版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
內(nèi)蒙古阿拉善2023年高一上數(shù)學(xué)期末經(jīng)典模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12小題,共60分)1.已知函數(shù),則的值等于A. B.C. D.2.已知命題,,則p的否定是()A., B.,C., D.,3.在中,角、、的對邊分別為、、,已知,,,則A. B.C. D.4.垂直于直線且與圓相切的直線的方程是AB.C.D.5.設(shè),則A. B.C. D.6.已知向量,若,則()A.1或4 B.1或C.或4 D.或7.已知函數(shù),,則函數(shù)的零點個數(shù)不可能是()A.2個 B.3個C.4個 D.5個8.已知A(-4,2,3)關(guān)于xOz平面的對稱點為,關(guān)于z軸的對稱點為,則等于()A.8 B.12C.16 D.199.是邊長為1的等邊三角形,點分別是邊的中點,連接并延長到點,使得,則的值為()A. B.C. D.10.如圖,邊長為a的等邊三角形ABC的中線AF與中位線DE交于點G,已知△A'DE是△ADE繞DE旋轉(zhuǎn)過程中的一個圖形(A'不與A,F重合),則下列命題中正確的是()①動點A'在平面ABC上的射影在線段AF上;②BC∥平面A'DE;③三棱錐A'-FED的體積有最大值.A.① B.①②C.①②③ D.②③11.一個幾何體的三視圖如圖所示,則該幾何體可以是()A.棱柱 B.棱臺C.圓柱 D.圓臺12.已知函數(shù),下列說法錯誤的是()A.函數(shù)在上單調(diào)遞減B.函數(shù)是最小正周期為的周期函數(shù)C.若,則方程在區(qū)間內(nèi),最多有4個不同的根D.函數(shù)在區(qū)間內(nèi),共有6個零點二、填空題(本大題共4小題,共20分)13.已知圓心為(1,1),經(jīng)過點(4,5),則圓標準方程為_____________________.14.(2016·桂林高二檢測)如圖所示,在四邊形ABCD中,AB=AD=CD=1,BD=,BD⊥CD,將四邊形ABCD沿對角線BD折成四面體A′-BCD,使平面A′BD⊥平面BCD,則下列結(jié)論正確的是________.(1)A′C⊥BD.(2)∠BA′C=90°.(3)CA′與平面A′BD所成的角為30°.(4)四面體A′-BCD的體積為.15.已知,則的值為__________16.袋子中有大小和質(zhì)地完全相同的4個球,其中2個紅球,2個白球,不放回地從中依次隨機摸出2球,則2球顏色相同的概率等于________三、解答題(本大題共6小題,共70分)17.設(shè)函數(shù).(1)求的最小正周期和最大值;(2)求的單調(diào)遞增區(qū)間.18.設(shè)是實數(shù),(1)證明:f(x)是增函數(shù);(2)試確定的值,使f(x)為奇函數(shù)19.有一種新型的洗衣液,去污速度特別快,已知每投放個(,且)單位的洗衣液在一定量水的洗衣機中,它在水中釋放的濃度(克/升)隨著時間(分鐘)變化的函數(shù)關(guān)系式近似為,其中.若多次投放,則某一時刻水中的洗衣液濃度為每次投放的洗衣液在相應(yīng)時刻所釋放的濃度之和.根據(jù)經(jīng)驗,當(dāng)水中洗衣液濃度不低于克/升時,它才能起到有效去污的作用.(1)若只投放一次個單位的洗衣液,當(dāng)兩分鐘時水中洗衣液的濃度為克/升,求的值;(2)若只投放一次個單位的洗衣液,則有效去污時間可達幾分鐘?(3)若第一次投放個單位的洗衣液,分鐘后再投放個單位的洗衣液,則在第分鐘時洗衣液是否還能起到有效去污的作用?請說明理由.20.已知函數(shù).(1)若,判斷函數(shù)的零點個數(shù);(2)若對任意實數(shù),函數(shù)恒有兩個相異的零點,求實數(shù)的取值范圍;(3)已知且,,求證:方程在區(qū)間上有實數(shù)根.21.已知函數(shù),其中.(1)若對任意實數(shù),恒有,求的取值范圍;(2)是否存在實數(shù),使得且?若存在,則求的取值范圍;若不存在,則加以證明.22.已知,.(1)求的值;(2)求的值.
參考答案一、選擇題(本大題共12小題,共60分)1、C【解析】因為,所以,故選C.2、D【解析】由否定的定義寫出即可.【詳解】p的否定是,.故選:D3、B【解析】分析:直接利用余弦定理求cosA.詳解:由余弦定理得cosA=故答案為B.點睛:(1)本題主要考查余弦定理在解三角形中的應(yīng)用,意在考查學(xué)生對余弦定理的掌握水平.(2)已知三邊一般利用余弦定理:.4、B【解析】設(shè)所求直線方程為3x+y+c=0,則d=,解得d=±10.所以所求直線方程為3x+y+10=0或3x+y-10=0.5、B【解析】函數(shù)在上單調(diào)遞減,所以,函數(shù)在上單調(diào)遞減,所以,所以,答案為B考點:比較大小6、B【解析】根據(jù)向量的坐標表示,以及向量垂直的條件列出方程,即可求解.【詳解】由題意,向量,可得,因為,則,解得或.故選:B.7、B【解析】由可得或,然后畫出的圖象,結(jié)合圖象可分析出答案.【詳解】由可得或的圖象如下:所以當(dāng)時,,此時無零點,有2個零點,所以的零點個數(shù)為2;當(dāng)時,,此時有2個零點,有2個零點,所以的零點個數(shù)為4;當(dāng)時,,此時有4個零點,有2個零點,所以的零點個數(shù)為6;當(dāng)時,,此時有3個零點,有2個零點,所以的零點個數(shù)為5;當(dāng)且時,此時有2個零點,有2個零點,所以的零點個數(shù)為4;當(dāng)時,,此時的零點個數(shù)為2;當(dāng)時,,此時有2個零點,有3個零點,所以的零點個數(shù)為5;當(dāng)時,,此時有2個零點,有4個零點,所以的零點個數(shù)為6;當(dāng)時,,此時有2個零點,有2個零點,所以零點個數(shù)為4;當(dāng)時,,此時有2個零點,無零點,所以的零點個數(shù)為2;綜上:的零點個數(shù)可以為2、4、5、6,故選:B8、A【解析】由題可知∴故選A9、B【解析】設(shè),,∴,,,∴.【考點】向量數(shù)量積【名師點睛】研究向量的數(shù)量積問題,一般有兩個思路,一是建立直角坐標系,利用坐標研究向量數(shù)量積;二是利用一組基底表示所有向量,兩種實質(zhì)相同,坐標法更易理解和化簡.平面向量的坐標運算的引入為向量提供了新的語言——“坐標語言”,實質(zhì)是將“形”化為“數(shù)”.向量的坐標運算,使得向量的線性運算都可用坐標來進行,實現(xiàn)了向量運算完全代數(shù)化,將數(shù)與形緊密結(jié)合起來10、C【解析】【思路點撥】注意折疊前DE⊥AF,折疊后其位置關(guān)系沒有改變.解:①中由已知可得平面A'FG⊥平面ABC∴點A'在平面ABC上的射影在線段AF上.②BC∥DE,BC?平面A'DE,DE?平面A'DE,∴BC∥平面A'DE.③當(dāng)平面A'DE⊥平面ABC時,三棱錐A'-FED的體積達到最大.11、D【解析】由三視圖知,從正面和側(cè)面看都是梯形,從上面看為圓形,下面看是圓形,并且可以想象到該幾何體是圓臺,則該幾何體可以是圓臺故選D12、B【解析】A.由時,判斷;B.易知是偶函數(shù),作出其圖象判斷;C.在同一坐標系中作出的圖象判斷;D.根據(jù)函數(shù)是偶函數(shù),利用其圖象,判斷的零點個數(shù)即可.【詳解】A.當(dāng)時,,而,上遞減,故正確;B.因為,所以是偶函數(shù),當(dāng)時,,作出其圖象如圖所示:由圖象知;函數(shù)不是周期函數(shù),故錯誤;C.在同一坐標系中作出的圖象,如圖所示:由圖象知:當(dāng),方程在區(qū)間內(nèi),最多有4個不同的根,故正確;D.因為函數(shù)是偶函數(shù),只求的零點個數(shù)即可,如圖所示:由函數(shù)圖象知,在區(qū)間內(nèi)共有3個,所以函數(shù)在區(qū)間內(nèi),共有6個零點,故正確;故選:B二、填空題(本大題共4小題,共20分)13、【解析】設(shè)出圓的標準方程,代入點的坐標,求出半徑,求出圓的標準方程【詳解】設(shè)圓的標準方程為(x-1)2+(y-1)2=R2,由圓經(jīng)過點(4,5)得R2=25,從而所求方程為(x-1)2+(y-1)2=25,故答案為(x-1)2+(y-1)2=25【點睛】本題主要考查圓的標準方程,利用了待定系數(shù)法,關(guān)鍵是確定圓的半徑14、(2)(4)【解析】詳解】若A′C⊥BD,又BD⊥CD,則BD⊥平面A′CD,則BD⊥A′D,顯然不可能,故(1)錯誤.因為BA′⊥A′D,BA′⊥CD,故BA′⊥平面A′CD,所以BA′⊥A′C,所以∠BA′C=90°,故(2)正確.因為平面A′BD⊥平面BCD,BD⊥CD,所以CD⊥平面A′BD,CA′與平面A′BD所成的角為∠CA′D,因為A′D=CD,所以∠CA′D=,故(3)錯誤.四面體A′-BCD的體積為V=S△BDA′·h=××1=,因為AB=AD=1,DB=,所以A′C⊥BD,綜上(2)(4)成立.點睛:立體幾何中折疊問題,要注重折疊前后垂直關(guān)系的變化,不變的垂直關(guān)系是解決問題的關(guān)鍵條件.15、【解析】答案:16、【解析】把4個球編號,用列舉法寫出所有基本事件,并得出2球顏色相同的事件,計數(shù)后可計算概率【詳解】2個紅球編號為,2個白球編號為,則依次取2球的基本事件有:共6個,其中2球顏色相同的事件有共2個,所求概率為故答案為:三、解答題(本大題共6小題,共70分)17、(1)最小正周期,最大值為;(2).【解析】把化簡為,(1)直接寫出最小正周期和最大值;(2)利用正弦函數(shù)的單調(diào)性直接求出單調(diào)遞增區(qū)間.【詳解】(1)的最小正周期;最大值為;(2)要求的單調(diào)遞增區(qū)間,只需,解得:,即的單調(diào)遞增區(qū)間為.18、(1)見解析(2)1【解析】(1)設(shè)x1、x2∈R且x1<x2,用作差法,有f(x1)﹣f(x2)=,結(jié)合指數(shù)函數(shù)的單調(diào)性分析可得f(x1)﹣f(x2)<0,可得f(x)的單調(diào)性且與a的值無關(guān);(2)根據(jù)題意,假設(shè)f(x)是奇函數(shù),由奇函數(shù)的定義可得,f(﹣x)=﹣f(x),即a﹣=﹣(a﹣),對其變形,解可得a的值,即可得答案【詳解】(1)證明:設(shè)x1、x2∈R且x1<x2,f(x1)﹣f(x2)=(a﹣)﹣(a﹣)=,又由y=2x在R上為增函數(shù),則>0,>0,由x1<x2,可得﹣<0,則f(x1)﹣f(x2)<0,故f(x)為增函數(shù),與a的值無關(guān),即對于任意a,f(x)在R為增函數(shù);(2)若f(x)為奇函數(shù),且其定義域為R,必有有f(﹣x)=﹣f(x),即a﹣=﹣(a﹣),變形可得2a==2,解可得,a=1,即當(dāng)a=1時,f(x)為奇函數(shù)【點睛】證明函數(shù)單調(diào)性的一般步驟:(1)取值:在定義域上任取,并且(或);(2)作差:,并將此式變形(要注意變形到能判斷整個式子符號為止);(3)定號:判斷的正負(要注意說理的充分性),必要時要討論;(4)下結(jié)論:根據(jù)定義得出其單調(diào)性.19、(1);(2)分鐘;(3)見詳解.【解析】(1)由只投放一次個單位的洗衣液,當(dāng)兩分鐘時水中洗衣液的濃度為克/升,根據(jù)已知可得,,代入可求出的值;(2)由只投放一次個單位的洗衣液,可得,分、兩種情況解不等式即可求解;(3)令,由題意求出此時的值并與比較大小即可.【詳解】(1)因為,當(dāng)兩分鐘時水中洗衣液的濃度為克/升時,可得,即,解得;(2)因為,所以,當(dāng)時,,將兩式聯(lián)立解之得;當(dāng)時,,將兩式聯(lián)立解之得,綜上可得,所以若只投放一次個單位的洗衣液,則有效去污時間可達分鐘;(3)當(dāng)時,由題意,因為,所以在第分鐘時洗衣液能起到有效去污的作用.【點睛】本題主要考查分段函數(shù)模型的選擇和應(yīng)用,其中解答本題的關(guān)鍵是正確理解水中洗衣液濃度不低于克/升時,它才能起到有效去污的作用,屬中等難度題.20、⑴見解析;⑵;⑶見解析.【解析】(1)利用判別式定二次函數(shù)的零點個數(shù):(2)零點個數(shù)問題轉(zhuǎn)化為圖象交點個數(shù)問題,利用判別式處理即可;(3)方程在區(qū)間上有實數(shù)根,即有零點,結(jié)合零點存在定理可以證明.試題解析:⑴,當(dāng)時,,函數(shù)有一個零點;當(dāng)時,,函數(shù)有兩個零點⑵已知,則對于恒成立,即恒成立;所以,從而解得.⑶設(shè),則,在區(qū)間上有實數(shù)根,即方程在區(qū)間上有實數(shù)根.點睛:已知函數(shù)有零點求參數(shù)取值范圍常用的方法和思路(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解21、(1);(2)存在,.【解析】(1)首先求出在上的最大值,問題轉(zhuǎn)化為對任意成立,然后化簡不等式,參
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度廠房裝修工程設(shè)計與施工監(jiān)理合同4篇
- 2025年度廠房租賃安全協(xié)議書(智能管理系統(tǒng)適用)4篇
- 2024版貨品物流服務(wù)協(xié)議
- 2025年度新型建材2024grc線條裝飾線條供應(yīng)協(xié)議3篇
- 工程建設(shè)國家標準《大體積混凝土溫度測控技術(shù)規(guī)范》條文說明
- 2025年度人工智能教育平臺開發(fā)與應(yīng)用合同9篇
- 專屬2024財務(wù)代表協(xié)議條款版B版
- 個人房產(chǎn)抵押借款協(xié)議標準格式版
- 2024虛擬現(xiàn)實產(chǎn)品開發(fā)與銷售合同
- 2024版單身公寓租賃合同附圖書閱覽室使用協(xié)議3篇
- 保潔服務(wù)崗位檢查考核評分標準
- 稱量與天平培訓(xùn)試題及答案
- 超全的超濾與納濾概述、基本理論和應(yīng)用
- 2020年醫(yī)師定期考核試題與答案(公衛(wèi)專業(yè))
- 2022年中國育齡女性生殖健康研究報告
- 各種靜脈置管固定方法
- 消防報審驗收程序及表格
- 教育金規(guī)劃ppt課件
- 呼吸機波形分析及臨床應(yīng)用
- 常用緊固件選用指南
- 私人借款協(xié)議書新編整理版示范文本
評論
0/150
提交評論