山東省濟(jì)南市部分區(qū)縣2024屆高考數(shù)學(xué)必刷試卷含解析_第1頁
山東省濟(jì)南市部分區(qū)縣2024屆高考數(shù)學(xué)必刷試卷含解析_第2頁
山東省濟(jì)南市部分區(qū)縣2024屆高考數(shù)學(xué)必刷試卷含解析_第3頁
山東省濟(jì)南市部分區(qū)縣2024屆高考數(shù)學(xué)必刷試卷含解析_第4頁
山東省濟(jì)南市部分區(qū)縣2024屆高考數(shù)學(xué)必刷試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山東省濟(jì)南市部分區(qū)縣2024屆高考數(shù)學(xué)必刷試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.將函數(shù)向左平移個(gè)單位,得到的圖象,則滿足()A.圖象關(guān)于點(diǎn)對(duì)稱,在區(qū)間上為增函數(shù)B.函數(shù)最大值為2,圖象關(guān)于點(diǎn)對(duì)稱C.圖象關(guān)于直線對(duì)稱,在上的最小值為1D.最小正周期為,在有兩個(gè)根2.已知直線:與圓:交于,兩點(diǎn),與平行的直線與圓交于,兩點(diǎn),且與的面積相等,給出下列直線:①,②,③,④.其中滿足條件的所有直線的編號(hào)有()A.①② B.①④ C.②③ D.①②④3.在復(fù)平面內(nèi),復(fù)數(shù)(為虛數(shù)單位)的共軛復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知函數(shù),若有2個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.5.已知的展開式中第項(xiàng)與第項(xiàng)的二項(xiàng)式系數(shù)相等,則奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為().A. B. C. D.6.已知函數(shù),存在實(shí)數(shù),使得,則的最大值為()A. B. C. D.7.已知雙曲線的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,則雙曲線的離心率為()A. B. C.3 D.48.“哥德巴赫猜想”是近代三大數(shù)學(xué)難題之一,其內(nèi)容是:一個(gè)大于2的偶數(shù)都可以寫成兩個(gè)質(zhì)數(shù)(素?cái)?shù))之和,也就是我們所謂的“1+1”問題.它是1742年由數(shù)學(xué)家哥德巴赫提出的,我國(guó)數(shù)學(xué)家潘承洞、王元、陳景潤(rùn)等在哥德巴赫猜想的證明中做出相當(dāng)好的成績(jī).若將6拆成兩個(gè)正整數(shù)的和,則拆成的和式中,加數(shù)全部為質(zhì)數(shù)的概率為()A. B. C. D.9.已知點(diǎn),若點(diǎn)在曲線上運(yùn)動(dòng),則面積的最小值為()A.6 B.3 C. D.10.已知等比數(shù)列的前項(xiàng)和為,若,且公比為2,則與的關(guān)系正確的是()A. B.C. D.11.已知函數(shù),若,則a的取值范圍為()A. B. C. D.12.已知點(diǎn)(m,8)在冪函數(shù)的圖象上,設(shè),則()A.b<a<c B.a(chǎn)<b<c C.b<c<a D.a(chǎn)<c<b二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,若,則的最小值為________.14.已知非零向量的夾角為,且,則______.15.如果橢圓的對(duì)稱軸為坐標(biāo)軸,短軸的一個(gè)端點(diǎn)與兩焦點(diǎn)組成一正三角形,焦點(diǎn)在x軸上,且=,那么橢圓的方程是.16.已知圓柱的上、下底面的中心分別為,,過直線的平面截該圓柱所得的截面是面積為8的正方形,則該圓柱的表面積為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)解不等式;(2)若函數(shù),若對(duì)于任意的,都存在,使得成立,求實(shí)數(shù)的取值范圍.18.(12分)如圖,在直角中,,,,點(diǎn)在線段上.(1)若,求的長(zhǎng);(2)點(diǎn)是線段上一點(diǎn),,且,求的值.19.(12分)已知函數(shù).(1)求不等式的解集;(2)設(shè)的最小值為,正數(shù),滿足,證明:.20.(12分)設(shè)前項(xiàng)積為的數(shù)列,(為常數(shù)),且是等差數(shù)列.(I)求的值及數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè)是數(shù)列的前項(xiàng)和,且,求的最小值.21.(12分)已知橢圓的焦點(diǎn)在軸上,且順次連接四個(gè)頂點(diǎn)恰好構(gòu)成了一個(gè)邊長(zhǎng)為且面積為的菱形.(1)求橢圓的方程;(2)設(shè),過橢圓右焦點(diǎn)的直線交于、兩點(diǎn),若對(duì)滿足條件的任意直線,不等式恒成立,求的最小值.22.(10分)在直角坐標(biāo)系中,圓C的參數(shù)方程(為參數(shù)),以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.(1)求圓C的極坐標(biāo)方程;(2)直線l的極坐標(biāo)方程是,射線與圓C的交點(diǎn)為O、P,與直線l的交點(diǎn)為Q,求線段的長(zhǎng).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

由輔助角公式化簡(jiǎn)三角函數(shù)式,結(jié)合三角函數(shù)圖象平移變換即可求得的解析式,結(jié)合正弦函數(shù)的圖象與性質(zhì)即可判斷各選項(xiàng).【詳解】函數(shù),則,將向左平移個(gè)單位,可得,由正弦函數(shù)的性質(zhì)可知,的對(duì)稱中心滿足,解得,所以A、B選項(xiàng)中的對(duì)稱中心錯(cuò)誤;對(duì)于C,的對(duì)稱軸滿足,解得,所以圖象關(guān)于直線對(duì)稱;當(dāng)時(shí),,由正弦函數(shù)性質(zhì)可知,所以在上的最小值為1,所以C正確;對(duì)于D,最小正周期為,當(dāng),,由正弦函數(shù)的圖象與性質(zhì)可知,時(shí)僅有一個(gè)解為,所以D錯(cuò)誤;綜上可知,正確的為C,故選:C.【點(diǎn)睛】本題考查了三角函數(shù)式的化簡(jiǎn),三角函數(shù)圖象平移變換,正弦函數(shù)圖象與性質(zhì)的綜合應(yīng)用,屬于中檔題.2、D【解析】

求出圓心到直線的距離為:,得出,根據(jù)條件得出到直線的距離或時(shí)滿足條件,即可得出答案.【詳解】解:由已知可得:圓:的圓心為(0,0),半徑為2,則圓心到直線的距離為:,∴,而,與的面積相等,∴或,即到直線的距離或時(shí)滿足條件,根據(jù)點(diǎn)到直線距離可知,①②④滿足條件.故選:D.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系的應(yīng)用,涉及點(diǎn)到直線的距離公式.3、D【解析】

將復(fù)數(shù)化簡(jiǎn)得,,即可得到對(duì)應(yīng)的點(diǎn)為,即可得出結(jié)果.【詳解】,對(duì)應(yīng)的點(diǎn)位于第四象限.故選:.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,考查共軛復(fù)數(shù)和復(fù)數(shù)與平面內(nèi)點(diǎn)的對(duì)應(yīng),難度容易.4、C【解析】

令,可得,要使得有兩個(gè)實(shí)數(shù)解,即和有兩個(gè)交點(diǎn),結(jié)合已知,即可求得答案.【詳解】令,可得,要使得有兩個(gè)實(shí)數(shù)解,即和有兩個(gè)交點(diǎn),,令,可得,當(dāng)時(shí),,函數(shù)在上單調(diào)遞增;當(dāng)時(shí),,函數(shù)在上單調(diào)遞減.當(dāng)時(shí),,若直線和有兩個(gè)交點(diǎn),則.實(shí)數(shù)的取值范圍是.故選:C.【點(diǎn)睛】本題主要考查了根據(jù)零點(diǎn)求參數(shù)范圍,解題關(guān)鍵是掌握根據(jù)零點(diǎn)個(gè)數(shù)求參數(shù)的解法和根據(jù)導(dǎo)數(shù)求單調(diào)性的步驟,考查了分析能力和計(jì)算能力,屬于中檔題.5、D【解析】因?yàn)榈恼归_式中第4項(xiàng)與第8項(xiàng)的二項(xiàng)式系數(shù)相等,所以,解得,所以二項(xiàng)式中奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為.考點(diǎn):二項(xiàng)式系數(shù),二項(xiàng)式系數(shù)和.6、A【解析】

畫出分段函數(shù)圖像,可得,由于,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究單調(diào)性,分析最值,即得解.【詳解】由于,,由于,令,,在↗,↘故.故選:A【點(diǎn)睛】本題考查了導(dǎo)數(shù)在函數(shù)性質(zhì)探究中的應(yīng)用,考查了學(xué)生數(shù)形結(jié)合,轉(zhuǎn)化劃歸,綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于較難題.7、A【解析】

根據(jù)題意,由拋物線的方程可得其焦點(diǎn)坐標(biāo),由此可得雙曲線的焦點(diǎn)坐標(biāo),由雙曲線的幾何性質(zhì)可得,解可得,由離心率公式計(jì)算可得答案.【詳解】根據(jù)題意,拋物線的焦點(diǎn)為,則雙曲線的焦點(diǎn)也為,即,則有,解可得,雙曲線的離心率.故選:A.【點(diǎn)睛】本題主要考查雙曲線、拋物線的標(biāo)準(zhǔn)方程,關(guān)鍵是求出拋物線焦點(diǎn)的坐標(biāo),意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.8、A【解析】

列出所有可以表示成和為6的正整數(shù)式子,找到加數(shù)全部為質(zhì)數(shù)的只有,利用古典概型求解即可.【詳解】6拆成兩個(gè)正整數(shù)的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加數(shù)全為質(zhì)數(shù)的有(3,3),根據(jù)古典概型知,所求概率為.故選:A.【點(diǎn)睛】本題主要考查了古典概型,基本事件,屬于容易題.9、B【解析】

求得直線的方程,畫出曲線表示的下半圓,結(jié)合圖象可得位于,結(jié)合點(diǎn)到直線的距離公式和兩點(diǎn)的距離公式,以及三角形的面積公式,可得所求最小值.【詳解】解:曲線表示以原點(diǎn)為圓心,1為半徑的下半圓(包括兩個(gè)端點(diǎn)),如圖,直線的方程為,可得,由圓與直線的位置關(guān)系知在時(shí),到直線距離最短,即為,則的面積的最小值為.故選:B.【點(diǎn)睛】本題考查三角形面積最值,解題關(guān)鍵是掌握直線與圓的位置關(guān)系,確定半圓上的點(diǎn)到直線距離的最小值,這由數(shù)形結(jié)合思想易得.10、C【解析】

在等比數(shù)列中,由即可表示之間的關(guān)系.【詳解】由題可知,等比數(shù)列中,且公比為2,故故選:C【點(diǎn)睛】本題考查等比數(shù)列求和公式的應(yīng)用,屬于基礎(chǔ)題.11、C【解析】

求出函數(shù)定義域,在定義域內(nèi)確定函數(shù)的單調(diào)性,利用單調(diào)性解不等式.【詳解】由得,在時(shí),是增函數(shù),是增函數(shù),是增函數(shù),∴是增函數(shù),∴由得,解得.故選:C.【點(diǎn)睛】本題考查函數(shù)的單調(diào)性,考查解函數(shù)不等式,解題關(guān)鍵是確定函數(shù)的單調(diào)性,解題時(shí)可先確定函數(shù)定義域,在定義域內(nèi)求解.12、B【解析】

先利用冪函數(shù)的定義求出m的值,得到冪函數(shù)解析式為f(x)=x3,在R上單調(diào)遞增,再利用冪函數(shù)f(x)的單調(diào)性,即可得到a,b,c的大小關(guān)系.【詳解】由冪函數(shù)的定義可知,m﹣1=1,∴m=2,∴點(diǎn)(2,8)在冪函數(shù)f(x)=xn上,∴2n=8,∴n=3,∴冪函數(shù)解析式為f(x)=x3,在R上單調(diào)遞增,∵,1<lnπ<3,n=3,∴,∴a<b<c,故選:B.【點(diǎn)睛】本題主要考查了冪函數(shù)的性質(zhì),以及利用函數(shù)的單調(diào)性比較函數(shù)值大小,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、40【解析】

設(shè)等比數(shù)列的公比為,根據(jù),可得,因?yàn)?,根?jù)均值不等式,即可求得答案.【詳解】設(shè)等比數(shù)列的公比為,,,等比數(shù)列的各項(xiàng)為正數(shù),,,當(dāng)且僅當(dāng),即時(shí),取得最小值.故答案為:.【點(diǎn)睛】本題主要考查了求數(shù)列值的最值問題,解題關(guān)鍵是掌握等比數(shù)列通項(xiàng)公式和靈活使用均值不等式,考查了分析能力和計(jì)算能力,屬于中檔題.14、1【解析】

由已知條件得出,可得,解之可得答案.【詳解】向量的夾角為,且,,可得:,

可得,

解得,

故答案為:1.【點(diǎn)睛】本題考查根據(jù)向量的數(shù)量積運(yùn)算求向量的模,關(guān)鍵在于將所求的向量的模平方,利用向量的數(shù)量積化簡(jiǎn)求解即可,屬于基礎(chǔ)題.15、【解析】

由題意可設(shè)橢圓方程為:∵短軸的一個(gè)端點(diǎn)與兩焦點(diǎn)組成一正三角形,焦點(diǎn)在軸上∴又,∴,∴橢圓的方程為,故答案為.考點(diǎn):橢圓的標(biāo)準(zhǔn)方程,解三角形以及解方程組的相關(guān)知識(shí).16、【解析】

設(shè)圓柱的軸截面的邊長(zhǎng)為x,可求得,代入圓柱的表面積公式,即得解【詳解】設(shè)圓柱的軸截面的邊長(zhǎng)為x,則由,得,∴.故答案為:【點(diǎn)睛】本題考查了圓柱的軸截面和表面積,考查了學(xué)生空間想象,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)將表示為分段函數(shù)的形式,由此求得不等式的解集.(2)利用絕對(duì)值三角不等式,求得的取值范圍,根據(jù)分段函數(shù)解析式,求得的取值范圍,結(jié)合題意列不等式,解不等式求得的取值范圍.【詳解】(1),由得或或;解得.故所求解集為.(2),即.由(1)知,所以,即.∴,∴.【點(diǎn)睛】本小題考查了絕對(duì)值不等式,絕對(duì)值三角不等式和函數(shù)最值問題,考查運(yùn)算求解能力,推理論證能力,化歸與轉(zhuǎn)化思想.18、(1)3;(2).【解析】

(1)在中,利用正弦定理即可得到答案;(2)由可得,在中,利用及余弦定理得,解方程組即可.【詳解】(1)在中,已知,,,由正弦定理,得,解得.(2)因?yàn)椋?,解?在中,由余弦定理得,,即,,故.【點(diǎn)睛】本題考查正余弦定理在解三角形中的應(yīng)用,考查學(xué)生的計(jì)算能力,是一道中檔題.19、(1)(2)證明見解析【解析】

(1)將表示為分段函數(shù)的形式,由此求得不等式的解集.(2)利用絕對(duì)值三角不等式求得的最小值,利用分析法,結(jié)合基本不等式,證得不等式成立.【詳解】(1),不等式,即或或,即有或或,所以所求不等式的解集為.(2),,因?yàn)?,,所以要證,只需證,即證,因?yàn)?,所以只要證,即證,即證,因?yàn)椋灾恍枳C,因?yàn)椋猿闪?,所?【點(diǎn)睛】本小題主要考查絕對(duì)值不等式的解法,考查分析法證明不等式,考查基本不等式的運(yùn)用,屬于中檔題.20、(Ⅰ),;(Ⅱ)【解析】

(Ⅰ)當(dāng)時(shí),由,得到,兩邊同除以,得到.再根據(jù)是等差數(shù)列.求解.(Ⅱ),根據(jù)前n項(xiàng)和的定義得到,令,研究其增減性即可.【詳解】(Ⅰ)當(dāng)時(shí),,所以,即,所以.因?yàn)槭堑炔顢?shù)列.,所以,,令,,,所以,即;(Ⅱ),所以,,令,所以,,即,所以數(shù)列是遞增數(shù)列,所以,即.【點(diǎn)睛】本題主要考查等差數(shù)列的定義,前n項(xiàng)和以及數(shù)列的增減性,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.21、(1)(2)【解析】

(1)由已知條件列出關(guān)于和的方程,并計(jì)算出和的值,jike得到橢圓的方程.(2)設(shè)出點(diǎn)和點(diǎn)坐標(biāo),運(yùn)用點(diǎn)坐標(biāo)計(jì)算出,分類討論直線的斜率存在和不存在兩種情況,求解出的最小值.【詳解】(1)由己知得:,解得,所以,橢圓的方程(2)設(shè),.當(dāng)直線垂直于軸時(shí),,且此時(shí),,當(dāng)直線不垂直于軸時(shí),設(shè)直線由,得.,.要使恒成立,只需,即最小值為【點(diǎn)睛】本題考查了求解橢圓方程以及直線與橢圓的位置關(guān)系,求解過程中需要分類討論直線的斜率存在和不存在兩種情況,并運(yùn)用根與系數(shù)的關(guān)系轉(zhuǎn)化為只

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論