寧夏吳忠市紅寺堡二中學2023年九年級數(shù)學第一學期期末復習檢測模擬試題含解析_第1頁
寧夏吳忠市紅寺堡二中學2023年九年級數(shù)學第一學期期末復習檢測模擬試題含解析_第2頁
寧夏吳忠市紅寺堡二中學2023年九年級數(shù)學第一學期期末復習檢測模擬試題含解析_第3頁
寧夏吳忠市紅寺堡二中學2023年九年級數(shù)學第一學期期末復習檢測模擬試題含解析_第4頁
寧夏吳忠市紅寺堡二中學2023年九年級數(shù)學第一學期期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

寧夏吳忠市紅寺堡二中學2023年九年級數(shù)學第一學期期末復習檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.在一個不透明的袋子里裝有6個顏色不同的球(除顏色不同外,質(zhì)地、大小均相同),其中個球為紅球,個球為白球,若從該袋子里任意摸出1個球,則摸出的球是白球的概率為()A. B. C. D.2.用配方法解方程x2﹣2x﹣5=0時,原方程應(yīng)變形為()A.(x+1)2=6 B.(x+2)2=9 C.(x﹣1)2=6 D.(x﹣2)2=93.在一個不透明紙箱中放有除了標注數(shù)字不同外,其他完全相同的3張卡片,上面分別標有數(shù)字1,2,3,從中任意摸出一張,放回攪勻后再任意摸出一張,兩次摸出的數(shù)字之和為奇數(shù)的概率為()A. B. C. D.4.拋物線y=ax2+bx+c圖像如圖所示,則一次函數(shù)y=-bx-4ac+b2與反比例函數(shù)在同一坐標系內(nèi)的圖像大致為()A. B. C. D.5.下列判斷正確的是()A.對角線互相垂直的平行四邊形是菱形 B.兩組鄰邊相等的四邊形是平行四邊形C.對角線相等的四邊形是矩形 D.有一個角是直角的平行四邊形是正方形6.如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,若∠BAC=20°,則∠ADC的度數(shù)是()A.90° B.100° C.110° D.130°7.下圖中,最能清楚地顯示每組數(shù)據(jù)在總數(shù)中所占百分比的統(tǒng)計圖是()A. B.C. D.8.如圖,⊙中,,則等于()A. B. C. D.9.一個不透明的袋子中裝有僅顏色不同的1個紅球和3個綠球,從袋子中隨機摸出一個小球,記下顏色后,不放回再隨機摸出一個小球,則兩次摸出的小球恰好是一個紅球和一個綠球的概率為()A. B. C. D.10.如圖,小正方形邊長均為1,則下列圖形中三角形(陰影部分)與△ABC相似的是A. B. C. D.11.方程x2+4x+4=0的根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.有一個實數(shù)根 D.沒有實數(shù)根12.矩形、菱形、正方形都一定具有的性質(zhì)是()A.鄰邊相等 B.四個角都是直角C.對角線相等 D.對角線互相平分二、填空題(每題4分,共24分)13.如圖,物理老師為同學們演示單擺運動,單擺左右擺動中,在的位置時俯角,在的位置時俯角.若,點比點高.則從點擺動到點經(jīng)過的路徑長為________.14.已知拋物線的對稱軸是y軸,且經(jīng)過點(1,3)、(2,6),則該拋物線的解析式為_____.15.如圖,AB∥CD∥EF,AF與BE相交于點G,且AG=2,GD=1,DF=5,那么的值等于________.16.二次函數(shù)圖象與軸交于點,則與圖象軸的另一個交點的坐標為__.17.反比例函數(shù)的圖象在每一象限內(nèi),y隨著x的增大而增大,則k的取值范圍是______.18.如圖,在平面直角坐標系中,拋物線與軸交于、兩點,與軸交于點,點是對稱軸右側(cè)拋物線上一點,且,則點的坐標為___________.三、解答題(共78分)19.(8分)如圖,拋物線y=ax2+bx+c經(jīng)過△ABC的三個頂點,與y軸相交于(0,),點A坐標為(-1,2),點B是點A關(guān)于y軸的對稱點,點C在x軸的正半軸上.(1)求該拋物線的函數(shù)解析式;(2)點F為線段AC上一動點,過點F作FE⊥x軸,F(xiàn)G⊥y軸,垂足分別為點E,G,當四邊形OEFG為正方形時,求出點F的坐標;(3)將(2)中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當點E和點C重合時停止運動,設(shè)平移的距離為t,正方形的邊EF與AC交于點M,DG所在的直線與AC交于點N,連接DM,是否存在這樣的t,使△DMN是等腰三角形?若存在,求t的值;若不存在,請說明理由.20.(8分)某單位800名職工積極參加向貧困地區(qū)學校捐書活動,為了解職工的捐書數(shù)量,采用隨機抽樣的方法抽取30名職工的捐書數(shù)量作為樣本,對他們的捐書數(shù)量進行統(tǒng)計,統(tǒng)計結(jié)果共有4本、5本、6本、7本、8本五類,分別用A、B、C、D、E表示,根據(jù)統(tǒng)計數(shù)據(jù)繪制成了如圖所示的不完整的條形統(tǒng)計圖,由圖中給出的信息解答下列問題:(1)補全條形統(tǒng)計圖;(2)求這30名職工捐書本數(shù)的平均數(shù),寫出眾數(shù)和中位數(shù);(3)估計該單位800名職工共捐書多少本?21.(8分)如圖,在矩形ABCD中,點E是AD上的一個動點,連接BE,作點A關(guān)于BE的對稱點F,且點F落在矩形ABCD的內(nèi)部,連接AF,BF,EF,過點F作GF⊥AF交AD于點G,設(shè).(1)求證:AE=GE;(2)當點F落在AC上時,用含n的代數(shù)式表示的值;(3)若AD=4AB,且以點F,C,G為頂點的三角形是直角三角形,求n的值.22.(10分)如圖,在△ABC中,sinB=,cosC=,AB=5,求△ABC的面積.23.(10分)已知3是一元二次方程x2-2x+a=0的一個根,求a的值和方程的另一個根.24.(10分)在一個不透明的盒子里裝有4個標有1,2,3,4的小球,它們形狀、大小完全相同.小明從盒子里隨機取出一個小球,記下球上的數(shù)字,作為點P的橫坐標x,放回然后再隨機取出一個小球,記下球上的數(shù)字,作為點P的縱坐標y.(1)畫樹狀圖或列表,寫出點P所有可能的坐標;(2)求出點P在以原點為圓心,5為半徑的圓上的概率.25.(12分)如圖,在菱形ABCD中,對角線AC與BD相交于點M,已知BC=5,點E在射線BC上,tan∠DCE=,點P從點B出發(fā),以每秒2個單位沿BD方向向終點D勻速運動,過點P作PQ⊥BD交射線BC于點O,以BP、BQ為鄰邊構(gòu)造?PBQF,設(shè)點P的運動時間為t(t>0).(1)tan∠DBE=;(2)求點F落在CD上時t的值;(3)求?PBQF與△BCD重疊部分面積S與t之間的函數(shù)關(guān)系式;(4)連接?PBQF的對角線BF,設(shè)BF與PQ交于點N,連接MN,當MN與△ABC的邊平行(不重合)或垂直時,直接寫出t的值.26.解下列方程(1);(2).

參考答案一、選擇題(每題4分,共48分)1、D【分析】讓白球的個數(shù)除以球的總個數(shù)即為所求的概率.【詳解】解:因為一共有6個球,白球有4個,

所以從布袋里任意摸出1個球,摸到白球的概率為:.

故選:D.【點睛】本題考查了概率公式,用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比.2、C【分析】配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方.【詳解】解:由原方程移項,得x2﹣2x=5,方程的兩邊同時加上一次項系數(shù)﹣2的一半的平方1,得x2﹣2x+1=1∴(x﹣1)2=1.故選:C.【點睛】此題考查利用配方法將一元二次方程變形,熟練掌握配方法的一般步驟是解題的關(guān)鍵.3、B【分析】先畫出樹狀圖得出所有等可能的情況的數(shù)量和所需要的情況的數(shù)量,再計算所需要情況的概率即得.【詳解】解:由題意可畫樹狀圖如下:根據(jù)樹狀圖可知:兩次摸球共有9種等可能情況,其中兩次摸出球所標數(shù)字之和為奇數(shù)的情況有4種,所以兩次摸出球所標數(shù)字之和為奇數(shù)的概率為:.【點睛】本題考查了概率的求法,能根據(jù)題意列出樹狀圖或列表是解題關(guān)鍵.4、D【詳解】解:由二次函數(shù)y=ax2+bx+c的圖象開口向上可知,a>0,因為圖象與y軸的交點在y軸的負半軸,所以c<0,根據(jù)函數(shù)圖象的對稱軸x=﹣>0,可知b<0根據(jù)函數(shù)圖象的頂點在x軸下方,可知∴4ac-b2<0有圖象可知f(1)<0∴a+b+c<0∵a>0,b<0,c<0,ac<0,4ac-b2<0,a+b+c<0∴一次函數(shù)y=-bx-4ac+b2的圖象過一、二、三象限,故可排除B、C;∴反比例函數(shù)的圖象在二、四象限,可排除A選項.故選D考點:函數(shù)圖像性質(zhì)5、A【分析】利用特殊四邊形的判定定理逐項判斷即可.【詳解】A、對角線互相垂直的平行四邊形是菱形,此項正確B、兩組對邊分別相等的四邊形是平行四邊形,此項錯誤C、對角線相等的平行四邊形是矩形,此項錯誤D、有一個角是直角的平行四邊形是矩形,此項錯誤故選:A.【點睛】本題考查了特殊四邊形(平行四邊形、菱形、矩形、正方形)的判定定理,掌握理解各判定定理是解題關(guān)鍵.6、C【解析】根據(jù)三角形內(nèi)角和定理以及圓內(nèi)接四邊形的性質(zhì)即可解決問題;【詳解】解:∵AB是直徑,

∴∠ACB=90°,

∵∠BAC=20°,

∴∠B=90°-20°=70°,

∵∠ADC+∠B=180°,

∴∠ADC=110°,

故選C.【點睛】本題考查圓內(nèi)接四邊形的性質(zhì)、三角形的內(nèi)角和定理、圓周角定理等知識,解題的關(guān)鍵是熟練掌握基本知識.7、A【分析】根據(jù)統(tǒng)計圖的特點進行分析可得:扇形統(tǒng)計圖表示的是部分在總體中所占的百分比,但一般不能直接從圖中得到具體的數(shù)據(jù);折線統(tǒng)計圖表示的是事物的變化情況;條形統(tǒng)計圖能清楚地表示出每個項目的具體數(shù)目.【詳解】解:在進行數(shù)據(jù)描述時,要顯示部分在總體中所占的百分比,應(yīng)采用扇形統(tǒng)計圖.

故選:A.【點睛】本題考查統(tǒng)計圖的選擇,解決本題的關(guān)鍵是明確:扇形統(tǒng)計圖表示的是部分在總體中所占的百分比,但一般不能直接從圖中得到具體的數(shù)據(jù);折線統(tǒng)計圖表示的是事物的變化情況;條形統(tǒng)計圖能清楚地表示出每個項目的具體數(shù)目;頻率分布直方圖,清楚顯示在各個不同區(qū)間內(nèi)取值,各組頻率分布情況,易于顯示各組之間頻率的差別.8、C【分析】直接根據(jù)圓周角定理解答即可.【詳解】解:∵∠ABC與∠AOC是一條弧所對的圓周角與圓心角,∠ABC=45°,

∴∠AOC=2∠ABC=2×45°=90°.

故選:C.【點睛】本題考查的是圓周角定理,即在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.9、A【分析】首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩次摸出的小球恰好是一個紅球和一個綠球的情況,再利用概率公式即可求得答案.【詳解】畫樹狀圖為:共有12種等可能的結(jié)果數(shù),其中兩次摸出的小球恰好是一個紅球和一個綠球的結(jié)果數(shù)為6,所以兩次摸出的小球恰好是一個紅球和一個綠球的概率==.故選A.【點睛】此題考查列表法與樹狀圖法,解題關(guān)鍵在于根據(jù)題意畫出樹狀圖.10、B【分析】根據(jù)網(wǎng)格的特點求出三角形的三邊,再根據(jù)相似三角形的判定定理即可求解.【詳解】已知給出的三角形的各邊AB、CB、AC分別為、2、、只有選項B的各邊為1、、與它的各邊對應(yīng)成比例.故選B.【點晴】此題主要考查相似三角形的判定,解題的關(guān)鍵是熟知相似三角形的判定定理.11、B【分析】判斷上述方程的根的情況,只要看根的判別式△=b2﹣4ac的值的符號就可以了.【詳解】解:∵△=b2﹣4ac=16﹣16=0∴方程有兩個相等的實數(shù)根.故選:B.【點睛】本題考查了一元二次方程根的判別式的應(yīng)用.總結(jié):一元二次方程根的情況與判別式△的關(guān)系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.12、D【解析】矩形、菱形、正方形都是平行四邊形,所以一定都具有的性質(zhì)是平行四邊形的性質(zhì),即對角線互相平分.故選D.二、填空題(每題4分,共24分)13、【分析】如圖,過點A作AP⊥OC于點P,過點B作BQ⊥OC于點Q,由題意可得∠AOP=60°,∠BOQ=30°,進而得∠AOB=90°,設(shè)OA=OB=x,分別在Rt△AOP和Rt△BOQ中,利用解直角三角形的知識用含x的代數(shù)式表示出OP和OQ,從而可得關(guān)于x的方程,解方程即可求出x,然后再利用弧長公式求解即可.【詳解】解:如圖,過點A作AP⊥OC于點P,過點B作BQ⊥OC于點Q,∵∠EOA=30°,∠FOB=60°,且OC⊥EF,∴∠AOP=60°,∠BOQ=30°,∴∠AOB=90°,設(shè)OA=OB=x,則在Rt△AOP中,OP=OAcos∠AOP=x,在Rt△BOQ中,OQ=OBcos∠BOQ=x,由PQ=OQ﹣OP可得:x﹣x=7,解得:x=7+7cm,則從點A擺動到點B經(jīng)過的路徑長為cm,故答案為:.【點睛】本題考查了解直角三角形的應(yīng)用和弧長公式的計算,屬于??碱}型,正確理解題意、熟練掌握解直角三角形的知識是解題的關(guān)鍵.14、y=x1+1【分析】根據(jù)拋物線的對稱軸是y軸,得到b=0,設(shè)出適當?shù)谋磉_式,把點(1,3)、(1,6)代入設(shè)出的表達式中,求出a、c的值,即可確定出拋物線的表達式.【詳解】∵拋物線的對稱軸是y軸,∴設(shè)此拋物線的表達式是y=ax1+c,把點(1,3)、(1,6)代入得:,解得:a=1,c=1,則此拋物線的表達式是y=x1+1,故答案為:y=x1+1.【點睛】本題考查代定系數(shù)法求函數(shù)的解析式,根據(jù)拋物線的對稱軸是y軸,得到b=0,再設(shè)拋物線的表達式是y=ax1+c是解題的關(guān)鍵.15、【詳解】∵AB∥CD∥EF,∴,故答案為.16、【分析】確定函數(shù)的對稱軸為:,即可求解.【詳解】解:函數(shù)的對稱軸為:,故另外一個交點的坐標為,故答案為.【點睛】本題考查的是拋物線與軸的交點和函數(shù)圖象上點的坐標特征,熟練掌握二次函數(shù)與坐標軸的交點、二次函數(shù)的對稱軸是解題的關(guān)鍵.17、【分析】利用反比例函數(shù)圖象的性質(zhì)即可得.【詳解】由反比例函數(shù)圖象的性質(zhì)得:解得:.【點睛】本題考查了反比例函數(shù)圖象的性質(zhì),對于反比例函數(shù)有:(1)當時,函數(shù)圖象位于第一、三象限,且在每一象限內(nèi),y隨x的增大而減??;(2)當時,函數(shù)圖象位于第二、四象限,且在每一象限內(nèi),y隨x的增大而增大.18、【分析】根據(jù)已知條件,需要構(gòu)造直角三角形,過D做DH⊥CR于點H,用含字母的代數(shù)式表示出PH、RH,即可求解.【詳解】解:過點D作DQ⊥x軸于Q,交CB延長線于R,作DH⊥CR于H,過R做RF⊥y軸于F,∵拋物線與軸交于、兩點,與軸交于點,∴A(1,0),B(2,0)C(0,2)∴直線BC的解析式為y=-x+2設(shè)點D坐標為(m,m2-3m+2),R(m,-m+2),∴DR=m2-3m+2-(-m+2)=m2-2m∵OA=OB=2∴∠CAO=ACO=45°=∠QBR=∠RDH,∴CR=,∵經(jīng)檢驗是方程的解.故答案為:【點睛】本題考查了函數(shù)性質(zhì)和勾股定理逆定理的應(yīng)用還有銳角三角函數(shù)值的應(yīng)用,本題比較復雜,先根據(jù)題意構(gòu)造直角三角形.三、解答題(共78分)19、(1)y=﹣x2+;(2)(1,1);(3)當△DMN是等腰三角形時,t的值為,3﹣或1.【解析】試題分析:(1)易得拋物線的頂點為(0,),然后只需運用待定系數(shù)法,就可求出拋物線的函數(shù)關(guān)系表達式;(2)①當點F在第一象限時,如圖1,可求出點C的坐標,直線AC的解析式,設(shè)正方形OEFG的邊長為p,則F(p,p),代入直線AC的解析式,就可求出點F的坐標;②當點F在第二象限時,同理可求出點F的坐標,此時點F不在線段AC上,故舍去;(3)過點M作MH⊥DN于H,如圖2,由題可得0≤t≤2.然后只需用t的式子表示DN、DM2、MN2,分三種情況(①DN=DM,②ND=NM,③MN=MD)討論就可解決問題.試題解析:(1)∵點B是點A關(guān)于y軸的對稱點,∴拋物線的對稱軸為y軸,∴拋物線的頂點為(0,),故拋物線的解析式可設(shè)為y=ax2+.∵A(﹣1,2)在拋物線y=ax2+上,∴a+=2,解得a=﹣,∴拋物線的函數(shù)關(guān)系表達式為y=﹣x2+;(2)①當點F在第一象限時,如圖1,令y=0得,﹣x2+=0,解得:x1=3,x2=﹣3,∴點C的坐標為(3,0).設(shè)直線AC的解析式為y=mx+n,則有,解得,∴直線AC的解析式為y=﹣x+.設(shè)正方形OEFG的邊長為p,則F(p,p).∵點F(p,p)在直線y=﹣x+上,∴﹣p+=p,解得p=1,∴點F的坐標為(1,1).②當點F在第二象限時,同理可得:點F的坐標為(﹣3,3),此時點F不在線段AC上,故舍去.綜上所述:點F的坐標為(1,1);(3)過點M作MH⊥DN于H,如圖2,則OD=t,OE=t+1.∵點E和點C重合時停止運動,∴0≤t≤2.當x=t時,y=﹣t+,則N(t,﹣t+),DN=﹣t+.當x=t+1時,y=﹣(t+1)+=﹣t+1,則M(t+1,﹣t+1),ME=﹣t+1.在Rt△DEM中,DM2=12+(﹣t+1)2=t2﹣t+2.在Rt△NHM中,MH=1,NH=(﹣t+)﹣(﹣t+1)=,∴MN2=12+()2=.①當DN=DM時,(﹣t+)2=t2﹣t+2,解得t=;②當ND=NM時,﹣t+=,解得t=3﹣;③當MN=MD時,=t2﹣t+2,解得t1=1,t2=3.∵0≤t≤2,∴t=1.綜上所述:當△DMN是等腰三角形時,t的值為,3﹣或1.考點:二次函數(shù)綜合題.20、(1)補全圖形見解析;(2)平均數(shù)是6本,眾數(shù)是6本,中位數(shù)是6本.(3)該單位800名職工共捐書有4800本.【分析】(1)根據(jù)總數(shù)和統(tǒng)計數(shù)據(jù)求解即可;(2)根據(jù)平均數(shù),眾數(shù)和中位數(shù)定義公式求解即可;(3)根據(jù)已知平均數(shù)乘以員工總數(shù)求解即可.【詳解】解:(1)D組人數(shù)=30﹣4﹣6﹣9﹣3=8人,補圖如下:.(2)平均數(shù)是:=6(本),眾數(shù)是6本,中位數(shù)是6本.(3)∵平均數(shù)是6本,∴該單位800名職工共捐書有6×800=4800本.【點睛】本題主要考查了數(shù)據(jù)統(tǒng)計中的平均數(shù),眾數(shù)和中位數(shù)的問題,熟練掌握其定義與計算公式是解答關(guān)鍵.21、(1)證明見解析;(2);(3)n=2或.【分析】(1)因為GF⊥AF,由對稱易得AE=EF,則由直角三角形的兩個銳角的和為90度,且等邊對等角,即可證明E是AG的中點;(2)可設(shè)AE=a,則AD=na,即需要用n或a表示出AB,由BE⊥AF和∠BAE==∠D=90°,可證明△ABE~△DAC,則,因為AB=DC,且DA,AE已知表示出來了,所以可求出AB,即可解答;(3)求以點F,C,G為頂點的三角形是直角三角形時的n,需要分類討論,一般分三個,∠FCG=90°,∠CFG=90°,∠CGF=90°;根據(jù)點F在矩形ABCD的內(nèi)部就可排除∠FCG=90°,所以就以∠CFG=90°和∠CGF=90°進行分析解答.【詳解】(1)證明:由對稱得AE=FE,∴∠EAF=∠EFA,∵GF⊥AE,∴∠EAF+∠FGA=∠EFA+∠EFG=90°,∴∠FGA=∠EFG,∴EG=EF,∴AE=EG.(2)解:設(shè)AE=a,則AD=na,當點F落在AC上時(如圖1),由對稱得BE⊥AF,∴∠ABE+∠BAC=90°,∵∠DAC+∠BAC=90°,∴∠ABE=∠DAC,又∵∠BAE=∠D=90°,∴△ABE~△DAC,∴∵AB=DC,∴AB2=AD·AE=na·a=na2,∵AB>0,∴AB=,∴∴.(3)解:設(shè)AE=a,則AD=na,由AD=1AB,則AB=.當點F落在線段BC上時(如圖2),EF=AE=AB=a,此時,∴n=1,∴當點F落在矩形外部時,n>1.∵點F落在矩形的內(nèi)部,點G在AD上,∴∠FCG<∠BCD,∴∠FCG<90°,若∠CFG=90°,則點F落在AC上,由(2)得=,∴n=2.若∠CGF=90°(如圖3),則∠CGD+∠AGF=90°,∵∠FAG+∠AGF=90°,∴∠CGD=∠FAG=∠ABE,∵∠BAE=∠D=90°,∴△ABE~△DGC,∴,∴AB·DC=DG·AE,即.解得n=或n=<1(不合題意,舍去),∴當n=2或時,以點F,C,G為頂點的三角形是直角三角形.考點:矩形的性質(zhì);解直角三角形的應(yīng)用;相似三角形的判定與性質(zhì);分類討論;壓軸題.22、【分析】過A作AD⊥BC,根據(jù)三角函數(shù)和三角形面積公式解答即可.【詳解】過A作AD⊥BC.在△ABD中,∵sinB=,AB=5,∴AD=3,BD=1.在△ADC中,∵cosC=,∴∠C=15°,∴DC=AD=3,∴△ABC的面積=.【點睛】本題考查了解直角三角形,關(guān)鍵是根據(jù)三角函數(shù)和三角形面積公式解答.23、a=-3;另一個根為-1.【分析】根據(jù)一元二次方程的解的定義把x=3代入x2-2x+a=0可求出a的值,然后把a的值代入方程得到x2-2x-3=0,再利用因式分解法解方程即可得到方程的另一根.【詳解】解:設(shè)方程的另一個根為m,則解得:∴方程的另一個根為∴a=-13=-3.【點睛】本題主要考查一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.又因為只含有一個未知數(shù)的方程的解也叫做這個方程的根,所以,一元二次方程的解也稱為一元二次方程的根.24、(1)列表見解析,P所有可能的坐標有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4);(2)【分析】(1)用列表法列舉出所有可能出現(xiàn)的情況,注意每一種情況出現(xiàn)的可能性是均等的,(2)點P在以原點為圓心,5為半徑的圓上的結(jié)果有2個,即(3,4),(4,3),由概率公式即可得出答案.【詳解】(1)由列表法列舉所有可能出現(xiàn)的情況:因此點P所有可能的坐標有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16種.(2)點P在以原點為圓心,5為半徑的圓上的結(jié)果有2個,即(3,4),(4,3),∴點P在以原點為圓心,5為半徑的圓上的概率為.【點睛】本題考查了列表法或樹狀圖法求等可能事件發(fā)生的概率,利用這種方法注意每一種情況出現(xiàn)的可能性是均等的.25、(1);(1)t=;(3)見解析;(4)t的值為或或或1.【分析】(1)如圖1中,作DH⊥BE于H.解直角三角形求出BH,DH即可解決問題.(1)如圖1中,由PF∥CB,可得,由此構(gòu)建方程即可解決問題.(3)分三種情形:如圖3-1中,當時,重疊部分是平行四邊形PBQF.如圖3-1中,當時,重疊部分是五邊形PBQRT.如圖3-3中,當1<t≤1時,重疊部分是四邊形PBCT,分別求解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論