![專題12統(tǒng)計(jì)綜合_第1頁](http://file4.renrendoc.com/view12/M06/36/20/wKhkGWX2tGOAMLfOAAKfo3YOOPo401.jpg)
![專題12統(tǒng)計(jì)綜合_第2頁](http://file4.renrendoc.com/view12/M06/36/20/wKhkGWX2tGOAMLfOAAKfo3YOOPo4012.jpg)
![專題12統(tǒng)計(jì)綜合_第3頁](http://file4.renrendoc.com/view12/M06/36/20/wKhkGWX2tGOAMLfOAAKfo3YOOPo4013.jpg)
![專題12統(tǒng)計(jì)綜合_第4頁](http://file4.renrendoc.com/view12/M06/36/20/wKhkGWX2tGOAMLfOAAKfo3YOOPo4014.jpg)
![專題12統(tǒng)計(jì)綜合_第5頁](http://file4.renrendoc.com/view12/M06/36/20/wKhkGWX2tGOAMLfOAAKfo3YOOPo4015.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
專題12統(tǒng)計(jì)綜合知識點(diǎn)1簡單隨機(jī)抽樣1、放回與不放回簡單隨機(jī)抽樣(1)放回簡單隨機(jī)抽樣:一般地,設(shè)一個(gè)總體含有N(N為正整數(shù))個(gè)個(gè)體,從中逐個(gè)抽取n(1≤n<N)個(gè)個(gè)體作為樣本,如果抽取是放回的,且每次抽取時(shí)總體內(nèi)的各個(gè)個(gè)體被抽到的概率都相等,我們把這樣的抽樣方法叫做放回簡單隨機(jī)抽樣.(2)不放回簡單隨機(jī)抽樣:如果抽取是不放回的,且每次抽取時(shí)總體內(nèi)未進(jìn)入樣本的各個(gè)個(gè)體被抽到的概率都相等,我們把這樣的抽樣方法叫做不放回簡單隨機(jī)抽樣.2、簡單隨機(jī)抽樣的特點(diǎn):(1)總體個(gè)數(shù)有限:簡單隨機(jī)抽樣要求被抽取樣本的總體個(gè)數(shù)有限,這樣便于通過樣本對總體進(jìn)行分析;(2)逐個(gè)抽取:簡單隨機(jī)抽驗(yàn)是從總體中種逐個(gè)進(jìn)行抽取,這樣便于實(shí)際操作;(3)不放回抽樣:簡單隨機(jī)抽樣是一種不放回抽樣,這樣便于樣本的獲取和一些相關(guān)的計(jì)算。(4)等可能抽樣:不僅每次從總體中抽取一個(gè)個(gè)體時(shí)各個(gè)個(gè)體被抽到的可能性相等,而且在整個(gè)抽樣過程中,各個(gè)個(gè)體被抽到的可能性也相等,從而保證了這種抽樣方法的公平性。3、抽簽法(1)定義:把總體中的N個(gè)個(gè)體編號,把號碼寫在號簽上,將號簽放在一個(gè)容器中,攪拌均勻后,每次從中抽取一個(gè)號簽,連續(xù)抽取n次,就得到一個(gè)樣本容量為n的樣本。(2)抽簽法的操作步驟:第一步,編號:將N個(gè)個(gè)體編號(號碼可以從1到N,也可以使用已有的號碼)第二步,寫簽:將N個(gè)號碼寫到大小、形狀相同的號簽上.第三步,抽簽:將號簽攪拌均勻,每次從中抽取一個(gè)號簽,連續(xù)不放回地抽取n次,并記錄其編號.第四部,定樣:從總體中找出與號簽上的號碼對應(yīng)的個(gè)體,組成樣本.(3)抽簽法的注意事項(xiàng):=1\*GB3①對個(gè)體編號時(shí),也可以利用已有的編號.=2\*GB3②制作號簽時(shí),所使用的工具(如紙條、小球等)的形狀、大小要一樣,以確保每個(gè)號簽被抽到的可能性相等.=3\*GB3③抽取樣本前總體要“均勻攪拌”,目的是讓每個(gè)號簽被抽到的機(jī)會相等.(4)優(yōu)點(diǎn)與缺點(diǎn)優(yōu)點(diǎn):簡單易形,當(dāng)總體的個(gè)體數(shù)不多時(shí),使總體處于“攪拌”均勻的狀態(tài)比較容易,此時(shí),每個(gè)個(gè)體都有均等的機(jī)會被抽中,從而能夠保證樣本的代表性;缺點(diǎn):僅適用于個(gè)體數(shù)較少的總體,當(dāng)總體的容量較大時(shí),費(fèi)時(shí)費(fèi)力又不方便,況且,如果號簽攪拌的不均勻,可能導(dǎo)致抽樣不公平。4、隨機(jī)數(shù)法(1)定義:簡單隨機(jī)抽樣中,另一個(gè)經(jīng)常被采用的方法是隨機(jī)數(shù)表法,即利用隨機(jī)試驗(yàn)或信息技術(shù)(即計(jì)算器、電子表格軟件和R統(tǒng)計(jì)軟件)生成的隨機(jī)數(shù)進(jìn)行抽樣.(2)隨機(jī)數(shù)表法步驟:=1\*GB3①把總體中的每個(gè)個(gè)體編號。=2\*GB3②用隨機(jī)數(shù)工具產(chǎn)生編號范圍內(nèi)的整數(shù)隨機(jī)數(shù).=3\*GB3③把產(chǎn)生的隨機(jī)數(shù)作為抽中的編號,使與編號對應(yīng)的個(gè)體進(jìn)入樣本。重復(fù)上述過程,知道抽足樣本所需要的數(shù)量.5、總體均值與樣本均值(1)總體均值一般地,總體中有N個(gè)個(gè)體,它們的變量值分別為Y1,Y2,…,YN,則稱Y如果總體的N個(gè)變量值中,不同的值共有k(k≤N)個(gè),不妨記為Y1,Y2,…,Yk,其中Yi出現(xiàn)的頻數(shù)(2)樣本均值如果從總體中抽取一個(gè)容量為n的樣本,它們的變量值分別為y1,y2,…,yn知識點(diǎn)2分層隨機(jī)抽樣1、分層隨機(jī)抽樣的定義:一般地,按一個(gè)或多個(gè)變量把總體劃分成若干個(gè)子總體,每個(gè)個(gè)體屬于且僅屬于一個(gè)子總體,在每個(gè)子總體中獨(dú)立地進(jìn)行簡單隨機(jī)抽樣,再把所有子總體中抽取的樣本合在一起作為總樣本,這樣的抽樣方法稱為分層隨機(jī)抽樣,每一個(gè)子總體稱為層.2、比例分配:在分層隨機(jī)抽樣中,如果每層樣本量都與層的大小成比例,那么稱這種樣本量的分配方式為比例分配.3、分層隨機(jī)抽樣的步驟(1)分層:按某種特征將總體分成若干部分(層);(2)計(jì)算抽樣比:抽樣比k=樣本容量(3)定數(shù):按抽樣比確定每層抽取的個(gè)體數(shù);(4)抽樣:每層分貝按簡單隨機(jī)抽樣的方法抽取樣本(5)成樣:綜合各層抽樣,組成樣本。4、分層隨機(jī)抽樣的相關(guān)計(jì)算關(guān)系:(1)eq\f(樣本容量n,總體的個(gè)數(shù)N)=eq\f(該層抽取的個(gè)體數(shù),該層的個(gè)體數(shù));(2)總體中某兩層的個(gè)體數(shù)之比等于樣本中這兩層抽取的個(gè)體數(shù)之比.(3)樣本的平均數(shù)和各層的樣本平均數(shù)的關(guān)系為:eq\x\to(ω)=eq\f(m,m+n)+eq\f(n,m+n)=eq\f(M,M+N)+eq\f(N,M+N).知識點(diǎn)3用樣本估計(jì)總體1、頻率分布直方圖(1)列出樣本數(shù)據(jù)的頻率分布表和頻率分布直方圖的步驟:①計(jì)算極差:找出數(shù)據(jù)的最大值與最小值,計(jì)算它們的差;②決定組距與組數(shù):當(dāng)樣本容量不超過100時(shí),按照數(shù)據(jù)的多少分成5~12組,且;③將數(shù)據(jù)分組:通常對組內(nèi)數(shù)值所在區(qū)間區(qū)左閉右開區(qū)間,最后一組取閉區(qū)間;也可以將樣本數(shù)據(jù)多取一位小數(shù)分組.④列頻率分布表:對落入各小組的數(shù)據(jù)累計(jì),算出各小數(shù)的頻數(shù),除以樣本容量,得到各小組的頻率.⑤繪制頻率分布直方圖:以數(shù)據(jù)的值為橫坐標(biāo),以的值為縱坐標(biāo)繪制直方圖。(2)頻率分布直方圖的特點(diǎn):①,②個(gè)小長方形的面積等于1,③.(3)頻率分布折線圖:將頻率分布直方圖各個(gè)長方形上邊的中點(diǎn)用線段連接起來,就得到頻率分布折線圖,一般把折線圖畫成與橫軸相連,所以橫軸左右兩端點(diǎn)沒有實(shí)際意義.(4)總體密度曲線:樣本容量不斷增大時(shí),所分組數(shù)不斷增加,分組的組距不斷縮小,頻率分布直方圖可以用一條光滑曲線來描繪,這條光滑曲線就叫做總體密度曲線.總體密度曲線精確地反映了一個(gè)總體在各個(gè)區(qū)域內(nèi)取值的規(guī)律.2、總體百分位數(shù)的估計(jì)(1)第p百分位數(shù)的定義:一般地,一組數(shù)據(jù)的第p百分位數(shù)是這樣一個(gè)值,它使得這組數(shù)據(jù)中至少有p%的數(shù)據(jù)小于或等于這個(gè)值,且至少有(100-p)%的數(shù)據(jù)大于或等于這個(gè)值.(2)計(jì)算一組n個(gè)數(shù)據(jù)的第p百分位數(shù)的步驟第1步,按從小到大排列原始數(shù)據(jù).第2步,計(jì)算i=n×p%.第3步,若i不是整數(shù),而大于i的比鄰整數(shù)為j,則第p百分位數(shù)為第j項(xiàng)數(shù)據(jù);若i是整數(shù),則第p百分位數(shù)為第i項(xiàng)與第(i+1)項(xiàng)數(shù)據(jù)的平均數(shù).3、總體集中趨勢的估計(jì)(1)眾數(shù):在樣本數(shù)據(jù)中,出現(xiàn)次數(shù)最多的那個(gè)數(shù)據(jù);(2)中位數(shù):將樣本數(shù)據(jù)按大小順序排列,若數(shù)據(jù)的個(gè)數(shù)為奇數(shù),則最中間的數(shù)據(jù)為中位數(shù),若樣本數(shù)據(jù)個(gè)數(shù)為偶數(shù),則取中間兩個(gè)數(shù)據(jù)的平均數(shù)作為中位數(shù)。(3)平均數(shù):設(shè)樣本的數(shù)據(jù)為,則樣本的算術(shù)平均數(shù)為;(4)平均數(shù)相關(guān)結(jié)論:=1\*GB3①如果兩組數(shù)和的平均數(shù)分別是和,則一組數(shù)的平均數(shù)是;=2\*GB3②如果一組數(shù)的平均數(shù)為,則一組數(shù)的平均數(shù)為。=3\*GB3③如果一組數(shù)的平均數(shù)為,則一組數(shù)的平均數(shù)為=4\*GB3④根據(jù)頻率分布直方圖求平均數(shù)、中位數(shù)和眾數(shù)平均數(shù):在頻率分布直方圖中,樣本平均數(shù)可以用每個(gè)小矩形底邊中點(diǎn)的橫坐標(biāo)與小矩形的面積的乘積之和近似代替.中位數(shù):在頻率分布直方圖中,中位數(shù)左邊和右邊的直方圖的面積應(yīng)該相等.眾數(shù):眾數(shù)是最高小矩形底邊的中點(diǎn)所對應(yīng)的數(shù)據(jù).4、總體離散程度的估計(jì)用樣本的標(biāo)準(zhǔn)差估計(jì)總體的標(biāo)準(zhǔn)差(1)數(shù)據(jù)的離散程度可以用極差、方差或標(biāo)準(zhǔn)差來描述;(2)極差(又叫全距)是一組數(shù)據(jù)的最大值和最小值之差,反映一組數(shù)據(jù)的變動(dòng)幅度;(3)樣本方差描述了一組數(shù)據(jù)圍繞平均數(shù)波動(dòng)的大??;一般地,設(shè)樣本的數(shù)據(jù)為,樣本的平均數(shù)為,定義樣本方差為;簡化公式:=(方差等于原數(shù)據(jù)平方的平均數(shù)減去平均數(shù)的平方)(4)樣本的標(biāo)準(zhǔn)差是方差的算術(shù)平方根.樣本標(biāo)準(zhǔn)差.標(biāo)準(zhǔn)差越大數(shù)據(jù)離散程度越大,數(shù)據(jù)家分散;標(biāo)準(zhǔn)差越小,數(shù)據(jù)集中在平均數(shù)周圍.(5)方差相關(guān)結(jié)論:①如果一組數(shù)的方差為,則一組數(shù)的方差為;②如果一組數(shù)的方差為,則一組數(shù)的方差為??键c(diǎn)1簡單隨機(jī)抽樣的判斷【例1】(2023春·高一課時(shí)練習(xí))(多選)關(guān)于簡單隨機(jī)抽樣,下列說法正確的是()A.它要求被抽取樣本的總體的個(gè)數(shù)有限B.它是從總體中逐個(gè)地進(jìn)行抽取C.它是一種不放回抽樣D.它是一種等可能性抽樣【答案】ABCD【解析】①簡單隨機(jī)抽樣中被抽取樣本的總體的個(gè)數(shù)有限,正確;②簡單隨機(jī)抽樣是從總體中逐個(gè)地進(jìn)行抽取,正確;.③簡單隨機(jī)抽樣是一種不放回抽樣,正確;④簡單隨機(jī)抽樣是種等可能抽樣,即每個(gè)個(gè)體被抽取的可能性相等,正確;故答案為:ABCD.【變式11】(2022春·高一課時(shí)練習(xí))下列抽樣方法是簡單隨機(jī)抽樣的是()A.將10個(gè)大小相同、質(zhì)量不相等的小球放入黑筒中攪拌均勻后,逐個(gè)地抽取5個(gè)小球B.從50個(gè)零件中有放回地抽取5個(gè)做質(zhì)量檢驗(yàn)C.從實(shí)數(shù)中逐個(gè)抽取10個(gè)做奇偶性分析D.某運(yùn)動(dòng)員從8個(gè)跑道中隨機(jī)選取一個(gè)跑道【答案】D【解析】由于小球質(zhì)量不等,導(dǎo)致每個(gè)小球被抽到的機(jī)會不等,所以選項(xiàng)A不屬于簡單隨機(jī)抽樣;選項(xiàng)B錯(cuò)在“有放回”抽?。贿x項(xiàng)C錯(cuò)在總體容量無限.故答案為:D.【變式12】(2023·全國·高一專題練習(xí))下列抽取樣本的方式是簡單隨機(jī)抽樣的有(
)A.某連隊(duì)從200名官兵中,挑選出50名最優(yōu)秀的官兵趕赴某地參加救災(zāi)工作;B.箱子中有100支鉛筆,從中選10支進(jìn)行試驗(yàn),在抽樣操作時(shí),從中任意拿出一支檢測后再放回箱子;C.從50個(gè)個(gè)體中一次性抽取8個(gè)個(gè)體作為樣本;D.從2000個(gè)燈泡中不放回地逐個(gè)抽取20個(gè)進(jìn)行質(zhì)量檢查.【答案】BD【解析】對A:由于挑選出50名最優(yōu)秀的官兵,不具備隨機(jī)性,故不是簡單隨機(jī)抽樣,A錯(cuò)誤;對B:簡單隨機(jī)抽樣分為放回簡單隨機(jī)抽樣和不放回簡單隨機(jī)抽樣,從中任意拿出一支鉛筆檢測后再放回箱子,是有放回的抽樣,屬于放回簡單隨機(jī)抽樣,B正確;對C:簡單隨機(jī)抽樣要求是逐個(gè)抽取,而選項(xiàng)中從50個(gè)個(gè)體中一次性抽取8個(gè)個(gè)體作為樣本,不是逐個(gè)抽取,所以不是簡單隨機(jī)抽樣,C錯(cuò)誤;對D:從2000個(gè)燈泡中不放回地逐個(gè)抽取20個(gè)進(jìn)行質(zhì)量檢查,是簡單隨機(jī)抽樣,D正確.故選:BD.【變式13】(2022·高一課時(shí)練習(xí))(多選)下面抽樣方法不屬于簡單隨機(jī)抽樣的是()A.從平面直角坐標(biāo)系中抽取5個(gè)點(diǎn)作為樣本B.某飲料公司從倉庫中的1000箱可樂中一次性抽取20箱進(jìn)行質(zhì)量檢查C.某連隊(duì)從200名戰(zhàn)士中,挑選出50名最優(yōu)秀的戰(zhàn)士去參加搶險(xiǎn)救災(zāi)活動(dòng)D.從10臺中逐個(gè)不放回地隨機(jī)抽取2臺進(jìn)行質(zhì)量檢驗(yàn)(假設(shè)10臺已編號,對編號進(jìn)行隨機(jī)抽取.【答案】AC【解析】選項(xiàng)A中,平面直角坐標(biāo)系中有無數(shù)個(gè)點(diǎn),這與要求總體中的個(gè)體數(shù)有限不相符,故錯(cuò)誤;選項(xiàng)B中,一次性抽取與逐次不放回抽取等價(jià),所以符合簡單隨機(jī)抽樣,故正確;選項(xiàng)C中,50名戰(zhàn)士是最優(yōu)秀的,不符合簡單隨機(jī)抽樣的等可能性,故錯(cuò)誤;選項(xiàng)D符合簡單隨機(jī)抽樣的要求.故選:AC.考點(diǎn)2簡單隨機(jī)抽樣的概率【例2】(2022春·江蘇鹽城·高三江蘇省響水中學(xué)校考階段練習(xí))為了解高三學(xué)生對“社會主義核心價(jià)值觀”的學(xué)習(xí)情況,現(xiàn)從全年級人中抽取人參加測試.首先由簡單隨機(jī)抽樣剔除名學(xué)生,學(xué)生甲在這名學(xué)生之中,然后剩余的名學(xué)生再用分層抽樣的方法抽取,把名學(xué)生隨機(jī)分成組,每組人,學(xué)生乙被分在第四組,則()A.甲入選的概率為且乙入選的概率為B.甲與乙入選的概率不相等且乙入選的概率小于甲入選的概率C.這名學(xué)生入選的概率都相等,且為D.這名學(xué)生入選的概率都相等,且為【答案】C【解析】由于隨機(jī)抽樣對于每個(gè)人都是公平的,因此,這名學(xué)生入選的概率都相等,且為.ABD選項(xiàng)均錯(cuò),C對.故選:C.【變式21】(2022春·全國·高一課時(shí)練習(xí))對一個(gè)容量為的總體抽取容量為的樣本,選取簡單隨機(jī)抽樣和分層隨機(jī)抽樣兩種不同方法抽取樣本,在簡單隨機(jī)抽樣中,總體中每個(gè)個(gè)體被抽中的概率為,某個(gè)體第一次被抽中的概率為;在分層隨機(jī)抽樣中,總體中每個(gè)個(gè)體被抽中的概率分別為則()A.B.C.D.,沒有關(guān)系【答案】B【解析】根據(jù)抽樣調(diào)查的原理可得簡單隨機(jī)抽樣,分層抽樣都必須滿足每個(gè)個(gè)體被抽到的概率相等,即.故選:B.【變式22】(2022·全國·高一課時(shí)練習(xí))某校高一年級從815名學(xué)生中選取30名學(xué)生參加慶祝建黨98周年的大合唱節(jié)目,若采用下面的方法選?。合扔煤唵坞S機(jī)抽樣從815人中剔除5人,剩下的810人再按系統(tǒng)抽樣的方法抽取,則每人入選的概率()A.不全相等B.均不相等C.都相等,且為D.都相等,且為【答案】C【解析】抽樣要保證機(jī)會均等,故從名學(xué)生中抽取名,概率為,故選C.【變式23】用簡單隨機(jī)抽樣方法從含有10個(gè)個(gè)體的總體中,抽取一個(gè)容量為3的樣本,其中個(gè)體甲被第三次抽到的可能性為().A.B.C.D.【答案】D【解析】在抽樣過程中,個(gè)體甲每一次被抽中的概率是相等的,由于總體容量為10,所以“個(gè)體甲被第三次抽到的可能性為”.故選:D.考點(diǎn)3抽簽法與隨機(jī)數(shù)表法【例3】(2022秋·高一課時(shí)練習(xí))某學(xué)校數(shù)學(xué)組要從11名數(shù)學(xué)老師中推選3名老師參加市里舉辦的教學(xué)能手比賽,制作了11個(gè)形狀、大小相同的簽,抽簽中確保公平性的關(guān)鍵是()A.制簽B.?dāng)嚢杈鶆駽.逐一抽取D.抽取后不放回【答案】B【解析】確保公平性要保證每個(gè)簽抽到是等概率的,因此抽簽法要做到攪拌均勻,才具有公平性.故選:B【變式31】(2023·全國·高一專題練習(xí))下列抽樣試驗(yàn)中,適合用抽簽法的是()A.從某廠生產(chǎn)的5000件產(chǎn)品中抽取600件進(jìn)行質(zhì)量檢驗(yàn)B.從某廠生產(chǎn)的兩箱(每箱18件)產(chǎn)品中抽取6件進(jìn)行質(zhì)量檢驗(yàn)C.從甲、乙兩廠生產(chǎn)的兩箱(每箱18件)產(chǎn)品中抽取6件進(jìn)行質(zhì)量檢驗(yàn)D.從某廠生產(chǎn)的5000件產(chǎn)品中抽取10件進(jìn)行質(zhì)量檢驗(yàn)【答案】B【解析】因?yàn)锳,D中總體的個(gè)體數(shù)較大,不適合用抽簽法;C中甲、乙兩廠生產(chǎn)的產(chǎn)品質(zhì)量可能差別較大,因此未達(dá)到攪拌均勻的條件,也不適合用抽簽法;B中總體容量和樣本容量都較小,且同廠生產(chǎn)的產(chǎn)品可視為攪拌均勻了.故選:B【變式32】(2023·全國·高一專題練習(xí))總體由編號為01,02,…,19,20的20個(gè)個(gè)體組成,利用下面的隨機(jī)數(shù)表選取6個(gè)個(gè)體,選取方法是從隨機(jī)數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個(gè)數(shù)字,則選出來的第6個(gè)個(gè)體的編號為()7816
6572
0802
6314
0702
4369
1128
0598A.07B.02C.11D.05【答案】D【解析】由題意可知,選出的6個(gè)個(gè)體的編號分別為:08,02,14,07,11,05,故選:D.【變式33】(2022秋·河南南陽·高一??茧A段練習(xí))現(xiàn)從700瓶水中抽取5瓶進(jìn)行檢驗(yàn),利用隨機(jī)數(shù)表抽取樣本時(shí),先將700瓶水編號,可以編為000,001,002,…,699,在隨機(jī)數(shù)表中任選一個(gè)數(shù),例如選出第8行第6列的數(shù)3.(下面摘取了附表1的第8行與第9行)6301637859169555671998105071751286735807443952387933211234297864560782524207443815510013429966027954規(guī)定從選定的數(shù)3開始向右讀,得到的第5個(gè)樣本的編號為()A.719B.556C.512D.050【答案】D【解析】從3開始向右讀,第一個(gè)符合條件的數(shù)為378,第二個(gè)數(shù)為591,第三個(gè)數(shù)為695,第四個(gè)數(shù)為556,第五個(gè)數(shù)為719,大于699,不符合,第六個(gè)數(shù)為981,大于699,不符合,第七個(gè)數(shù)為050,符合,所以第5個(gè)樣本為050.故選:D.考點(diǎn)4分層隨機(jī)抽樣的判斷【例4】(2023·全國·高一專題練習(xí))分層抽樣使用的范圍是()A.總體中個(gè)數(shù)較少B.總體中個(gè)數(shù)較多C.總體由個(gè)體差異明顯的幾部分組成D.以上都可以【答案】C【解析】根據(jù)分層抽樣的概念知,總體由個(gè)體差異明顯的幾部分構(gòu)成,可考慮分層抽樣,故選:C【變式41】(2022春·全國·高一課時(shí)練習(xí))某地區(qū)的高一新生中,來自東部平原地區(qū)的學(xué)生有2400人,中部丘陵地區(qū)的學(xué)生有1600人,西部山區(qū)的學(xué)生有1000人.計(jì)劃從中選取100人調(diào)查學(xué)生的視力情況,現(xiàn)已了解到來自東部、中部、西部三個(gè)地區(qū)學(xué)生的視力情況有較大差異,而這三個(gè)地區(qū)男、女生視力情況差異不大,在下面的抽樣方法中,最合理的抽樣方法是()A.抽簽法B.按性別分層抽樣C.隨機(jī)數(shù)法D.按地區(qū)分層抽樣【答案】D【解析】由于來自東部、中部、西部三個(gè)地區(qū)學(xué)生的視力情況有較大差異,故最合理的抽樣方法是按地區(qū)分層抽樣.故選:D【變式42】(2022·全國·高一專題練習(xí))某地區(qū)小學(xué)、初中、高中三個(gè)學(xué)段學(xué)生的視力情況有較大差異,而男、女生視力情況差異不大,為了解該地區(qū)中小學(xué)生的視力情況,最合理的抽樣方法是()A.簡單隨機(jī)抽樣B.按性別分層隨機(jī)抽樣C.按學(xué)段分層隨機(jī)抽樣D.其他抽樣方法【答案】C【解析】因?yàn)槟车貐^(qū)小學(xué)、初中、高中三個(gè)學(xué)段學(xué)生的視力情況有較大差異,男、女生視力情況差異不大,然而學(xué)段的視力情況有較大差異,則應(yīng)按學(xué)段分層抽樣,故選:.【變式43】(2022春·全國·高一課時(shí)練習(xí))下列抽樣調(diào)查中,最適合用分層抽樣法抽樣的是()A.某興趣小組10人決定去郊游,選擇1人去購買所需物品B.從100名學(xué)生中抽取20人調(diào)查其身體發(fā)育情況C.某校有2000名學(xué)生,其中高一年級700人,高二年級600人,高三年級700人,現(xiàn)從中抽取20人了解其在校學(xué)習(xí)壓力的情況D.從某生產(chǎn)線的30名工人中選出5人調(diào)查其工作強(qiáng)度情況【答案】C【解析】對于A,10人沒有明顯差異,且只選1人,所以不需要分層抽樣;對于B,100名學(xué)生沒有明顯差異,所以不適用分層抽樣;對于C,三個(gè)年級的學(xué)生個(gè)體差異比較明顯,所以適用分層抽樣;對于D,30名工人沒有明顯差異,所以不適用分層抽樣,故選:C考點(diǎn)5分層隨機(jī)抽樣的計(jì)算【例5】(2022秋·河南南陽·高一校聯(lián)考階段練習(xí))某中學(xué)有高中生1800人,初中生1200人,為了解學(xué)生課外鍛煉情況,用分層抽樣的方法從學(xué)生中抽取一個(gè)容量為的樣本.已知從高中生中抽取的人數(shù)比從初中生中抽取的人數(shù)多24,則()A.48B.72C.60D.120【答案】D【解析】由題意可知:分層抽樣按照的比例進(jìn)行抽取,則高中生抽取的人數(shù)為:;初中生抽取的人數(shù)為:;因?yàn)閺母咧猩谐槿〉娜藬?shù)比從初中生中抽取的人數(shù)多24,則,解得:,故選:.【變式51】(2022秋·河南·高一武陟縣第一中學(xué)校聯(lián)考階段練習(xí))宏偉公司有職工750人,其中青年職工350人,中年職工250人,老年職工150人,為了了解該公司職工的健康狀況,用分層抽樣的方法從中抽取樣本,若樣本中的中年職工為5人,則樣本容量為()A.7B.15C.25D.35【答案】B【解析】因?yàn)槭褂梅謱映闃?,所以樣本容量?故選:B.【變式52】(2022春·福建泉州·高一??茧A段練習(xí))某大學(xué)為了了解在校本科生對參加某項(xiàng)社會實(shí)踐活動(dòng)的意向,擬采用分層抽樣的方法,從該校四個(gè)年級的本科生中抽取一個(gè)容量為的樣本進(jìn)行調(diào)查.已知該校一年級、二年級、三年級、四年級的本科生人數(shù)之比為,則應(yīng)從一年級本科生中抽取學(xué)生的人數(shù)是()A.B.C.D.【答案】C【解析】該校一年級、二年級、三年級、四年級的本科生人數(shù)之比為,應(yīng)從一年級本科生中抽取學(xué)生人數(shù)為:.故選:C.【變式53】(2023春·黑龍江牡丹江·高一校考階段練習(xí))電影《長津湖之水門橋》于2022年2月1日上映.某新聞機(jī)構(gòu)想了解市民對《長津湖之水門橋》的評價(jià),決定從某市3個(gè)區(qū)按人口數(shù)用分層隨機(jī)抽樣的方法抽取一個(gè)樣本.若3個(gè)區(qū)人口數(shù)之比為2:3:5,且人口最多的一個(gè)區(qū)抽出了100人,則這個(gè)樣本的容量為().A.100B.160C.200D.240【答案】C【解析】由3個(gè)區(qū)人口數(shù)之比為2:3:5,得第三個(gè)區(qū)所抽取的人數(shù)最多,所占比例為50%.又因?yàn)榇藚^(qū)抽取了100人,所以3個(gè)區(qū)所抽取的總?cè)藬?shù)為100÷50%=200,即這個(gè)樣本的容量為200.故選:C.考點(diǎn)6總體百分位數(shù)的計(jì)算【例6】(2022春·湖北襄陽·高一襄陽四中??茧A段練習(xí))給出下列數(shù)據(jù):2.1,3.0,3.2,3.8,3.4,4.0,4.2,4.4,5.3,5.6.則這組數(shù)據(jù)的第25百分位數(shù)是()A.3.2B.3.0C.4.4D.2.5【答案】A【解析】由題意,一組數(shù)據(jù)2.1,3.0,3.2,3.8,3.4,4.0,4.2,4.4,5.3,5.6,從小到大為:2.1,3.0,3.2,3.4,3.8,4.0,4.2,4.4,5.3,5.6,因?yàn)?,所以該組數(shù)據(jù)的25百分位數(shù)是.故選:A.【變式61】(2022春·山東聊城·高一山東聊城一中校考階段練習(xí))名跳高運(yùn)動(dòng)員參加一項(xiàng)校際比賽,成績分別為、、、、、、、、、、、、、、、(單位:),則比賽成績的分位數(shù)是()A.B.C.D.【答案】C【解析】將成績由小到大進(jìn)行排列:、、、、、、、、、、、、、、、,,故比賽成績的分位數(shù)是.故選:C.【變式62】(2022秋·河南·高一武陟縣第一中學(xué)校聯(lián)考階段練習(xí))已知按從小到大順序排列的兩組數(shù)據(jù):甲組:;乙組:,若這兩組數(shù)據(jù)的第30百分位數(shù)?第50百分位數(shù)都分別對應(yīng)相等,則等于()A.B.C.D.【答案】A【解析】因?yàn)?,甲組:第30百分位數(shù)為,第50百分位數(shù)為,乙組:第30百分位數(shù)為,第50百分位數(shù)為,由已知得:,,解得,所以故選:A【變式63】(2022春·安徽合肥·高一校考階段練習(xí))棉花的纖維長度是棉花質(zhì)量的重要指標(biāo).在一批棉花中隨機(jī)抽測了60根棉花的纖維長度(單位:mm),按從小到大排序結(jié)果如下:252833505258596061628286113115140143146170175195202206233236238255260263264265293293294296301302303305305306321323325326328340343346348350352355357357358360370380383385由此,你估計(jì)這批棉花的第95百分位數(shù)為().A.B.C.D.【答案】B【解析】∵,∴第百分位數(shù)為第57、58項(xiàng)數(shù)據(jù)的平均值,第百分位數(shù)為.故選:.考點(diǎn)7平均數(shù)、中位數(shù)、眾數(shù)的計(jì)算【例7】(2023春·甘肅金昌·高一永昌縣第一高級中學(xué)??茧A段練習(xí))一個(gè)樣本的數(shù)據(jù)在60左右波動(dòng),各個(gè)數(shù)據(jù)都減去60后得到一組新數(shù)據(jù),算得其平均數(shù)是6,則這個(gè)樣本的平均數(shù)是()A.6.6B.6C.66D.60【答案】C【解析】設(shè)原來的一組數(shù)據(jù)是,則每一個(gè)數(shù)據(jù)都減去得到新數(shù)據(jù)且求得新數(shù)據(jù)的平均數(shù)是,所以,即,所以,故樣本的平均數(shù)是.故選:C【變式71】(2022春·山西朔州·高一??茧A段練習(xí))一個(gè)公司有8名員工,其中6位員工的月工資分別為6200、6300、6500、7100、7500、7600,另兩位員工的月工資數(shù)據(jù)不清楚,那么8位員工月工資的中位數(shù)不可能是()A.6800B.7000C.7200D.7400【答案】D【解析】∵一個(gè)公司有8名員工,其中6名員工的月工資分別為6200,6300,6500,7100,7500,7600,∴當(dāng)另外兩名員工的工資都小于6300時(shí),中位數(shù)為(6300+6500)÷2=6400,當(dāng)另外兩名員工的工資都大于7500時(shí),中位數(shù)為(7100+7500)÷2=7300,∴8位員工月工資的中位數(shù)的取值區(qū)間為[6400,7300],∴8位員工月工資的中位數(shù)不可能是7400.故選:D.【變式72】(2022春·湖南永州·高一統(tǒng)考期末)已知一組數(shù)據(jù)為30,40,50,50,55,60,70,80,90,則其極差、第50百分位數(shù)和眾數(shù)的大小關(guān)系是()A.極差第50百分位數(shù)眾數(shù)B.眾數(shù)第50百分位數(shù)極差C.極差眾數(shù)第50百分位數(shù)D.極差第50百分位數(shù)眾數(shù)【答案】A【解析】極差為,因?yàn)?,所以第5個(gè)數(shù)55即為第50百分位數(shù),又眾數(shù)為50,所以它們大小關(guān)系是極差第50百分位數(shù)眾數(shù).故選:A.【變式73】(2023春·江西南昌·高一南昌市外國語學(xué)校校考階段練習(xí))某學(xué)校高一年級有300名男生,200名女生,通過分層隨機(jī)抽樣的方法調(diào)查數(shù)學(xué)考試成績,抽取總樣本量為50,男生平均成績?yōu)?20分,女生平均成績?yōu)?10分,那么可以推測高一年級學(xué)生的數(shù)學(xué)平均成績約為()A.110分B.115分C.116分D.120分【答案】C【解析】由題意,應(yīng)抽取男生(人),應(yīng)抽取女生(人),所以推測高一年級學(xué)生的數(shù)學(xué)平均成績約為(分).故選:C考點(diǎn)8方差、標(biāo)準(zhǔn)差的計(jì)算【例8】(2022春·河北承德·高一校聯(lián)考階段練習(xí))已知一組數(shù)據(jù),,,1,1,3,4,6,6,7的平均數(shù)為3,則這組數(shù)據(jù)方差的最小值為()A.5B.6C.7D.8【答案】C【解析】由題意得,得,所以這組數(shù)據(jù)的方差,所以這組數(shù)據(jù)方差的最小值為7.故選:C.【變式81】(2022春·山東·高一濟(jì)南市章丘區(qū)第四中學(xué)校聯(lián)考階段練習(xí))已知一組數(shù)據(jù):的平均數(shù)是10,方差是4,則,,,,,的方差是()A.16B.14C.12D.11【答案】A【解析】由題意,數(shù)據(jù),,,,,的平均數(shù)為,所以方差為.故選:A.【變式82】(2022春·山東青島·高一山東省萊西市第一中學(xué)校考階段練習(xí))已知某5個(gè)數(shù)據(jù)的平均數(shù)為5,方差為3,現(xiàn)加入4、6兩個(gè)數(shù),此時(shí)這7個(gè)數(shù)據(jù)的平均數(shù)為,方差為,則()A.B.C.D.【答案】B【解析】由題意可得:,.故選:B【變式83】(2023春·遼寧大連·高一大連市一0三中學(xué)??茧A段練習(xí))經(jīng)過簡單隨機(jī)抽樣獲得的樣本數(shù)據(jù)為,且數(shù)據(jù)的平均數(shù)為,方差為,則下列說法正確的是()A.若數(shù)據(jù),方差,則所有的數(shù)據(jù)都為0B.若數(shù)據(jù),的平均數(shù)為,則的平均數(shù)為6C.若數(shù)據(jù),的方差為,則的方差為12D.若數(shù)據(jù),的分位數(shù)為90,則可以估計(jì)總體中有至少有的數(shù)據(jù)不大于90【答案】C【解析】對于,數(shù)據(jù)的方差時(shí),說明所有的數(shù)據(jù)都相等,但不一定為,故選項(xiàng)錯(cuò)誤;對于,數(shù)據(jù),的平均數(shù)為,數(shù)據(jù)的平均數(shù)為,故選項(xiàng)錯(cuò)誤;對于,數(shù)據(jù)的方差為,數(shù)據(jù)的方差為,故選項(xiàng)正確;對于,數(shù)據(jù),的分位數(shù)為90,則可以估計(jì)總體中有至少有的數(shù)據(jù)大于90,故選項(xiàng)錯(cuò)誤,故選:.考點(diǎn)9頻率分布直方圖的綜合【例9】(2022春·湖北襄陽·高一襄陽四中??茧A段練習(xí))某市要對全市出租車司機(jī)的年齡(單位:歲)進(jìn)行調(diào)查,現(xiàn)從中隨機(jī)抽出100名司機(jī),已知抽到的司機(jī)年齡都在區(qū)間[20,45]內(nèi),根據(jù)調(diào)查結(jié)果得出司機(jī)年齡情況的殘缺的頻率分布直方圖如圖所示,利用這個(gè)殘缺的頻率分布直方圖估計(jì)該市出租車司機(jī)年齡的中位數(shù)是()A.31.6歲B.32.6歲C.33.6歲D.36.6歲【答案】C【解析】根據(jù)頻率分布直方圖中的頻率和為1,設(shè)的頻率為,可列式得:又因?yàn)榈念l率為,的頻率為,所以中位數(shù)位于之間,設(shè)為可列示為歲,故選:C【變式91】(2023春·江西南昌·高一??茧A段練習(xí))某小區(qū)為了提高小區(qū)內(nèi)人員的讀書興趣,準(zhǔn)備舉辦讀書活動(dòng),并購買一定數(shù)量的書籍豐富小區(qū)圖書站.由于不同年齡段的人看不同類型的書籍,為了合理配備資源,現(xiàn)對小區(qū)內(nèi)看書人員進(jìn)行年齡調(diào)查,隨機(jī)抽取了40名讀書者進(jìn)行調(diào)查,將他們的年齡(單位:歲)分成6段:,,后得到如圖所示的頻率分布直方圖.(1)求在這40名讀書者中年齡分布在的人數(shù);(2)求這40名讀書者的年齡的百分之50分位數(shù).【答案】(1)30;(2)55【解析】(1)由頻率分布直方圖知,年齡在的頻率為,故這40名讀書者中年齡分布在的人數(shù)為.(2)設(shè)這40名讀書者年齡的百分之50分位數(shù)為x,則,解得,故這40名讀書者年齡的百分之50分位數(shù)為55.【變式92】(2022春·湖北襄陽·高一襄陽四中??茧A段練習(xí))支付也稱為移動(dòng)支付(MobilePayment),是當(dāng)今社會比較流行的一種付款方式.某金融機(jī)構(gòu)為了了解移動(dòng)支付在大眾中的熟知度,對15歲至65歲的人群作了問題為“你會使用移動(dòng)支付嗎?”的調(diào)查,把回答“會”的100個(gè)人按照年齡分成5組,繪制成如圖所示的頻數(shù)分布表和頻率分布直方圖.組數(shù)第1組第2組第3組第4組第5組分組[15,25)[25,35)[35,45)[45,55)[55,65]頻數(shù)x35y123(1)求x,y,a的值;(2)若從第1,3組中用比例分配的分層隨機(jī)抽樣的方法抽取5人,求兩組中分別抽取的人數(shù).【答案】(1),,;(2)2人,3人【解析】(1)由題意可知,,所以,從而.(2)第1,3組共有50人,所以抽取的比例,則從第1組抽取的人數(shù)為,從第3組抽取的人數(shù)為.【變式93】(2022秋·遼寧鐵嶺·高一昌圖縣第一高級中學(xué)校考階段練習(xí))為了調(diào)查某市市民對出行的滿意程度,研究人員隨機(jī)抽取了1000名市民進(jìn)行調(diào)查,并將滿意程度以分?jǐn)?shù)的形式統(tǒng)計(jì)成如圖所示的頻率分布直方圖,其中.(1)求、的值;(2)求被調(diào)查的市民的滿意程度的平均數(shù)、眾數(shù)、中位數(shù);(3)若按照分層抽樣從,中隨機(jī)抽取8人,應(yīng)如何抽?。俊敬鸢浮浚?),;(2)平均數(shù)為74.9,眾數(shù)為75,中位數(shù)為75.14(3)從應(yīng)抽取2人,從應(yīng)抽取6人【解析】(1)由題意得,所以,又,所以,.(2)平均數(shù)為,眾數(shù)為,中位數(shù)為.(3)根據(jù)頻率分布直方圖可知的頻數(shù)有,的頻數(shù)有,所以按照分層抽樣從應(yīng)抽取人,從應(yīng)抽取人.考點(diǎn)10五種特征數(shù)在實(shí)際問題中的應(yīng)用【例10】(2022秋·浙江衢州·高一校考階段練習(xí))因工作需求,張先生的汽車一周需兩次加同一種汽油.現(xiàn)張先生本周按照以下兩種方案加油(兩次加油時(shí)油價(jià)不一樣),甲方案:每次購買汽油的量一定;乙方案:每次加油的錢數(shù)一定.問哪種加油的方案更經(jīng)濟(jì)?()A.甲方案B.乙方案C.一樣D.無法確定【答案】B【解析】設(shè)兩次加油的油價(jià)分別為,(,且),甲方案每次加油的量為;乙方案每次加油的錢數(shù)為,則甲方案的平均油價(jià)為:,乙方案的平均油價(jià)為:,因?yàn)?,所以,即乙方案更?jīng)濟(jì).故選:B.【變式101】(2022春·福建福州·高一福建省福州第一中學(xué)??计谀┰谑M(jìn)八的比賽中,16名參賽同學(xué)成績各不相同,取成績排名前八的選手進(jìn)入下一輪比賽.小明同學(xué)已經(jīng)知道了自己的成績,為了判斷自己是否能進(jìn)入下一輪比賽,他還需要知道16名同學(xué)成績的()A.平均數(shù)B.中位數(shù)C.眾數(shù)D.方差【答案】B【解析】選項(xiàng)A:平均數(shù)只是表示16名同學(xué)成績的平均水平,不能得到16名同學(xué)成績的大小順序以及是否進(jìn)入了前8名的判定標(biāo)準(zhǔn),因而不能判斷小明同學(xué)是否位于前8名.判斷錯(cuò)誤;選項(xiàng)B:中位數(shù)是將這16名同學(xué)成績從小到大排列,取第8名與第9名同學(xué)成績的平均值得到的,因而通過與小明同學(xué)成績進(jìn)行比較即可得出小明同學(xué)是否位于前8名.判斷正確;選項(xiàng)C:眾數(shù)只是表示16名同學(xué)成績中重復(fù)最多的成績,不能得到16名同學(xué)成績的大小順序以及是否進(jìn)入了前8名的判定標(biāo)準(zhǔn),因而不能判斷小明同學(xué)是否位于前8名.判斷錯(cuò)誤;選項(xiàng)D:方差只是表示16名同學(xué)成績的波動(dòng)幅度,不能得到16名同學(xué)成績的大小順序以及是否進(jìn)入了前8名的判定標(biāo)準(zhǔn),因而不能判斷小明同學(xué)是否位于前8名.判斷錯(cuò)誤.故選:B【變式102】(2023·全國·高一專題練習(xí))甲、乙、丙、丁四人參加射擊項(xiàng)目選拔賽,成績?nèi)缦?,則他們中參加奧運(yùn)會的最佳人選是_____.甲乙丙丁平均環(huán)數(shù)8.58.88.88方
差3.53.52.18.7【答案】丙【解析】由平均數(shù)及方差的定義知,丙的平均成績較高且較穩(wěn)定.故答案為:丙【變式103】(2023·全國·高一專題練習(xí))高一三班有男同學(xué)27名、女同學(xué)21名,在一次語文測驗(yàn)中,男同學(xué)的平均分是82分,中位數(shù)是75分,女同學(xué)的平均分是80分,中位數(shù)是80分.(1)求這次測驗(yàn)全班的平均分(精確到0.01);(2)估計(jì)全班成績在80分以下(含80分)的同學(xué)至少有多少人?(3)分析男同學(xué)的平均分與中位數(shù)相差較大的主要原因是什么?【答案】(1)(分);(2)25人;(3)答案見解析【解析】(1)由題意知,27名男同學(xué)的平均分是82分,21名女同學(xué)的平均分是80分,所以這次語文測驗(yàn)全班的平均分為(分).(2)因?yàn)槟型瑢W(xué)的中位數(shù)是75分,所以至少有14人得分不超過75分,又因?yàn)榕瑢W(xué)的中位數(shù)是80分,所以至少有11人得分不超過80分.所以全班至少有25人得分在80分以下(含80分).(3)男同學(xué)的平均分與中位數(shù)的差別較大,說明男同學(xué)的得分兩極分化現(xiàn)象嚴(yán)重,得分高的和得分低的相差較大.1.(2023·全國·高一專題練習(xí))下列哪種工作不能使用抽樣方法進(jìn)行()A.測定一批炮彈的射程B.測定海洋水域的某種微生物的含量C.高考結(jié)束后,國家高考命題中心計(jì)算數(shù)學(xué)試卷中每個(gè)題目的難度D.檢測某學(xué)校全體高三學(xué)生的身高和體重的情況【答案】D【解析】抽樣是為了用總體中的部分個(gè)體(即樣本)來估計(jì)總體的情況,選項(xiàng)A、B、C都是從總體中抽取部分個(gè)體進(jìn)行檢驗(yàn).選項(xiàng)D是檢測全體學(xué)生的身體狀況,所以,要對全體學(xué)生的身體都進(jìn)行檢驗(yàn),而不能采取抽樣的方法.故選:D.2.(2022春·湖南長沙·高一湖南師大附中校考階段練習(xí))在以下調(diào)查中,適合用全面調(diào)查的是()A.調(diào)查一個(gè)班級學(xué)生每周的體育鍛煉時(shí)間B.調(diào)查一個(gè)地區(qū)結(jié)核病的發(fā)病率C.調(diào)查一批炮彈的殺傷半徑D.調(diào)查一個(gè)水庫所有魚中草魚所占的比例【答案】A【解析】全面調(diào)查是對調(diào)查對象的所有單位一一進(jìn)行調(diào)查的調(diào)查方式,所以,A選項(xiàng)中的問題適合全面調(diào)查,BCD選項(xiàng)中的調(diào)查適合抽樣調(diào)查.故選:A.3.(2022秋·甘肅白銀·高一??计谥校倌嘲鄶?shù)學(xué)期中考試有14人在120分以上,35人在90~119分,7人不及格,現(xiàn)從中抽出8人研討進(jìn)一步改進(jìn)教與學(xué);②高一某班級春節(jié)聚會,要產(chǎn)生兩位“幸運(yùn)者”.上述兩件事,合適的抽樣方法分別為()A.分層抽樣,簡單隨機(jī)抽樣 B.簡單隨機(jī)抽樣,分層抽樣C.簡單隨機(jī)抽樣,簡單隨機(jī)抽樣 D.分層抽樣,分層抽樣【答案】A【解析】①由于學(xué)生的成績是差異比較大的幾部分,應(yīng)用分層抽樣.②由于總體與樣本容量較小,應(yīng)用簡單隨機(jī)抽樣.故選:A4.(2023·全國·高一專題練習(xí))為了支持民營企業(yè)發(fā)展壯大,幫助民營企業(yè)解決發(fā)展中的困難,某市政府采用分層抽樣調(diào)研走訪各層次的民營企業(yè).該市的小型企業(yè)、中型企業(yè)、大型企業(yè)分別有900家、90家、10家.若大型企業(yè)的抽樣家數(shù)是2,則中型企業(yè)的抽樣家數(shù)應(yīng)該是()A.180 B.90 C.18 D.9【答案】C【解析】該市中型企業(yè)和大型企業(yè)的家數(shù)比為,由分層抽樣的意義可得中型企業(yè)的抽樣家數(shù)應(yīng)該是.故選:C.5.(2023春·甘肅金昌·高一永昌縣第一高級中學(xué)??计谥校┠彻S生產(chǎn)的A,B,C三種不同型號的產(chǎn)品數(shù)量之比為2:3:5,為研究這三種產(chǎn)品的質(zhì)量,現(xiàn)用分層抽樣的方法從該工廠生產(chǎn)的A,B,C三種產(chǎn)品中抽出100件進(jìn)行測試,則應(yīng)該抽取的A型號產(chǎn)品的件數(shù)為()A.20 B.30 C.50 D.80【答案】A【解析】某工廠生產(chǎn)的A,B,C三種不同型號產(chǎn)品的數(shù)量之比為,則A被抽的抽樣比為,所以抽出100件產(chǎn)品中A型號產(chǎn)品的件數(shù)為,故選:A6.(2022春·河北邢臺·高一校聯(lián)考階段練習(xí))已知某7個(gè)數(shù)的平均數(shù)為4,方差為2,現(xiàn)加入一個(gè)新數(shù)據(jù)4,此時(shí)這8個(gè)數(shù)的平均數(shù)為,方差為,則()A., B.,C., D.,【答案】D【解析】設(shè)7個(gè)數(shù)為,則,,所以,所以,則這個(gè)數(shù)的平均數(shù)為,方差為.故選:D.7.(2022春·廣東揭陽·高一普寧市華僑中學(xué)??茧A段練習(xí))(多選)為了解某市高三畢業(yè)生升學(xué)考試中數(shù)學(xué)成績的情況,從參加考試的學(xué)生中隨機(jī)地抽查了名學(xué)生的數(shù)學(xué)成績進(jìn)行統(tǒng)計(jì)分析,在這個(gè)問題中,下列說法錯(cuò)誤的是()A.總體指的是該市參加升學(xué)考試的全體學(xué)生B.個(gè)體指的是名學(xué)生中的每一名學(xué)生C.樣本容量指的是名學(xué)生D.樣本是指名學(xué)生的數(shù)學(xué)升學(xué)考試成績【答案】ABC【解析】因?yàn)橐私饽呈懈呷厴I(yè)生升學(xué)考試中學(xué)生的數(shù)學(xué)成績的情況,所以要進(jìn)行成績統(tǒng)計(jì),因此,本題的總體是該市高三畢業(yè)生的數(shù)學(xué)成績,個(gè)體是指每名學(xué)生的成績,樣本容量是,因此樣本是指名學(xué)生的數(shù)學(xué)成績,故選:ABC8.(2022春·貴州六盤水·高一??茧A段練習(xí))(多選)已知一組數(shù)據(jù)丟失了其中一個(gè)大于3的數(shù)據(jù),剩下的六個(gè)數(shù)據(jù)分別是3,3,5,3,6,11,若這組數(shù)據(jù)的平均數(shù)與眾數(shù)的和是中位數(shù)的2倍,則丟失的數(shù)據(jù)可能是()A.4 B.12 C.18 D.20【答案】AC【解析】設(shè)丟失的數(shù)據(jù)為,則這七個(gè)數(shù)據(jù)的平均數(shù)為,眾數(shù)是3,若,則中位數(shù)為,此時(shí),解得;若,則中位數(shù)為5,此時(shí),解得.綜上所述,丟失的數(shù)據(jù)可能是4,18.故選:AC.9.(2023春·江西上饒·高一校聯(lián)考階段練習(xí))(多選)已知某選手40次射擊成績的環(huán)數(shù)如下表所示.成績678910次數(shù)4101196下列說法正確的是()A.這40次射擊成績的眾數(shù)為8 B.這40次射擊成績的中位數(shù)為8C.這40次射擊成績的35%分位數(shù)為7 D.這40次射擊成績的平均數(shù)為8.075【答案】ABD【解析】對于A:由表可知,這40次射擊成績的眾數(shù)為8,故A正確;對于B:這40次射擊成績從小到大排在第20個(gè)和第21個(gè)的環(huán)數(shù)分別為8,8,則這40次射擊成績的中位數(shù)為,故B正確;對于C:,因?yàn)檫@40次射擊成績從小到大排在第14個(gè)和第15個(gè)的環(huán)數(shù)分別為7,8,則這40次射擊成績的35%分位數(shù)為,故C錯(cuò)誤;對于D:這40次射擊成績的平均數(shù)為,故D正確;故選:ABD10.(2022春·山東·高一濟(jì)南市章丘區(qū)第四中學(xué)校聯(lián)考階段練習(xí))(多選)為豐富老年人的業(yè)余生活,某小區(qū)組建了合唱、朗誦、脫口秀、舞蹈、太極拳五個(gè)興趣社團(tuán),該小區(qū)共有2000名老年人,每位老人依據(jù)自己興趣愛好最多可參加其中一個(gè),各個(gè)社團(tuán)的人數(shù)比例的餅狀圖如圖所示,其中參加朗誦社的老人有8名,參加太極拳社團(tuán)的有12名,則()A.這五個(gè)社團(tuán)的總?cè)藬?shù)為100B.脫口秀社團(tuán)的人數(shù)占五個(gè)社團(tuán)總?cè)藬?shù)的20%C.這五個(gè)社團(tuán)總?cè)藬?shù)占該小區(qū)老年人數(shù)的4%D.從這五個(gè)社團(tuán)中任選一人,其來自脫口秀社團(tuán)或舞蹈社團(tuán)的概率為40%【答案】BC【解析】參加朗誦社的老人有8名,占五個(gè)社團(tuán)的總?cè)藬?shù)的,故總?cè)藬?shù)為,A錯(cuò)誤;參加太極拳社團(tuán)的人數(shù)為12,占五個(gè)社團(tuán)的總?cè)藬?shù)的,所以脫口秀社團(tuán)的人數(shù)占五個(gè)社團(tuán)總?cè)藬?shù)的,B正確;這五個(gè)社團(tuán)總?cè)藬?shù)占該小區(qū)老年人數(shù)的,C正確;從這五個(gè)杜團(tuán)中任選一人,其來自脫口秀社團(tuán)或舞蹈社團(tuán)的概率為,D錯(cuò)誤.故選:BC11.(2022春·河北承德·高一校聯(lián)考階段練習(xí))(多選)2021年4月至2021年12月我國規(guī)模以上工業(yè)天然氣產(chǎn)量保持平穩(wěn),日均產(chǎn)量(億立方米)與當(dāng)月增速(%)如圖所示,則()備注:日均產(chǎn)品產(chǎn)量是以當(dāng)月公布的我國規(guī)模以上工業(yè)企業(yè)總產(chǎn)量除以該月日歷天數(shù)計(jì)算得到.當(dāng)月增速.A.2021年12月份我國規(guī)模以上工業(yè)天然氣產(chǎn)量當(dāng)月增速比上月放緩2.1個(gè)百分點(diǎn)B.2021年4月至2021年12月我國規(guī)模以上工業(yè)天然氣產(chǎn)量當(dāng)月增速的極差為12.6%C.2021年7月份我國規(guī)模以上工業(yè)天然氣產(chǎn)量為153億立方米D.2021年4月至2021年12月我國規(guī)模以上工業(yè)天然氣日均產(chǎn)量的40%分位數(shù)為5.3億立方米【答案】ABD【解析】2021年12月份我國規(guī)模以上工業(yè)天然氣產(chǎn)量當(dāng)月增速為2.3個(gè)百分點(diǎn),11月份增速為個(gè)百分點(diǎn),比上月放緩2.1個(gè)百分點(diǎn).故A正確;2021年4月至12月我國規(guī)模以上工業(yè)天然氣產(chǎn)量當(dāng)月增速的極差為.故B正確;2021年7月我國規(guī)模以上工業(yè)天然氣產(chǎn)量為億立方米.故C錯(cuò)誤2021年4月至12月我國規(guī)模以上工業(yè)天然氣日均產(chǎn)量從小到大為5.1,5.1,5.2,5.3,5.4,5.6,5.7,5.9,6.2,因?yàn)椋栽摻M數(shù)據(jù)的40%分位數(shù)為5.3億立方米.故D正確故選:ABD12.(2023春·江西南昌·高一南昌市第三中學(xué)??茧A段練習(xí))PM2.5的監(jiān)測值是用來評價(jià)環(huán)境空氣質(zhì)量的指標(biāo)之一.劃分等級為:PM2.5日均值在以下,空氣質(zhì)量為一級:PM2.5日均值在,空氣質(zhì)量為二級:PM2.5日均值超過為超標(biāo).如圖是某地12月1日至10日PM2.5的日均值(單位:)變化的折線圖,關(guān)于PM2.5日均值說法正確的是()A.這10天的日均值的80%分位數(shù)為60B.前5天的日均值的極差小于后5天的日均值的極差C.這10天的日均值的中位數(shù)為41D.前5天的日均值的方差小于后5天的日均值的方差【答案】BD【解析】個(gè)數(shù)據(jù)為:,,故80%分位數(shù)為,A錯(cuò)誤.5天的日均值的極差為,后5天的日均值的極差為,B正確.中位數(shù)是,C錯(cuò)誤.根據(jù)折線圖可知,前天數(shù)據(jù)波動(dòng)性小于后天數(shù)據(jù)波動(dòng)性,所以D正確.故選:BD13.(2023·全國·高一專題練習(xí))某學(xué)校三個(gè)興趣小組的學(xué)生人數(shù)分布如下表(每名同學(xué)只參加一個(gè)小組):武術(shù)組書畫組樂器組高一4530a高二151020學(xué)校要對這三個(gè)小組的活動(dòng)效果進(jìn)行抽樣調(diào)查,按小組分層隨機(jī)抽樣,從參加這三個(gè)興趣小組的學(xué)生中抽取30人,結(jié)果武術(shù)組被抽出12人,則a的值為______.【答案】30【解析】由題意可知三個(gè)小組的人數(shù)比為,從參加這三個(gè)興趣小組的學(xué)生中抽取30人,結(jié)果武術(shù)組被抽出12人,故,解得,故答案為:3014.(2023·全國·高一專題練習(xí))總體由編號01,02,…,29,30的30個(gè)個(gè)體組成.利用下面的隨機(jī)數(shù)表選取5個(gè)個(gè)體,選取方法是從如下隨機(jī)數(shù)表的第1行的第7列和第8列數(shù)字開始由左到右依次選取兩個(gè)數(shù)字,則選出來的第5個(gè)個(gè)體的編號為__________.第1行:78
16
62
32
08
02
62
42
01
52
53
69
97
28
01
98第2行:32
04
92
34
49
35
82
00
36
23
48
69
69
38
74
81【答案】04【解析】從第1行的第7列和第8列數(shù)字開始由左到右依次選取兩個(gè)數(shù)字滿足要求的編號有:08,02,01,28,04,23…,所以第5個(gè)個(gè)體的編號為,04,故答案為:0415.(2023·全國·高一專題練習(xí))“二
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 保險(xiǎn)代理居間合同承諾書
- 工廠裝修驗(yàn)收合同及條款
- 燈柱燈桿項(xiàng)目融資計(jì)劃書
- 二零二四年石膏板外貿(mào)采購合同范本3篇
- 綠色能源解決方案供應(yīng)商采購合同
- 智能制造生產(chǎn)線升級改造合同
- 特種不銹鋼項(xiàng)目融資計(jì)劃書
- 虛擬現(xiàn)實(shí)技術(shù)產(chǎn)品銷售合同
- 智能洗衣機(jī)產(chǎn)品銷售合同
- 農(nóng)業(yè)科技園區(qū)建設(shè)運(yùn)營合同
- 診所規(guī)章制度匯編全套
- 2024年云南省中考英語題庫【歷年真題+章節(jié)題庫+模擬試題】
- 麻醉藥品、精神藥品月檢查記錄表
- 演示文稿國庫集中支付總流程圖
- 浙江省寧波市海曙區(qū)2022學(xué)年第一學(xué)期九年級期末測試科學(xué)試題卷(含答案和答題卡)
- 為了自由呼吸的教育
- 高考英語詞匯3500電子版
- 建院新聞社成立策劃書
- GB/T 19675.2-2005管法蘭用金屬?zèng)_齒板柔性石墨復(fù)合墊片技術(shù)條件
- 運(yùn)動(dòng)技能學(xué)習(xí)與控制課件第十三章動(dòng)作技能的保持和遷移
- 2023年春節(jié)后建筑施工復(fù)工復(fù)產(chǎn)專項(xiàng)方案
評論
0/150
提交評論