新教材高中人教A版數(shù)學(xué)必修第2冊課堂作業(yè)第8章立體幾何初步_第1頁
新教材高中人教A版數(shù)學(xué)必修第2冊課堂作業(yè)第8章立體幾何初步_第2頁
新教材高中人教A版數(shù)學(xué)必修第2冊課堂作業(yè)第8章立體幾何初步_第3頁
新教材高中人教A版數(shù)學(xué)必修第2冊課堂作業(yè)第8章立體幾何初步_第4頁
新教材高中人教A版數(shù)學(xué)必修第2冊課堂作業(yè)第8章立體幾何初步_第5頁
已閱讀5頁,還剩2頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

第八章立體幾何初步考試時間120分鐘,滿分150分.一、單項選擇題(本大題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的)1.給出下列命題:①在圓柱的上、下底面的圓周上各取一點(diǎn),則這兩點(diǎn)的連線是圓柱的母線;②有一個面是多邊形,其余各面都是三角形的幾何體是棱錐;③棱臺的上、下底面可以不相似,但側(cè)棱長一定相等.其中真命題的個數(shù)是(A)A.0 B.1C.2 D.3[解析]①不一定,只有當(dāng)這兩點(diǎn)的連線平行于軸時才是母線;②不一定,因為“其余各面都是三角形”并不等價于“其余各面都是有一個公共頂點(diǎn)的三角形”,如圖所示;③錯誤,棱臺的上、下底面相似且是對應(yīng)邊平行的多邊形,各側(cè)棱延長線交于一點(diǎn),但是側(cè)棱長不一定相等.2.以長為8cm,寬為6cmA.64πcm2 B.36πcm2C.64πcm2或36πcm2 D.48πcm2[解析]分別以長為8cm,寬為63.梯形ABCD中,AB∥CD,AB?平面α,CD?平面α,則直線CD與平面α內(nèi)的直線的位置關(guān)系只能是(B)A.平行 B.平行或異面C.平行或相交 D.異面或相交[解析]由直線與平面平行的判定定理,可知CD∥α,所以CD與平面α內(nèi)的直線沒有公共點(diǎn).4.空間四點(diǎn)A,B,C,D共面而不共線,那么這四點(diǎn)中(B)A.必有三點(diǎn)共線 B.必有三點(diǎn)不共線C.至少有三點(diǎn)共線 D.不可能有三點(diǎn)共線[解析]∵A,B,C,D共面而不共線,這四點(diǎn)可能有三點(diǎn)共線,也可能任意三點(diǎn)不共線,A錯.如果四點(diǎn)中沒有三點(diǎn)不共線,則四點(diǎn)共線,矛盾,B正確.當(dāng)任意三點(diǎn)不共線時,也滿足條件,C錯.當(dāng)其中三點(diǎn)共線,第四個點(diǎn)不共線時,也滿足條件,D錯.5.如圖所示,正方形ABCD中,E,F(xiàn)分別是AB,AD的中點(diǎn),將此正方形沿EF折成直二面角后,異面直線AF與BE所成角的余弦值為(C)A.eq\f(\r(2),2) B.eq\r(3)C.eq\f(1,2) D.eq\f(\r(3),2)[解析]過點(diǎn)F作FH∥DC,交BC于H,過點(diǎn)A作AG⊥EF,交EF于G,連接GH,AH,則∠AFH為異面直線AF與BE所成的角.設(shè)正方形ABCD的邊長為2,在△AGH中,AH=eq\r(\f(5,2)+\f(2,4))=eq\r(3),在△AFH中,AF=1,F(xiàn)H=2,AH=eq\r(3),∴cos∠AFH=eq\f(1,2).6.E,F(xiàn),G分別是空間四邊形ABCD的棱BC,CD,DA的中點(diǎn),則此四面體中與過E,F(xiàn),G的截面平行的棱的條數(shù)是(C)A.0 B.1C.2 D.3[解析]在△ACD中,∵G,F(xiàn)分別為AD與CD的中點(diǎn),∴GF∥AC.而GF?平面EFG,AC?平面EFG,∴AC∥平面EFG.同理,BD∥平面EFG.故選C.7.正四棱錐的頂點(diǎn)都在同一球面上.若該棱錐的高為4,底面邊長為2,則該球的表面積為(A)A.eq\f(81π,4) B.16πC.9π D.eq\f(27π,4)[解析]如圖所示,設(shè)球的半徑為R,球心為O,正四棱錐的底面中心為O′.∵正四棱錐P-ABCD中AB=2,∴AO′=eq\r(2).∵PO′=4,∴在Rt△AOO′中,AO2=AO′2+OO′2,∴R2=(eq\r(2))2+(4-R)2,解得R=eq\f(9,4),∴該球的表面積為4πR2=4π×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(9,4)))2=eq\f(81π,4),故選A.8.如圖,在直三棱柱ABC-A1B1C1中,D為A1B1的中點(diǎn),AB=BC=BB1=2,AC=2eq\r(5),則異面直線BD與AC所成的角為(C)A.30° B.45°C.60° D.90°[解析]如圖,取B1C1的中點(diǎn)E,連接BE,DE,則AC∥A1C1∥DE,則∠BDE即為異面直線BD與AC所成的角.由條件可知BD=DE=EB=eq\r(5),所以∠BDE=60°,故選C.二、多項選擇題(本大題共4小題,每小題5分,共20分.在每小題給出的四個選項中,有多個選項是符合題目要求的,全部選對的得5分,選對但不全的得2分,有選錯的得0分)9.以下關(guān)于空間幾何體特征性質(zhì)的描述,錯誤的是(ABC)A.以直角三角形一邊所在直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)形成的曲面所圍成的幾何體是圓錐B.有兩個面互相平行,其余各面都是四邊形的幾何體是棱柱C.有一個面是多邊形,其余各面都是三角形的幾何體是棱錐D.兩底面互相平行,其余各面都是梯形,側(cè)棱延長線交于一點(diǎn)的幾何體是棱臺[解析]以直角三角形的一個直角邊所在直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)形成的曲面所圍成的幾何體是圓錐,可得A錯誤;有兩個面互相平行,其余各面都是四邊形的幾何體可能是棱臺,不一定是棱柱,故B錯誤;有一個面是多邊形,其余各面都是有公共頂點(diǎn)三角形的幾何體叫棱錐,故C錯誤;根據(jù)棱臺的定義,可得D正確.故選ABC.10.如圖,在平行六面體ABCD-A1B1C1D1中,點(diǎn)M,P,Q分別為棱AB,CD,BC的中點(diǎn),若平行六面體的各棱長均相等,則下列說法正確的是(ACDA.A1M∥D1P B.A1M∥BC.A1M∥平面DCC1D1 D.A1M∥平面D1[解析]連接PM,因為M、P為AB、CD的中點(diǎn),故PM平行且等于AD.由題意知AD平行且等于A1D1,故PM平行且等于A1D1,所以PMA1D1為平行四邊形,所以A1M∥D1P.故A正確;顯然A1M與B1Q為異面直線,故B錯誤;由A知A1M∥D1P,由于D1P既在平面DCC1D1內(nèi),又在平面D1PQB1內(nèi),且A1M即不在平面DCC1D1內(nèi),又不在平面D1PQB111.如圖,在四面體ABCD中,截面PQMN是正方形,則在下列命題中,一定正確的為(ABD)A.AC⊥BDB.AC∥截面PQMNC.AC=BDD.異面直線PM與BD所成的角為45°[解析]∵QM∥PN,∴QM∥平面ABD,∴QM∥BD,同理可得AC∥MN,∵QM∥BD,AC∥MN,MN⊥QM,∴AC⊥BD,A正確;∵AC∥MN,∴AC∥截面PQMN,B正確;∵QM∥BD,AC∥MN,∴eq\f(MN,AC)+eq\f(QM,BD)=1,C不一定正確;∵QM∥BD,∴異面直線PM與BD所成的角為∠PMQ=45°,D正確.故選ABD.12.正方體ABCD-A1B1C1D1的棱長為1,E,F(xiàn),G分別為BC,CC1,BB1的中點(diǎn).則(BCA.直線D1D與直線AF垂直B.直線A1G與平面AEFC.平面AEF截正方體所得的截面面積為eq\f(9,8)D.點(diǎn)C與點(diǎn)G到平面AEF的距離相等[解析]取DD1中點(diǎn)M,則AM為AF在平面AA1D1D上的射影,∵AM與DD1不垂直,∴AF與DD1不垂直,故A選項錯誤;∵A1G∥D1F,A1G?平面AEFD1,∴A1G∥平面AEFD1,故B選項正確;平面AEF截正方體所得截面為等腰梯形AEFD1,易知梯形面積為eq\f(9,8),故C選項正確;假設(shè)C與G到平面AEF的距離相等,即平面AEF將CG平分,則平面AEF必過CG中點(diǎn),連接CG交EF于H,而H不是CG中點(diǎn),則假設(shè)不成立.故D選項錯誤.故選B三、填空題(本大題共4小題,每小題5分,共20分)13.一個圓柱的側(cè)面展開圖是一個邊長為1的正方形,則該圓柱的體積是__eq\f(1,4π)__.[解析]∵圓柱的側(cè)面展開圖是邊長為1的正方形,∴該圓柱的高h(yuǎn)=1,底面周長2πr=1,∴底面半徑r=eq\f(1,2π),∴該圓柱的體積V=π×eq\f(1,4π2)×1=eq\f(1,4π).14.一個直徑為32厘米的圓柱形水桶中放入一個鐵球,球全部沒入水中后,水面升高9厘米,則此球的半徑為__12__厘米.[解析]V=Sh=πr2h=eq\f(4,3)πR3,R=eq\r(3,64×27)=12(cm).15.已知a,b表示直線,α,β,γ表示平面.①若α∩β=a,b?α,a⊥b,則α⊥β;②若a?α,a垂直于β內(nèi)任意一條直線,則α⊥β;③若α⊥β,α∩β=a,α∩γ=b,則a⊥b;④若a⊥α,b⊥β,a∥b,則α∥β.上述命題中,正確命題的序號是__②④__.[解析]對①可舉反例,如圖,需b⊥β才能推出α⊥β;對③可舉反例說明,當(dāng)γ不與α,β的交線垂直時,即可知a,b不垂直;根據(jù)面面、線面垂直的定義與判定知②④正確.16.(2020·全國Ⅰ卷理)如圖,在三棱錐P-ABC的平面展開圖中,AC=1,AB=AD=eq\r(3),AB⊥AC,AB⊥AD,∠CAE=30°,則cos∠FCB=__-eq\f(1,4)__.[解析]∵AB⊥AC,AB=eq\r(3),AC=1,由勾股定理得BC=eq\r(AB2+AC2)=2,同理得BD=eq\r(6),∴BF=BD=eq\r(6),在△ACE中,AC=1,AE=AD=eq\r(3),∠CAE=30°,由余弦定理得CE2=AC2+AE2-2AC·AEcos30°=1+3-2×1×eq\r(3)×eq\f(\r(3),2)=1,∴CF=CE=1,在△BCF中,BC=2,BF=eq\r(6),CF=1,由余弦定理得cos∠FCB=eq\f(CF2+BC2-BF2,2CF·BC)=eq\f(1+4-6,2×1×2)=-eq\f(1,4).四、解答題(本大題共6小題,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟)17.(本小題滿分10分)某高速公路收費(fèi)站入口處的安全標(biāo)識墩如圖所示,墩的上半部分是正四棱錐P-EFGH,下半部分是長方體ABCD-EFGH.長方體的長、寬、高分別是40cm、40cm、20cm,正四棱錐(1)求該安全標(biāo)識墩的體積;(2)求該安全標(biāo)識墩的側(cè)面積.[解析](1)該安全標(biāo)識墩的體積V=VP-EFGH+VABCD-EFGH=eq\f(1,3)×402×60+402×20=64000(cm3).(2)如圖,連接EG,HF交于點(diǎn)O,連接PO,結(jié)合三視圖可知OP=60cm,OG=eq\f(1,2)EG=20eq\r(2)cm,可得PG=eq\r(602+20\r(2)2)=20eq\r(11)(cm).于是四棱錐P-EFGH的側(cè)面積S1=4×eq\f(1,2)×40×eq\r(20\r(11)2-202)=1600eq\r(10)(cm2),四棱柱EFGH-ABCD的側(cè)面積S2=4×40×20=3200(cm2),故該安全標(biāo)識墩的側(cè)面積S=S1+S2=1600(eq\r(10)+2)(cm2).18.(本小題滿分12分)如圖所示,一個圓錐形的空杯子上面放著一個半球形的冰淇淋,如果冰淇淋融化了,會溢出杯子嗎?請用你的計算數(shù)據(jù)說明理由.[解析]不會溢出杯子.理由如下:由題圖可知半球的半徑為4cm,所以V半球=eq\f(1,2)×eq\f(4,3)πR3=eq\f(1,2)×eq\f(4,3)π×43=eq\f(128,3)π(cm3),V圓錐=eq\f(1,3)πr2h=eq\f(1,3)π×42×12=64π(cm3).因為V半球<V圓錐,所以如果冰淇淋融化了,不會溢出杯子.19.(本小題滿分12分)如圖所示,在四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA⊥PD,底面ABCD是直角梯形,其中BC∥AD,∠BAD=90°,AD=3BC,O是AD上一點(diǎn).(1)若CD∥平面PBO,試指出點(diǎn)O的位置;(2)求證:平面PAB⊥平面PCD.[解析](1)∵CD∥平面PBO,CD?平面ABCD,且平面ABCD∩平面PBO=BO,∴BO∥CD.又BC∥AD,∴四邊形BCDO為平行四邊形,則BC=DO,而AD=3BC,∴AD=3OD,即點(diǎn)O是靠近點(diǎn)D的線段AD的一個三等分點(diǎn).(2)證明:∵側(cè)面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,AB?底面ABCD,且AB⊥AD,∴AB⊥平面PAD.又PD?平面PAD,∴AB⊥PD.又PA⊥PD,AB∩PA=A,AB,PA?平面PAB,∴PD⊥平面PAB.又PD?平面PCD,∴平面PAB⊥平面PCD.20.(本小題滿分12分)(2020·江蘇卷)在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F(xiàn)分別是AC,B1(1)求證:EF∥平面AB1C1(2)求證:平面AB1C⊥平面ABB1[解析](1)因為E,F(xiàn)分別是AC,B1C的中點(diǎn),所以EF∥AB1又EF?平面AB1C1,AB1?平面AB1C所以EF∥平面AB1C1(2)因為B1C⊥平面ABC,AB?平面ABC所以B1C⊥AB又AB⊥AC,B1C?平面AB1C1,AC?平面AB1C,B1C∩所以AB⊥平面AB1C又因為AB?平面ABB1,所以平面AB1C⊥平面ABB121.(本小題滿分12分)在三棱錐S-ABC中,SA⊥底面ABC,AB⊥BC,DE垂直平分SC且分別交AC,SC于D,E,又SA=AB,SB=BC.(1)求證:BD⊥平面SAC;(2)求二面角E-BD-C的大小.[解析](1)證明:如圖,∵DE⊥SC,且E為SC的中點(diǎn),又SB=BC,∴BE⊥SC.又DE∩BE=E,根據(jù)直線與平面垂直的判定定理知SC⊥平面BDE,∵BD?平面BDE,∴SC⊥BD.又SA⊥平面ABC,BD?平面ABC,∴SA⊥BD.又SA∩SC=S,∴BD⊥平面SAC.(2)由(1)知∠EDC為二面角E-BD-C的平面角,又△SAC∽△DEC,∴∠EDC=∠ASC.在Rt△SAB中,∠SAB=90°,設(shè)SA=AB=1,則SB=eq\r(2).由SA⊥BC,AB⊥BC,AB∩SA=A,∴BC⊥平面SAB,SB?平面SAB,∴BC⊥SB.在Rt△SBC中,SB=BC=eq\r(2),∠SBC=90°,則SC=2.在Rt△SAC中,∠SAC=90°,SA=1,SC=2.∴cos∠ASC=eq\f(SA,SC)=eq\f(1,2),∴∠ASC=60°,即二面角E-BD-C的大小為60°.22.(本小題滿分12分)如圖,在三棱柱ABC-A1B1C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論