2-2x-3≤0”.以上說法正確的是________(填序號(hào)).解析:對(duì)于①,“若x+y=eq\f(π,2),則sinx=cosy”的逆命題是“若sinx=cosy,則x+y=eq\f(π,2)”,當(dāng)x=0,y=eq\f(3π,2)時(shí),有sinx=cosy成立,但x+y=eq\f(3π,2),故逆命題為假命題,①正確;對(duì)于②,在△ABC中,由正弦定理得sinB>sinC?b>c?B>C,②正確;對(duì)于③,“a=±1”是“直線x-ay=0與直線x+ay=0互相垂直”的充要條件,故③錯(cuò)誤;對(duì)于④,根據(jù)否命題的定義知④正確.答案:①②④13.寫出命題“已知a,b∈R,若關(guān)于x的不等式x2+ax+b≤0有非空解集,則a2≥4b”的逆命題、否命題、逆否命題,并判斷它們的真假.解:(1)逆命題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論