江蘇省泰州等四市2023-2024學(xué)年高三第四次模擬考試數(shù)學(xué)試卷含解析_第1頁
江蘇省泰州等四市2023-2024學(xué)年高三第四次模擬考試數(shù)學(xué)試卷含解析_第2頁
江蘇省泰州等四市2023-2024學(xué)年高三第四次模擬考試數(shù)學(xué)試卷含解析_第3頁
江蘇省泰州等四市2023-2024學(xué)年高三第四次模擬考試數(shù)學(xué)試卷含解析_第4頁
江蘇省泰州等四市2023-2024學(xué)年高三第四次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

江蘇省泰州等四市2023-2024學(xué)年高三第四次模擬考試數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,定義集合,則等于()A. B.C. D.2.若,則“”的一個充分不必要條件是A. B.C.且 D.或3.某單位去年的開支分布的折線圖如圖1所示,在這一年中的水、電、交通開支(單位:萬元)如圖2所示,則該單位去年的水費開支占總開支的百分比為()A. B. C. D.4.設(shè)函數(shù)(,)是上的奇函數(shù),若的圖象關(guān)于直線對稱,且在區(qū)間上是單調(diào)函數(shù),則()A. B. C. D.5.己知函數(shù)的圖象與直線恰有四個公共點,其中,則()A. B.0 C.1 D.6.已知三棱錐P﹣ABC的頂點都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,則球O的表面積為()A. B. C. D.7.一個袋中放有大小、形狀均相同的小球,其中紅球1個、黑球2個,現(xiàn)隨機等可能取出小球,當(dāng)有放回依次取出兩個小球時,記取出的紅球數(shù)為;當(dāng)無放回依次取出兩個小球時,記取出的紅球數(shù)為,則()A., B.,C., D.,8.在“一帶一路”知識測驗后,甲、乙、丙三人對成績進行預(yù)測.甲:我的成績比乙高.乙:丙的成績比我和甲的都高.丙:我的成績比乙高.成績公布后,三人成績互不相同且只有一個人預(yù)測正確,那么三人按成績由高到低的次序為A.甲、乙、丙 B.乙、甲、丙C.丙、乙、甲 D.甲、丙、乙9.已知是等差數(shù)列的前項和,,,則()A.85 B. C.35 D.10.已知函數(shù)()的部分圖象如圖所示,且,則的最小值為()A. B.C. D.11.有一圓柱狀有蓋鐵皮桶(鐵皮厚度忽略不計),底面直徑為cm,高度為cm,現(xiàn)往里面裝直徑為cm的球,在能蓋住蓋子的情況下,最多能裝()(附:)A.個 B.個 C.個 D.個12.已知集合,,則集合的真子集的個數(shù)是()A.8 B.7 C.4 D.3二、填空題:本題共4小題,每小題5分,共20分。13.正四棱柱中,,.若是側(cè)面內(nèi)的動點,且,則與平面所成角的正切值的最大值為___________.14.已知集合,若,則__________.15.某種牛肉干每袋的質(zhì)量服從正態(tài)分布,質(zhì)檢部門的檢測數(shù)據(jù)顯示:該正態(tài)分布為,.某旅游團游客共購買這種牛肉干100袋,估計其中質(zhì)量低于的袋數(shù)大約是_____袋.16.如圖是一個算法偽代碼,則輸出的的值為_______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點的極坐標(biāo)為.(1)求直線的極坐標(biāo)方程;(2)若直線與曲線交于,兩點,求的面積.18.(12分)如圖,在中,已知,,,為線段的中點,是由繞直線旋轉(zhuǎn)而成,記二面角的大小為.(1)當(dāng)平面平面時,求的值;(2)當(dāng)時,求二面角的余弦值.19.(12分)在極坐標(biāo)系中,曲線的極坐標(biāo)方程為(1)求曲線與極軸所在直線圍成圖形的面積;(2)設(shè)曲線與曲線交于,兩點,求.20.(12分)的內(nèi)角所對的邊分別是,且,.(1)求;(2)若邊上的中線,求的面積.21.(12分)如圖,在四棱錐中,底面,底面是直角梯形,為側(cè)棱上一點,已知.(Ⅰ)證明:平面平面;(Ⅱ)求二面角的余弦值.22.(10分)的內(nèi)角A,B,C的對邊分別為a,b,c,已知,.求C;若,求,的面積

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據(jù)定義,求出,即可求出結(jié)論.【詳解】因為集合,所以,則,所以.故選:C.【點睛】本題考查集合的新定義運算,理解新定義是解題的關(guān)鍵,屬于基礎(chǔ)題.2、C【解析】,∴,當(dāng)且僅當(dāng)時取等號.故“且”是“”的充分不必要條件.選C.3、A【解析】

由折線圖找出水、電、交通開支占總開支的比例,再計算出水費開支占水、電、交通開支的比例,相乘即可求出水費開支占總開支的百分比.【詳解】水費開支占總開支的百分比為.故選:A【點睛】本題考查折線圖與柱形圖,屬于基礎(chǔ)題.4、D【解析】

根據(jù)函數(shù)為上的奇函數(shù)可得,由函數(shù)的對稱軸及單調(diào)性即可確定的值,進而確定函數(shù)的解析式,即可求得的值.【詳解】函數(shù)(,)是上的奇函數(shù),則,所以.又的圖象關(guān)于直線對稱可得,,即,,由函數(shù)的單調(diào)區(qū)間知,,即,綜上,則,.故選:D【點睛】本題考查了三角函數(shù)的圖象與性質(zhì)的綜合應(yīng)用,由對稱軸、奇偶性及單調(diào)性確定參數(shù),屬于中檔題.5、A【解析】

先將函數(shù)解析式化簡為,結(jié)合題意可求得切點及其范圍,根據(jù)導(dǎo)數(shù)幾何意義,即可求得的值.【詳解】函數(shù)即直線與函數(shù)圖象恰有四個公共點,結(jié)合圖象知直線與函數(shù)相切于,,因為,故,所以.故選:A.【點睛】本題考查了三角函數(shù)的圖像與性質(zhì)的綜合應(yīng)用,由交點及導(dǎo)數(shù)的幾何意義求函數(shù)值,屬于難題.6、D【解析】

由題意畫出圖形,找出△PAB外接圓的圓心及三棱錐P﹣BCD的外接球心O,通過求解三角形求出三棱錐P﹣BCD的外接球的半徑,則答案可求.【詳解】如圖;設(shè)AB的中點為D;∵PA,PB,AB=4,∴△PAB為直角三角形,且斜邊為AB,故其外接圓半徑為:rAB=AD=2;設(shè)外接球球心為O;∵CA=CB,面PAB⊥面ABC,∴CD⊥AB可得CD⊥面PAB;且DC.∴O在CD上;故有:AO2=OD2+AD2?R2=(R)2+r2?R;∴球O的表面積為:4πR2=4π.故選:D.【點睛】本題考查多面體外接球表面積的求法,考查數(shù)形結(jié)合的解題思想方法,考查思維能力與計算能力,屬于中檔題.7、B【解析】

分別求出兩個隨機變量的分布列后求出它們的期望和方差可得它們的大小關(guān)系.【詳解】可能的取值為;可能的取值為,,,,故,.,,故,,故,.故選B.【點睛】離散型隨機變量的分布列的計算,應(yīng)先確定隨機變量所有可能的取值,再利用排列組合知識求出隨機變量每一種取值情況的概率,然后利用公式計算期望和方差,注意在取球模型中摸出的球有放回與無放回的區(qū)別.8、A【解析】

利用逐一驗證的方法進行求解.【詳解】若甲預(yù)測正確,則乙、丙預(yù)測錯誤,則甲比乙成績高,丙比乙成績低,故3人成績由高到低依次為甲,乙,丙;若乙預(yù)測正確,則丙預(yù)測也正確,不符合題意;若丙預(yù)測正確,則甲必預(yù)測錯誤,丙比乙的成績高,乙比甲成績高,即丙比甲,乙成績都高,即乙預(yù)測正確,不符合題意,故選A.【點睛】本題將數(shù)學(xué)知識與時政結(jié)合,主要考查推理判斷能力.題目有一定難度,注重了基礎(chǔ)知識、邏輯推理能力的考查.9、B【解析】

將已知條件轉(zhuǎn)化為的形式,求得,由此求得.【詳解】設(shè)公差為,則,所以,,,.故選:B【點睛】本小題主要考查等差數(shù)列通項公式的基本量計算,考查等差數(shù)列前項和的計算,屬于基礎(chǔ)題.10、A【解析】

是函數(shù)的零點,根據(jù)五點法求出圖中零點及軸左邊第一個零點可得.【詳解】由題意,,∴函數(shù)在軸右邊的第一個零點為,在軸左邊第一個零點是,∴的最小值是.故選:A.【點睛】本題考查三角函數(shù)的周期性,考查函數(shù)的對稱性.函數(shù)的零點就是其圖象對稱中心的橫坐標(biāo).11、C【解析】

計算球心連線形成的正四面體相對棱的距離為cm,得到最上層球面上的點距離桶底最遠(yuǎn)為cm,得到不等式,計算得到答案.【詳解】由題意,若要裝更多的球,需要讓球和鐵皮桶側(cè)面相切,且相鄰四個球兩兩相切,這樣,相鄰的四個球的球心連線構(gòu)成棱長為cm的正面體,易求正四面體相對棱的距離為cm,每裝兩個球稱為“一層”,這樣裝層球,則最上層球面上的點距離桶底最遠(yuǎn)為cm,若想要蓋上蓋子,則需要滿足,解得,所以最多可以裝層球,即最多可以裝個球.故選:【點睛】本題考查了圓柱和球的綜合問題,意在考查學(xué)生的空間想象能力和計算能力.12、D【解析】

轉(zhuǎn)化條件得,利用元素個數(shù)為n的集合真子集個數(shù)為個即可得解.【詳解】由題意得,,集合的真子集的個數(shù)為個.故選:D.【點睛】本題考查了集合的化簡和運算,考查了集合真子集個數(shù)問題,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、2.【解析】

如圖,以為原點建立空間直角坐標(biāo)系,設(shè)點,由得,證明為與平面所成角,令,用三角函數(shù)表示出,求解三角函數(shù)的最大值得到結(jié)果.【詳解】如圖,以為原點建立空間直角坐標(biāo)系,設(shè)點,則,,又,得即;又平面,為與平面所成角,令,當(dāng)時,最大,即與平面所成角的正切值的最大值為2.故答案為:2【點睛】本題主要考查了立體幾何中的動點問題,考查了直線與平面所成角的計算.對于這類題,一般是建立空間直角坐標(biāo),在動點坐標(biāo)內(nèi)引入?yún)?shù),將最值問題轉(zhuǎn)化為函數(shù)的最值問題求解,考查了學(xué)生的運算求解能力和直觀想象能力.14、1【解析】

分別代入集合中的元素,求出值,再結(jié)合集合中元素的互異性進行取舍可解.【詳解】依題意,分別令,,,由集合的互異性,解得,則.故答案為:【點睛】本題考查集合元素的特性:確定性、互異性、無序性.確定集合中元素,要注意檢驗集合中的元素是否滿足互異性.15、1【解析】

根據(jù)正態(tài)分布對稱性,求得質(zhì)量低于的袋數(shù)的估計值.【詳解】由于,所以,所以袋牛肉干中,質(zhì)量低于的袋數(shù)大約是袋.故答案為:【點睛】本小題主要考查正態(tài)分布對稱性的應(yīng)用,屬于基礎(chǔ)題.16、5【解析】

執(zhí)行循環(huán)結(jié)構(gòu)流程圖,即得結(jié)果.【詳解】執(zhí)行循環(huán)結(jié)構(gòu)流程圖得,結(jié)束循環(huán),輸出.【點睛】本題考查循環(huán)結(jié)構(gòu)流程圖,考查基本分析與運算能力,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)先消去參數(shù),化為直角坐標(biāo)方程,再利用求解.(2)直線與曲線方程聯(lián)立,得,求得弦長和點到直線的距離,再求的面積.【詳解】(1)由已知消去得,則,所以,所以直線的極坐標(biāo)方程為.(2)由,得,設(shè),兩點對應(yīng)的極分別為,,則,,所以,又點到直線的距離所以【點睛】本題主要考查參數(shù)方程、直角坐標(biāo)方程及極坐標(biāo)方程的轉(zhuǎn)化和直線與曲線的位置關(guān)系,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于中檔題.18、(1);(2).【解析】

(1)平面平面,建立坐標(biāo)系,根據(jù)法向量互相垂直求得;(2)求兩個平面的法向量的夾角.【詳解】(1)如圖,以為原點,在平面內(nèi)垂直于的直線為軸所在的直線分別為軸,軸,建立空間直角坐標(biāo)系,則,設(shè)為平面的一個法向量,由得,取,則因為平面的一個法向量為由平面平面,得所以即.(2)設(shè)二面角的大小為,當(dāng)平面的一個法向量為,綜上,二面角的余弦值為.【點睛】本題考查用空間向量求平面間的夾角,平面與平面垂直的判定,二面角的平面角及求法,難度一般.19、(1);(2)【解析】

(1)利用互化公式,將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,得出曲線與極軸所在直線圍成的圖形是一個半徑為1的圓周及一個兩直角邊分別為1與的直角三角形,即可求出面積;(2)聯(lián)立方程組,分別求出和的坐標(biāo),即可求出.【詳解】解:(1)由于的極坐標(biāo)方程為,根據(jù)互化公式得,曲線的直角坐標(biāo)方程為:當(dāng)時,,當(dāng)時,,則曲線與極軸所在直線圍成的圖形,是一個半徑為1的圓周及一個兩直角邊分別為1與的直角三角形,∴圍成圖形的面積.(2)由得,其直角坐標(biāo)為,化直角坐標(biāo)方程為,化直角坐標(biāo)方程為,∴,∴.【點睛】本題考查利用互化公式將極坐標(biāo)方程化為直角坐標(biāo)方程,以及聯(lián)立方程組求交點坐標(biāo),考查計算能力.20、(1),(2)【解析】

(1)先由正弦定理,得到,進而可得,再由,即可得出結(jié)果;(2)先由余弦定理得,,再根據(jù)題中數(shù)據(jù),可得,從而可求出,得到,進而可求出結(jié)果.【詳解】(1)由正弦定理得,所以,因為,所以,即,所以,又因為,所以,.(2)在和中,由余弦定理得,.因為,,,,又因為,即,所以,所以,又因為,所以.所以的面積.【點睛】本題主要考查解三角形,靈活運用正弦定理和余弦定理即可,屬于??碱}型.21、(Ⅰ)證明見解析;(Ⅱ).【解析】

(Ⅰ)先證明

,再證明平面,利用面面垂直的判定定理,即可求證所求證;(Ⅱ)根據(jù)題意以為軸、軸、軸建立空間直角坐標(biāo)系,求出平面和平面的向量,利用公式即可求解.【詳解】(Ⅰ)證:由已知得又平面,平面,,而故,平面平面,平面平面(Ⅱ)由(Ⅰ)知,推理知梯形中,,,有,又,故所以相似,故有,即所以,以為軸、軸、軸建立如圖所示的空間直角坐標(biāo)系,則,,,設(shè)平面的法向量為,則令,則,是平面的一個法向量設(shè)平面的一個法向量為令,則是平面的一個法向量=又二面角為鈍二面角,其余弦值為.【點睛】本題考查線面、面面垂直的判定定理與性質(zhì)定理,考查向量法求二面角的余弦值,考查直觀想象能力與運算求解能力,屬于中檔題.22、(1).(2).【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論