不等式基本性質教學設計_第1頁
不等式基本性質教學設計_第2頁
不等式基本性質教學設計_第3頁
不等式基本性質教學設計_第4頁
不等式基本性質教學設計_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

不等式基本性質教學設計作為一名專為他人授業(yè)解惑的人民教師,時常要開展教學設計的準備工作,教學設計把教學各要素看成一個系統(tǒng),分析教學問題和需求,確立解決的程序綱要,使教學效果最優(yōu)化。寫教學設計需要注意哪些格式呢?以下是小編精心整理的不等式基本性質教學設計,歡迎大家分享。不等式基本性質教學設計1一、教材分析1、本節(jié)課的地位、作用和意義基本不等式又稱為均值不等式,選自普遍高中課程標準實驗教科書(北京師范大學出版社出版)必修5,第3章第3節(jié)內容。學生在初中學習了完全平方公式、圓、初步認識了不等式,同時,在本章前面兩節(jié)學習了比較大小、一元二次不等式等,這些給本節(jié)課提供了堅實的基礎;基本不等式是后面基本不等式與最大(小)值的基礎,在高中數(shù)學中有著比較重要的地位,在工業(yè)生產等有比較廣的實際應用。2、本節(jié)課的教學重點和難點我通過解讀新課標和分析教材,認為:重點:通過對新課程標準的解讀,教材內容的解析,我認為結果固然重要,但數(shù)學學習過程更重要,它有利于培養(yǎng)學生的數(shù)學思維和探究能力,所以均值不等式的推導是本節(jié)課的重點之一;再者,均值不等式有比較廣的應用,需重點掌握,而掌握均值不等式,關鍵是對不等式成立條件的準確理解,因此,均值不等式以及其成立的條件也是教學重點。突出重點的方法:我將采用①用分組討論,多媒體展示、引導啟發(fā)法來突出均值不等式的推導;用重復法(在課堂的每一環(huán)節(jié),以各種方式進行強調均值不等式和其成立的條件),變式教學來突出均值不等式及其成立的條件。難點:很多同學對均值不等式成立的條件的認識不深刻,在應用時候常常出錯誤,所以,均值不等式成立的條件是本節(jié)課的難點。突破難點的'方法:我將采用用重復法(在課堂的每一環(huán)節(jié),以各種方式進行強調均值不等式和其成立的條件),變式教學等等來突破均值不等式成立的條件這個難點。二、教學目標分析1、知識與技能目標(2)理解的幾何意義。(3)能3分鐘內寫出基本不等式,并說明其成立的條件,準確率為95%2、過程方法與能力目標(1)探索并了解均值不等式的證明過程。(2)體會均值不等式的證明方法。3、情感、態(tài)度、價值觀目標(1)通過探索均值不等式的證明過程,培養(yǎng)探索、研究精神。(2)通過對均值不等式成立的條件的分析,養(yǎng)成嚴謹?shù)目茖W態(tài)度,勇于提出問題、分析問題的習慣?!疤骄俊被静坏仁降淖C明(1)【三維目標】:一、知識與技能1.探索并了解基本不等式的證明過程,體會證明不等式的基本思想方法;2.會用基本不等式解決簡單的最大(?。┲祮栴};二、過程與方法三、情感、態(tài)度與價值觀1.通過本節(jié)的學習,體會數(shù)學來源于生活,提高學習數(shù)學的興趣【教學重點與難點】:【學法與教學用具】:2.教學用具:直角板、圓規(guī)、投影儀(多媒體教室)【授課類型】:新授課【課時安排】:1課時【教學思路】:一、創(chuàng)設情景,揭示課題1.提問:與哪個大?2.基本不等式的幾何背景:如圖是在北京召開的第24界國際數(shù)學家大會的會標,會標是根據(jù)中國古代數(shù)學家趙爽的弦圖設計的,顏色的明暗使它看上去象一個風車,代表中國人民熱情好客。你能在這個圖案中找出一些相等關系或不等關系嗎?(教師引導學生從面積的關系去找相等關系或不等關系)。二、研探新知重要不等式:一般地,對于任意實數(shù)、,我們有,當且僅當時,等號成立。證明:所以不等式基本性質教學設計2一、教學設計理念:這節(jié)課的目標定位分為三個層面:本節(jié)課我設計了五個環(huán)節(jié):①變教學生學會知識為指導學生會學知識;導入新課師同學們能在這個圖中找出一些相等關系或不等關系嗎?如何找??【三維目標】:一、知識與技能二、過程與方法本節(jié)課是基本不等式應用舉例的延伸。整堂課要圍繞如何引導學生分析題意、設未知量、找出數(shù)量關系進行求解這個中心。三、情感、態(tài)度與價值觀1.引發(fā)學生學習和使用數(shù)學知識的興趣,發(fā)展創(chuàng)新精神,培養(yǎng)實事求是、理論與實際相結合的科學態(tài)度和科學道德?!救S目標】:一、知識與技能二、過程與方法三、情感、態(tài)度與價值觀1.通過本節(jié)的學習,體會數(shù)學來源于生活,提高學習數(shù)學的興趣二、重點、難點解讀三、知識點精析一、教學目標1.知識與技能探究基本不等式的證明過程,初步理解基本不等式2.過程與方法通過對基本不等式的不同角度的探究,滲透數(shù)形結合及轉化的數(shù)學思想.3.情感、態(tài)度與價值觀:三、教學資源普通高中數(shù)學課程標準(實驗)人教a版教材必修5中學數(shù)學周刊20xx年第10期百度四、教學方法與手段啟發(fā)學生探究,多媒體輔助教學五、教學過程(一)創(chuàng)設情境:你能在這個圖中找出一些相等關系或不等關系嗎?設計意圖:創(chuàng)設問題情境,為問題的引出做鋪墊(二)新知探究:圖1將風車抽象成圖2當直角三角形變?yōu)榈妊苯侨切?圖2即時,正方形efgh縮為一個點,這時有2.過程與方法:通過實例探究抽象基本不等式;【教學重點】應用數(shù)形結合的思想理解不等式,并從不同角度探索不等式的證明過程;【教學難點】基本不等式等號成立條件【教學過程】1.課題導入基本不等式的幾何背景:教師引導學生從面積的關系去找相等關系或不等關系2.講授新課1.探究圖形中的不等關系將圖中的“風車”抽象成如圖,在正方形abcd中右個全等的直角三角形。設直角三角形的兩條直角邊長為a,b那么正方形的.邊長為。這樣,4個直角三角形的面積的和是2ab,正方形的面積為。由于4個直角三角形的面積小于正方形的面積,我們就得到了一個不等式:。當直角三角形變?yōu)榈妊苯侨切?,即a=b時,正方形efgh縮為一個點,這時有。2.得到結論:一般的,如果3.思考證明:你能給出它的證明嗎?不等式基本性質教學設計3知識與技能:理解并掌握不等式的三個性質,能運用性質,用不等號連接某些代數(shù)式,進行不等式的變形。過程與方法:經(jīng)歷自主學習,小組交流合作學習,以及課堂上的成果,培養(yǎng)學生自主分析問題,解決問題的能力,養(yǎng)成與他人交流,共同學習,共同進步的學習方法。情感態(tài)度與價值觀:在自主分析,交流合作,成果的活動中,感受學習的樂趣,體會與人合作的快樂。教學難點:正確運用不等式的性質。教學重點:理解并掌握不等式的性質3。教學過程:一、創(chuàng)設情境引入新課利用一臺平衡的天平提出問題,引入新課1、給不平衡的天平兩邊同時加入相同質量的砝碼,天平會有什么變化?2、不平衡的天平兩邊同時拿掉相同質量的`砝碼,天平會有什么變化?3、如果對不平衡的天平兩邊砝碼的質量同時擴大相同的倍數(shù),天平會平衡嗎?縮小相同的倍數(shù)呢?通過天平演示,結合自己的觀察和思考,讓學生感受生活中的不等關系。二、合作交流探究新知1、問題情景:數(shù)學老師比語文老師年齡小。1、10年后誰的年齡大?2、20年之后呢?3、5年之前呢?假設數(shù)學,語文兩位老師的年齡分別為a,b,則aa+10a+20a—52、探索與發(fā)現(xiàn)一組:已知5>3,則5+23+25—23—2二組:已知—1—1—33—3想一想不等號的方向改變嗎?3、歸納:不等式的性質1:不等式兩邊都加(或減去)同一個數(shù)(或式子),不等號的方向不變如果a<b,那么a+c如果a>b,那么a+c>b+c,a—c>b—c。不等號方向不改變!4、大膽猜想不等式兩邊都加(或減去)同一個數(shù),不等號方向不改變不等式兩邊都加(或減去)同一個數(shù),不等號方向不改變不等式兩邊都乘(或除以)同一個數(shù)(不為零),不等號的方向呢?5、探索與發(fā)現(xiàn)已知4一組:4×26×(—2);4÷26÷(—2)。思考不等號方向改變嗎?不等式兩邊都乘(或除以)一個不為零的數(shù),不等號方向改不改變和什么有關?6、不等式的性質2:不等式兩邊都乘(或除以)同一個正數(shù),不等號的方向不變。如果a>b,且c>0,那么ac>bc,如果a0,那么ac7、不等式的性質3:不等式兩邊都乘(或除以)同一個負數(shù),不等號的方向改變。如果a>b,且c如果a三、鞏固提高拓展延伸例1:判斷下列各題的推導是否正確?為什么(學生口答)(1)因為7.5>5.7,所以—7.5<—5.7;(2)因為a+8>4,所以a>—4;(3)因為4a>4b,所以a>b;(4)因為—1>—2,所以—a—1>—a—2;(5)因為3>2,所以3a>2a.(1)正確,根據(jù)不等式基本性質3.(2)正確,根據(jù)不等式基本性質1.(3)正確,根據(jù)不等式基本性質2.(4)正確,根據(jù)不等式基本性質1.(5)不對,應分情況逐一討論.當a>0時,3a>2a.(不等式基本性質2)當a=0時,3a=2a.當a<0時,3a<2a.(不等式基本性質3)考考你!0>4,哪里錯了?已知m>n,兩邊都乘以4,得4m>4n,兩邊都減去4m,得0>4n—4m,即0>4(n—m),兩邊同時除以(n—m),得0>4。等式與不等式的性質1、不等式的三個性質。2、等式與不等式的性質對比。先前后比較,再定不等號四、總結歸納1、等式性質與不等式性質的不同之處;2、在運用“不等式性質3"時應注意的問題.學生通過總結,可以幫助自己從整體上把握本節(jié)課所學知識培養(yǎng)良好的學習習慣,也為下節(jié)課學好解不等式打下基礎。五、布置作業(yè)1、必做題:教科書第134頁習題9.1第4、5題2、選做題:教科書第134頁習題9。1第7題.不等式基本性質教學設計4教學分析本節(jié)課的研究是對初中不等式學習的延續(xù)和拓展,也是實數(shù)理論的進一步發(fā)展。在本節(jié)課的學習過程中,將讓學生回憶實數(shù)的基本理論,并能用實數(shù)的基本理論來比較兩個代數(shù)式的大小。通過本節(jié)課的學習,讓學生從一系列的具體問題情境中,感受到在現(xiàn)實世界和日常生活中存在著大量的不等關系,并充分認識不等關系的存在與應用。對不等關系的相關素材,用數(shù)學觀點進行觀察、歸納、抽象,完成量與量的比較過程。即能用不等式或不等式組把這些不等關系表示出來。在本節(jié)課的學習過程中還安排了一些簡單的、學生易于處理的問題,其用意在于讓學生注意對數(shù)學知識和方法的應用,同時也能激發(fā)學生的學習興趣,并由衷地產生用數(shù)學工具研究不等關系的愿望。根據(jù)本節(jié)課的教學內容,應用再現(xiàn)、回憶得出實數(shù)的基本理論,并能用實數(shù)的基本理論來比較兩個代數(shù)式的大小。在本節(jié)教學中,教師可讓學生閱讀書中實例,充分利用數(shù)軸這一簡單的數(shù)形結合工具,直接用實數(shù)與數(shù)軸上點的一一對應關系,從數(shù)與形兩方面建立實數(shù)的順序關系。要在溫故知新的基礎上提高學生對不等式的認識。三維目標1.在學生了解不等式產生的實際背景下,利用數(shù)軸回憶實數(shù)的基本理論,理解實數(shù)的大小關系,理解實數(shù)大小與數(shù)軸上對應點位置間的關系。2.會用作差法判斷實數(shù)與代數(shù)式的大小,會用配方法判斷二次式的大小和范圍。3.通過溫故知新,提高學生對不等式的認識,激發(fā)學生的學習興趣,體會數(shù)學的奧秘與數(shù)學的結構美。重點難點教學重點:比較實數(shù)與代數(shù)式的大小關系,判斷二次式的大小和范圍。教學難點:準確比較兩個代數(shù)式的大小。課時安排1課時教學過程導入新課思路1.(章頭圖導入)通過多媒體展示衛(wèi)星、飛船和一幅山巒重疊起伏的壯觀畫面,它將學生帶入“橫看成嶺側成峰,遠近高低各不同”的大自然和浩瀚的宇宙中,使學生在具體情境中感受到不等關系在現(xiàn)實世界和日常生活中是大量存在的,由此產生用數(shù)學研究不等關系的強烈愿望,自然地引入新課。思路2.(情境導入)列舉出學生身體的高矮、身體的輕重、距離學校路程的遠近、百米賽跑的時間、數(shù)學成績的多少等現(xiàn)實生活中學生身邊熟悉的事例,描述出某種客觀事物在數(shù)量上存在的不等關系。這些不等關系怎樣在數(shù)學上表示出來呢?讓學生自由地展開聯(lián)想,教師組織不等關系的相關素材,讓學生用數(shù)學的觀點進行觀察、歸納,使學生在具體情境中感受到不等關系與相等關系一樣,在現(xiàn)實世界和日常生活中大量存在著。這樣學生會由衷地產生用數(shù)學工具研究不等關系的愿望,從而進入進一步的探究學習,由此引入新課。推進新課新知探究提出問題1回憶初中學過的不等式,讓學生說出“不等關系”與“不等式”的異同。怎樣利用不等式研究及表示不等關系?2在現(xiàn)實世界和日常生活中,既有相等關系,又存在著大量的不等關系。你能舉出一些實際例子嗎?3數(shù)軸上的任意兩點與對應的兩實數(shù)具有怎樣的關系?4任意兩個實數(shù)具有怎樣的關系?用邏輯用語怎樣表達這個關系?活動:教師引導學生回憶初中學過的不等式概念,使學生明確“不等關系”與“不等式”的異同。不等關系強調的是關系,可用符號“>”“b”“a教師與學生一起舉出我們日常生活中不等關系的例子,可讓學生充分合作討論,使學生感受到現(xiàn)實世界中存在著大量的不等關系。在學生了解了一些不等式產生的實際背景的前提下,進一步學習不等式的有關內容。實例1:某天的天氣預報報道,最高氣溫32℃,最低氣溫26℃.實例2:對于數(shù)軸上任意不同的兩點A、B,若點A在點B的左邊,則xA實例3:若一個數(shù)是非負數(shù),則這個數(shù)大于或等于零。實例4:兩點之間線段最短。實例5:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。實例6:限速40km/h的路標指示司機在前方路段行駛時,應使汽車的速度v不超過40km/h.實例7:某品牌酸奶的質量檢查規(guī)定,酸奶中脂肪的含量f應不少于2.5%,蛋白質的含量p應不少于2.3%.教師進一步點撥:能夠發(fā)現(xiàn)身邊的數(shù)學當然很好,這說明同學們已經(jīng)走進了數(shù)學這門學科,但作為我們研究數(shù)學的人來說,能用數(shù)學的眼光、數(shù)學的觀點進行觀察、歸納、抽象,完成這些量與量的比較過程,這是我們每個研究數(shù)學的人必須要做的,那么,我們可以用我們所研究過的什么知識來表示這些不等關系呢?學生很容易想到,用不等式或不等式組來表示這些不等關系。那么不等式就是用不等號將兩個代數(shù)式連結起來所成的式子。如-71+4,2x≤6,a+2≥0,3≠4,0≤5等。教師引導學生將上述的7個實例用不等式表示出來。實例1,若用t表示某天的氣溫,則26℃≤t≤32℃.實例3,若用x表示一個非負數(shù),則x≥0.實例5|AC|+|BC|>|AB|,如下圖。|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.|AB|-|BC|實例6,若用v表示速度,則v≤40km/h.實例7,f≥2.5%,p≥2.3%.對于實例7,教師應點撥學生注意酸奶中的'脂肪含量與蛋白質含量需同時滿足,避免寫成f≥2.5%或p≥2.3%,這是不對的。但可表示為f≥2.5%且p≥2.3%.對以上問題,教師讓學生輪流回答,再用投影儀給出課本上的兩個結論。討論結果:(1)(2)略;(3)數(shù)軸上任意兩點中,右邊點對應的實數(shù)比左邊點對應的實數(shù)大。(4)對于任意兩個實數(shù)a和b,在a=b,a>b,a0a>b;a-b=0a=b;a-b應用示例例1(教材本節(jié)例1和例2)活動:通過兩例讓學生熟悉兩個代數(shù)式的大小比較的基本方法:作差,配方法。點評:本節(jié)兩例的求解,是借助因式分解和應用配方法完成的,這兩種方法是代數(shù)式變形時經(jīng)常使用的方法,應讓學生熟練掌握。變式訓練1.若f(x)=3x2-x+1,g(x)=2x2+x-1,則f(x)與g(x)的大小關系是()A.f(x)>g(x)B.f(x)=g(x)C.f(x)答案:A解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).2.已知x≠0,比較(x2+1)2與x4+x2+1的大小。解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.∵x≠0,得x2>0.從而(x2+1)2>x4+x2+1.例2比較下列各組數(shù)的大小(a≠b).(1)a+b2與21a+1b(a>0,b>0);(2)a4-b4與4a3(a-b).活動:比較兩個實數(shù)的大小,常根據(jù)實數(shù)的運算性質與大小順序的關系,歸結為判斷它們的差的符號來確定。本例可由學生獨立完成,但要點撥學生在最后的符號判斷說理中,要理由充分,不可忽略這點。解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].∵2a2+(a+b)2≥0(當且僅當a=b=0時取等號),又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]∴a4-b4點評:比較大小常用作差法,一般步驟是作差——變形——判斷符號。變形常用的手段是分解因式和配方,前者將“差”變?yōu)椤胺e”,后者將“差”化為一個或幾個完全平方式的“和”,也可兩者并用。變式訓練已知x>y,且y≠0,比較xy與1的大小?;顒樱阂容^任意兩個數(shù)或式的大小關系,只需確定它們的差與0的大小關系。解:xy-1=x-yy.∵x>y,∴x-y>0.當y當y>0時,x-yy>0,即xy-1>0.∴xy>1.點評:當字母y取不同范圍的值時,差xy-1的正負情況不同,所以需對y分類討論。例3建筑設計規(guī)定,民用住宅的窗戶面積必須小于地板面積。但按采光標準,窗戶面積與地板面積的比值應不小于10%,且這個比值越大,住宅的采光條件越好。試問:同時增加相等的窗戶面積和地板面積,住宅的采光條件是變好了,還是變壞了?請說明理由。活動:解題關鍵首先是把文字語言轉換成數(shù)學語言,然后比較前后比值的大小,采用作差法。解:設住宅窗戶面積和地板面積分別為a、b,同時增加的面積為m,根據(jù)問題的要求a由于a+mb+m-ab=mb-abb+m>0,于是a+mb+m>ab.又ab≥10%,因此a+mb+m>ab≥10%.所以同時增加相等的窗戶面積和地板面積后,住宅的采光條件變好了。點評:一般地,設a、b為正實數(shù),且a0,則a+mb+m>ab.變式訓練已知a1,a2,…為各項都大于零的等比數(shù)列,公比q≠1,則()A.a1+a8>a4+a5B.a1+a8C.a1+a8=a4+a5D.a1+a8與a4+a5大小不確定答案:A解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).∵{an}各項都大于零,∴q>0,即1+q>0.又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.知能訓練1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的個數(shù)為()A.3B.2C.1D.02.比較2x2+5x+9與x2+5x+6的大小。答案:1.C解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,③x2+y2-2xy=(x-y)2≥0.∴只有①恒成立。2.解:因為2x2+5x+9-(x2+5x+6)=x2+3>0,所以2x2+5x+9>x2+5x+6.課堂小結1.教師與學生共同完成本節(jié)課的小結,從實數(shù)的基本性質的回顧,到兩個實數(shù)大小的比較方法;從例題的活動探究點評,到緊跟著的變式訓練,讓學生去繁就簡,聯(lián)系舊知,將本節(jié)課所學納入已有的知識體系中。2.教師畫龍點睛,點撥利用實數(shù)的基本性質對兩個實數(shù)大小比較時易錯的地方。鼓勵學有余力的學生對節(jié)末的思考與討論在課后作進一步的探究。作業(yè)習題3—1A組3;習題3—1B組2.設計感想1.本節(jié)設計關注了教學方法的優(yōu)化。經(jīng)驗告訴我們:課堂上應根據(jù)具體情況,選擇、設計最能體現(xiàn)教學規(guī)律的教學過程,不宜長期使用一種固定的教學方法,或原封不動地照搬一種實驗模式。各種教學方法中,沒有一種能很好地適應一切教學活動。也就是說,世上沒有萬能的教學方法。針對個性,靈活變化,因材施教才是成功的施教靈藥。2.本節(jié)設計注重了難度控制。不等式內容應用面廣,可以說與其他所有內容都有交匯,歷來是高考的重點與

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論