江蘇省四星級高中部分學校2023-2024學年高考數(shù)學三模試卷含解析_第1頁
江蘇省四星級高中部分學校2023-2024學年高考數(shù)學三模試卷含解析_第2頁
江蘇省四星級高中部分學校2023-2024學年高考數(shù)學三模試卷含解析_第3頁
江蘇省四星級高中部分學校2023-2024學年高考數(shù)學三模試卷含解析_第4頁
江蘇省四星級高中部分學校2023-2024學年高考數(shù)學三模試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江蘇省四星級高中部分學校2023-2024學年高考數(shù)學三模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知命題,那么為()A. B.C. D.2.已知雙曲線的左,右焦點分別為,O為坐標原點,P為雙曲線在第一象限上的點,直線PO,分別交雙曲線C的左,右支于另一點,且,則雙曲線的離心率為()A. B.3 C.2 D.3.若命題p:從有2件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為三分之一;命題q:在邊長為4的正方形ABCD內(nèi)任取一點M,則∠AMB>90°的概率為π8A.p∧qB.(?p)∧qC.p∧(?q)D.?q4.若數(shù)列為等差數(shù)列,且滿足,為數(shù)列的前項和,則()A. B. C. D.5.我國古代數(shù)學著作《九章算術》中有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗為十升).問,米幾何?”下圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=15(單位:升),則輸入的k的值為()?A.45 B.60 C.75 D.1006.如圖,四邊形為正方形,延長至,使得,點在線段上運動.設,則的取值范圍是()A. B. C. D.7.若函數(shù)有且只有4個不同的零點,則實數(shù)的取值范圍是()A. B. C. D.8.已知正項等比數(shù)列滿足,若存在兩項,,使得,則的最小值為().A.16 B. C.5 D.49.已知函數(shù),,則的極大值點為()A. B. C. D.10.函數(shù)的圖象大致為()A. B.C. D.11.的展開式中含的項的系數(shù)為()A. B.60 C.70 D.8012.定義域為R的偶函數(shù)滿足任意,有,且當時,.若函數(shù)至少有三個零點,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的焦點到準線的距離為.14.從一箱產(chǎn)品中隨機地抽取一件,設事件抽到一等品,事件抽到二等品,事件抽到三等品,且已知,,,則事件“抽到的產(chǎn)品不是一等品”的概率為________15.在中,內(nèi)角的對邊分別為,已知,則的面積為___________.16.四面體中,底面,,,則四面體的外接球的表面積為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(mR)的導函數(shù)為.(1)若函數(shù)存在極值,求m的取值范圍;(2)設函數(shù)(其中e為自然對數(shù)的底數(shù)),對任意mR,若關于x的不等式在(0,)上恒成立,求正整數(shù)k的取值集合.18.(12分)如圖,三棱臺的底面是正三角形,平面平面,.(1)求證:;(2)若,求直線與平面所成角的正弦值.19.(12分)已知;.(1)若為真命題,求實數(shù)的取值范圍;(2)若為真命題且為假命題,求實數(shù)的取值范圍.20.(12分)已知函數(shù)(1)若恒成立,求實數(shù)的取值范圍;(2)若方程有兩個不同實根,,證明:.21.(12分)數(shù)列滿足,,其前n項和為,數(shù)列的前n項積為.(1)求和數(shù)列的通項公式;(2)設,求的前n項和,并證明:對任意的正整數(shù)m、k,均有.22.(10分)已知,其中.(1)當時,設函數(shù),求函數(shù)的極值.(2)若函數(shù)在區(qū)間上遞增,求的取值范圍;(3)證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

利用特稱命題的否定分析解答得解.【詳解】已知命題,,那么是.故選:.【點睛】本題主要考查特稱命題的否定,意在考查學生對該知識的理解掌握水平,屬于基礎題.2、D【解析】

本道題結合雙曲線的性質(zhì)以及余弦定理,建立關于a與c的等式,計算離心率,即可.【詳解】結合題意,繪圖,結合雙曲線性質(zhì)可以得到PO=MO,而,結合四邊形對角線平分,可得四邊形為平行四邊形,結合,故對三角形運用余弦定理,得到,而結合,可得,,代入上式子中,得到,結合離心率滿足,即可得出,故選D.【點睛】本道題考查了余弦定理以及雙曲線的性質(zhì),難度偏難.3、B【解析】因為從有2件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為P1=1C42=16,即命題p是錯誤,則?p是正確的;在邊長為4的正方形ABCD內(nèi)任取一點M點睛:本題將古典型概率公式、幾何型概率公式與命題的真假(含或、且、非等連接詞)的命題構成的復合命題的真假的判定有機地整合在一起,旨在考查命題真假的判定及古典概型的特征與計算公式的運用、幾何概型的特征與計算公式的運用等知識與方法的綜合運用,以及分析問題解決問題的能力。4、B【解析】

利用等差數(shù)列性質(zhì),若,則求出,再利用等差數(shù)列前項和公式得【詳解】解:因為,由等差數(shù)列性質(zhì),若,則得,.為數(shù)列的前項和,則.故選:.【點睛】本題考查等差數(shù)列性質(zhì)與等差數(shù)列前項和.(1)如果為等差數(shù)列,若,則.(2)要注意等差數(shù)列前項和公式的靈活應用,如.5、B【解析】

根據(jù)程序框圖中程序的功能,可以列方程計算.【詳解】由題意,.故選:B.【點睛】本題考查程序框圖,讀懂程序的功能是解題關鍵.6、C【解析】

以為坐標原點,以分別為x軸,y軸建立直角坐標系,利用向量的坐標運算計算即可解決.【詳解】以為坐標原點建立如圖所示的直角坐標系,不妨設正方形的邊長為1,則,,設,則,所以,且,故.故選:C.【點睛】本題考查利用向量的坐標運算求變量的取值范圍,考查學生的基本計算能力,本題的關鍵是建立適當?shù)闹苯亲鴺讼?,是一道基礎題.7、B【解析】

由是偶函數(shù),則只需在上有且只有兩個零點即可.【詳解】解:顯然是偶函數(shù)所以只需時,有且只有2個零點即可令,則令,遞減,且遞增,且時,有且只有2個零點,只需故選:B【點睛】考查函數(shù)性質(zhì)的應用以及根據(jù)零點個數(shù)確定參數(shù)的取值范圍,基礎題.8、D【解析】

由,可得,由,可得,再利用“1”的妙用即可求出所求式子的最小值.【詳解】設等比數(shù)列公比為,由已知,,即,解得或(舍),又,所以,即,故,所以,當且僅當時,等號成立.故選:D.【點睛】本題考查利用基本不等式求式子和的最小值問題,涉及到等比數(shù)列的知識,是一道中檔題.9、A【解析】

求出函數(shù)的導函數(shù),令導數(shù)為零,根據(jù)函數(shù)單調(diào)性,求得極大值點即可.【詳解】因為,故可得,令,因為,故可得或,則在區(qū)間單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增,故的極大值點為.故選:A.【點睛】本題考查利用導數(shù)求函數(shù)的極值點,屬基礎題.10、A【解析】

根據(jù)函數(shù)的奇偶性和單調(diào)性,排除錯誤選項,從而得出正確選項.【詳解】因為,所以是偶函數(shù),排除C和D.當時,,,令,得,即在上遞減;令,得,即在上遞增.所以在處取得極小值,排除B.故選:A【點睛】本小題主要考查函數(shù)圖像的識別,考查利用導數(shù)研究函數(shù)的單調(diào)區(qū)間和極值,屬于中檔題.11、B【解析】

展開式中含的項是由的展開式中含和的項分別與前面的常數(shù)項和項相乘得到,由二項式的通項,可得解【詳解】由題意,展開式中含的項是由的展開式中含和的項分別與前面的常數(shù)項和項相乘得到,所以的展開式中含的項的系數(shù)為.故選:B【點睛】本題考查了二項式系數(shù)的求解,考查了學生綜合分析,數(shù)學運算的能力,屬于基礎題.12、B【解析】

由題意可得的周期為,當時,,令,則的圖像和的圖像至少有個交點,畫出圖像,數(shù)形結合,根據(jù),求得的取值范圍.【詳解】是定義域為R的偶函數(shù),滿足任意,,令,又,為周期為的偶函數(shù),當時,,當,當,作出圖像,如下圖所示:函數(shù)至少有三個零點,則的圖像和的圖像至少有個交點,,若,的圖像和的圖像只有1個交點,不合題意,所以,的圖像和的圖像至少有個交點,則有,即,.故選:B.【點睛】本題考查函數(shù)周期性及其應用,解題過程中用到了數(shù)形結合方法,這也是高考??嫉臒狳c問題,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】試題分析:由題意得,因為拋物線,即,即焦點到準線的距離為.考點:拋物線的性質(zhì).14、0.35【解析】

根據(jù)對立事件的概率和為1,結合題意,即可求出結果來.【詳解】解:由題意知本題是一個對立事件的概率,抽到的不是一等品的對立事件是抽到一等品,,抽到不是一等品的概率是,故答案為:.【點睛】本題考查了求互斥事件與對立事件的概率的應用問題,屬于基礎題.15、【解析】

由余弦定理先算出c,再利用面積公式計算即可.【詳解】由余弦定理,得,即,解得,故的面積.故答案為:【點睛】本題考查利用余弦定理求解三角形的面積,考查學生的計算能力,是一道基礎題.16、【解析】

由題意畫出圖形,補形為長方體,求其對角線長,可得四面體外接球的半徑,則表面積可求.【詳解】解:如圖,在四面體中,底面,,,可得,補形為長方體,則過一個頂點的三條棱長分別為1,1,,則長方體的對角線長為,則三棱錐的外接球的半徑為1.其表面積為.故答案為:.【點睛】本題考查多面體外接球表面積的求法,補形是關鍵,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2){1,2}.【解析】

(1)求解導數(shù),表示出,再利用的導數(shù)可求m的取值范圍;(2)表示出,結合二次函數(shù)知識求出的最小值,再結合導數(shù)及基本不等式求出的最值,從而可求正整數(shù)k的取值集合.【詳解】(1)因為,所以,所以,則,由題意可知,解得;(2)由(1)可知,,所以因為整理得,設,則,所以單調(diào)遞增,又因為,所以存在,使得,設,是關于開口向上的二次函數(shù),則,設,則,令,則,所以單調(diào)遞增,因為,所以存在,使得,即,當時,,當時,,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,因為,所以,又由題意可知,所以,解得,所以正整數(shù)k的取值集合為{1,2}.【點睛】本題主要考查導數(shù)的應用,利用導數(shù)研究極值問題一般轉(zhuǎn)化為導數(shù)的零點問題,恒成立問題要逐步消去參數(shù),轉(zhuǎn)化為最值問題求解,適當構造函數(shù)是轉(zhuǎn)化的關鍵,本題綜合性較強,難度較大,側重考查數(shù)學抽象和邏輯推理的核心素養(yǎng).18、(Ⅰ)見證明;(Ⅱ)【解析】

(Ⅰ)取的中點為,連結,易證四邊形為平行四邊形,即,由于,為的中點,可得到,從而得到,即可證明平面,從而得到;(Ⅱ)易證,,兩兩垂直,以,,分別為,,軸,建立如圖所示的空間直角坐標系,求出平面的一個法向量為,設與平面所成角為,則,即可得到答案.【詳解】解:(Ⅰ)取的中點為,連結.由是三棱臺得,平面平面,從而.∵,∴,∴四邊形為平行四邊形,∴.∵,為的中點,∴,∴.∵平面平面,且交線為,平面,∴平面,而平面,∴.(Ⅱ)連結.由是正三角形,且為中點,則.由(Ⅰ)知,平面,,∴,,∴,,兩兩垂直.以,,分別為,,軸,建立如圖所示的空間直角坐標系.設,則,,,,∴,,.設平面的一個法向量為.由可得,.令,則,,∴.設與平面所成角為,則.【點睛】本題考查了空間幾何中,面面垂直的性質(zhì),線線垂直的證明,及線面角的求法,考查了學生的邏輯推理能力與計算求解能力,屬于中檔題.19、(1)(2)或【解析】

(1)根據(jù)為真命題列出不等式,進而求得實數(shù)的取值范圍;(2)應用復合命題真假判定的口訣:真“非”假,假“非”真,一真“或”為真,兩真“且”才真.【詳解】(1),且,解得所以當為真命題時,實數(shù)的取值范圍是.(2)由,可得,又∵當時,,.∵當為真命題,且為假命題時,∴與的真假性相同,當假假時,有,解得;當真真時,有,解得;故當為真命題且為假命題時,可得或.【點睛】本題主要考查結合不等式的含有量詞的命題的恒成立問題,存在性問題,考查復合命題的真假判斷,意在考查學生對這些知識的掌握水平和分析推理能力.20、(1)(2)詳見解析【解析】

(1)將原不等式轉(zhuǎn)化為,構造函數(shù),求得的最大值即可;

(2)首先通過求導判斷的單調(diào)區(qū)間,考查兩根的取值范圍,再構造函數(shù),將問題轉(zhuǎn)化為證明,探究在區(qū)間內(nèi)的最大值即可得證.【詳解】解:(1)由,即,即,令,則只需,,令,得,在上單調(diào)遞增,在上單調(diào)遞減,,的取值范圍是;(2)證明:不妨設,當時,單調(diào)遞增,當時,單調(diào)遞減,,當時,,,要證,即證,由在上單調(diào)遞增,只需證明,由,只需證明,令,,只需證明,易知,由,故,,從而在上單調(diào)遞增,由,故當時,,故,證畢.【點睛】本題考查利用導數(shù)研究函數(shù)單調(diào)性,最值等,關鍵是要對問題進行轉(zhuǎn)化,比如把恒成立問題轉(zhuǎn)化為最值問題,把根的個數(shù)問題轉(zhuǎn)化為圖像的交點個數(shù),進而轉(zhuǎn)化為證明不等式的問題,屬難題.21、(1),;(2),證明見解析【解析】

(1)利用已知條件建立等量關系求出數(shù)列的通項公式.(2)利用裂項相消法求出數(shù)列的和,進一步利用放縮法求出結論.【詳解】(1),,得是公比為的等比數(shù)列,,,當時,數(shù)列的前項積為,則,兩式相除得,得,又得,;(2),故.【點睛】本題考查的知識要點:數(shù)列的通項公式的求法及應用,數(shù)列的前項和的應用,裂項相消法在數(shù)列求和中的應用,主要考查學生的運算能力和轉(zhuǎn)換能力,屬于中檔題.22、(1)極大值,無極小值;(2).(3)見解析【解析】

(1)先求導,根據(jù)導數(shù)和函數(shù)極值的關系即可求出;(2)先求導,再函數(shù)在區(qū)間上

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論