版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省瀏陽一中、株洲二中等湘東五校2023-2024學年高三第二次診斷性檢測數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,若輸出的,則輸入的整數(shù)的最大值為()A.7 B.15 C.31 D.632.在中,,則()A. B. C. D.3.《周易》是我國古代典籍,用“卦”描述了天地世間萬象變化.如圖是一個八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個爻組成,其中“”表示一個陽爻,“”表示一個陰爻).若從含有兩個及以上陽爻的卦中任取兩卦,這兩卦的六個爻中都恰有兩個陽爻的概率為()A. B. C. D.4.在邊長為2的菱形中,,將菱形沿對角線對折,使二面角的余弦值為,則所得三棱錐的外接球的表面積為()A. B. C. D.5.若復數(shù)(為虛數(shù)單位),則()A. B. C. D.6.已知函數(shù),若所有點,所構成的平面區(qū)域面積為,則()A. B. C.1 D.7.雙曲線的一條漸近線方程為,那么它的離心率為()A. B. C. D.8.2019年10月17日是我國第6個“扶貧日”,某醫(yī)院開展扶貧日“送醫(yī)下鄉(xiāng)”醫(yī)療義診活動,現(xiàn)有五名醫(yī)生被分配到四所不同的鄉(xiāng)鎮(zhèn)醫(yī)院中,醫(yī)生甲被指定分配到醫(yī)院,醫(yī)生乙只能分配到醫(yī)院或醫(yī)院,醫(yī)生丙不能分配到醫(yī)生甲、乙所在的醫(yī)院,其他兩名醫(yī)生分配到哪所醫(yī)院都可以,若每所醫(yī)院至少分配一名醫(yī)生,則不同的分配方案共有()A.18種 B.20種 C.22種 D.24種9.中國古代用算籌來進行記數(shù),算籌的擺放形式有縱橫兩種形式(如圖所示),表示一個多位數(shù)時,像阿拉伯記數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,其中個位、百位、方位……用縱式表示,十位、千位、十萬位……用橫式表示,則56846可用算籌表示為()A. B. C. D.10.已知雙曲線的左、右焦點分別為,,點P是C的右支上一點,連接與y軸交于點M,若(O為坐標原點),,則雙曲線C的漸近線方程為()A. B. C. D.11.已知函數(shù),其中,,其圖象關于直線對稱,對滿足的,,有,將函數(shù)的圖象向左平移個單位長度得到函數(shù)的圖象,則函數(shù)的單調遞減區(qū)間是()A. B.C. D.12.是虛數(shù)單位,復數(shù)在復平面上對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)f(x)=若關于x的方程f(x)=kx有兩個不同的實根,則實數(shù)k的取值范圍是________.14.設滿足約束條件,則目標函數(shù)的最小值為_.15.命題“”的否定是______.16.若橢圓:的一個焦點坐標為,則的長軸長為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求函數(shù)的單調區(qū)間;(2)當時,如果方程有兩個不等實根,求實數(shù)t的取值范圍,并證明.18.(12分)已知數(shù)列的前n項和為,且n、、成等差數(shù)列,.(1)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項公式;(2)若數(shù)列中去掉數(shù)列的項后余下的項按原順序組成數(shù)列,求的值.19.(12分)等差數(shù)列中,,,分別是下表第一、二、三行中的某一個數(shù),且其中的任何兩個數(shù)不在下表的同一列.第一列第二列第三列第一行582第二行4312第三行1669(1)請選擇一個可能的組合,并求數(shù)列的通項公式;(2)記(1)中您選擇的的前項和為,判斷是否存在正整數(shù),使得,,成等比數(shù)列,若有,請求出的值;若沒有,請說明理由.20.(12分)在直角坐標系xOy中,直線的參數(shù)方程為(t為參數(shù)).以原點O為極點,x軸正半軸為極軸建立極坐標系,圓C的極坐標方程為.(1)寫出圓C的直角坐標方程;(2)設直線l與圓C交于A,B兩點,,求的值.21.(12分)在中,,.已知分別是的中點.將沿折起,使到的位置且二面角的大小是60°,連接,如圖:(1)證明:平面平面(2)求平面與平面所成二面角的大小.22.(10分)已知橢圓的離心率為,點在橢圓上.(Ⅰ)求橢圓的標準方程;(Ⅱ)設直線交橢圓于兩點,線段的中點在直線上,求證:線段的中垂線恒過定點.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】試題分析:由程序框圖可知:①,;②,;③,;④,;⑤,.第⑤步后輸出,此時,則的最大值為15,故選B.考點:程序框圖.2、A【解析】
先根據(jù)得到為的重心,從而,故可得,利用可得,故可計算的值.【詳解】因為所以為的重心,所以,所以,所以,因為,所以,故選A.【點睛】對于,一般地,如果為的重心,那么,反之,如果為平面上一點,且滿足,那么為的重心.3、B【解析】
基本事件總數(shù)為個,都恰有兩個陽爻包含的基本事件個數(shù)為個,由此求出概率.【詳解】解:由圖可知,含有兩個及以上陽爻的卦有巽、離、兌、乾四卦,取出兩卦的基本事件有(巽,離),(巽,兌),(巽,乾),(離,兌),(離,乾),(兌,乾)共個,其中符合條件的基本事件有(巽,離),(巽,兌),(離,兌)共個,所以,所求的概率.故選:B.【點睛】本題滲透傳統(tǒng)文化,考查概率、計數(shù)原理等基本知識,考查抽象概括能力和應用意識,屬于基礎題.4、D【解析】
取AC中點N,由題意得即為二面角的平面角,過點B作于O,易得點O為的中心,則三棱錐的外接球球心在直線BO上,設球心為,半徑為,列出方程即可得解.【詳解】如圖,由題意易知與均為正三角形,取AC中點N,連接BN,DN,則,,即為二面角的平面角,過點B作于O,則平面ACD,由,可得,,,即點O為的中心,三棱錐的外接球球心在直線BO上,設球心為,半徑為,,,解得,三棱錐的外接球的表面積為.故選:D.【點睛】本題考查了立體圖形外接球表面積的求解,考查了空間想象能力,屬于中檔題.5、B【解析】
根據(jù)復數(shù)的除法法則計算,由共軛復數(shù)的概念寫出.【詳解】,,故選:B【點睛】本題主要考查了復數(shù)的除法計算,共軛復數(shù)的概念,屬于容易題.6、D【解析】
依題意,可得,在上單調遞增,于是可得在上的值域為,繼而可得,解之即可.【詳解】解:,因為,,所以,在上單調遞增,則在上的值域為,因為所有點所構成的平面區(qū)域面積為,所以,解得,故選:D.【點睛】本題考查利用導數(shù)研究函數(shù)的單調性,理解題意,得到是關鍵,考查運算能力,屬于中檔題.7、D【解析】
根據(jù)雙曲線的一條漸近線方程為,列出方程,求出的值即可.【詳解】∵雙曲線的一條漸近線方程為,可得,∴,∴雙曲線的離心率.故選:D.【點睛】本小題主要考查雙曲線離心率的求法,屬于基礎題.8、B【解析】
分兩類:一類是醫(yī)院A只分配1人,另一類是醫(yī)院A分配2人,分別計算出兩類的分配種數(shù),再由加法原理即可得到答案.【詳解】根據(jù)醫(yī)院A的情況分兩類:第一類:若醫(yī)院A只分配1人,則乙必在醫(yī)院B,當醫(yī)院B只有1人,則共有種不同分配方案,當醫(yī)院B有2人,則共有種不同分配方案,所以當醫(yī)院A只分配1人時,共有種不同分配方案;第二類:若醫(yī)院A分配2人,當乙在醫(yī)院A時,共有種不同分配方案,當乙不在A醫(yī)院,在B醫(yī)院時,共有種不同分配方案,所以當醫(yī)院A分配2人時,共有種不同分配方案;共有20種不同分配方案.故選:B【點睛】本題考查排列與組合的綜合應用,在做此類題時,要做到分類不重不漏,考查學生分類討論的思想,是一道中檔題.9、B【解析】
根據(jù)題意表示出各位上的數(shù)字所對應的算籌即可得答案.【詳解】解:根據(jù)題意可得,各個數(shù)碼的籌式需要縱橫相間,個位,百位,萬位用縱式表示;十位,千位,十萬位用橫式表示,用算籌表示應為:縱5橫6縱8橫4縱6,從題目中所給出的信息找出對應算籌表示為中的.故選:.【點睛】本題主要考查學生的合情推理與演繹推理,屬于基礎題.10、C【解析】
利用三角形與相似得,結合雙曲線的定義求得的關系,從而求得雙曲線的漸近線方程?!驹斀狻吭O,,由,與相似,所以,即,又因為,所以,,所以,即,,所以雙曲線C的漸近線方程為.故選:C.【點睛】本題考查雙曲線幾何性質、漸近線方程求解,考查數(shù)形結合思想,考查邏輯推理能力和運算求解能力。11、B【解析】
根據(jù)已知得到函數(shù)兩個對稱軸的距離也即是半周期,由此求得的值,結合其對稱軸,求得的值,進而求得解析式.根據(jù)圖像變換的知識求得的解析式,再利用三角函數(shù)求單調區(qū)間的方法,求得的單調遞減區(qū)間.【詳解】解:已知函數(shù),其中,,其圖像關于直線對稱,對滿足的,,有,∴.再根據(jù)其圖像關于直線對稱,可得,.∴,∴.將函數(shù)的圖像向左平移個單位長度得到函數(shù)的圖像.令,求得,則函數(shù)的單調遞減區(qū)間是,,故選B.【點睛】本小題主要考查三角函數(shù)圖像與性質求函數(shù)解析式,考查三角函數(shù)圖像變換,考查三角函數(shù)單調區(qū)間的求法,屬于中檔題.12、D【解析】
求出復數(shù)在復平面內對應的點的坐標,即可得出結論.【詳解】復數(shù)在復平面上對應的點的坐標為,該點位于第四象限.故選:D.【點睛】本題考查復數(shù)對應的點的位置的判斷,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由圖可知,當直線y=kx在直線OA與x軸(不含它們)之間時,y=kx與y=f(x)的圖像有兩個不同交點,即方程有兩個不相同的實根.14、【解析】
根據(jù)滿足約束條件,畫出可行域,將目標函數(shù),轉化為,平移直線,找到直線在軸上截距最小時的點,此時,目標函數(shù)取得最小值.【詳解】由滿足約束條件,畫出可行域如圖所示陰影部分:將目標函數(shù),轉化為,平移直線,找到直線在軸上截距最小時的點此時,目標函數(shù)取得最小值,最小值為故答案為:-1【點睛】本題主要考查線性規(guī)劃求最值,還考查了數(shù)形結合的思想方法,屬于基礎題.15、,【解析】
根據(jù)特稱命題的否定為全稱命題得到結果即可.【詳解】解:因為特稱命題的否定是全稱命題,所以,命題,則該命題的否定是:,故答案為:,.【點睛】本題考查全稱命題與特稱命題的否定關系,屬于基礎題.16、【解析】
由焦點坐標得從而可求出,繼而得到橢圓的方程,即可求出長軸長.【詳解】解:因為一個焦點坐標為,則,即,解得或由表示的是橢圓,則,所以,則橢圓方程為所以.故答案為:.【點睛】本題考查了橢圓的標準方程,考查了橢圓的幾何意義.本題的易錯點是忽略,從而未對的兩個值進行取舍.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)當時,的單調遞增區(qū)間是,單調遞減區(qū)間是;當時,的單調遞增區(qū)間是,單調遞減區(qū)間是;(2),證明見解析.【解析】
(1)求出,對分類討論,分別求出的解,即可得出結論;(2)由(1)得出有兩解時的范圍,以及關系,將,等價轉化為證明,不妨設,令,則,即證,構造函數(shù),只要證明對于任意恒成立即可.【詳解】(1)的定義域為R,且.由,得;由,得.故當時,函數(shù)的單調遞增區(qū)間是,單調遞減區(qū)間是;當時,函數(shù)的單調遞增區(qū)間是,單調遞減區(qū)間是.(2)由(1)知當時,,且.當時,;當時,.當時,直線與的圖像有兩個交點,實數(shù)t的取值范圍是.方程有兩個不等實根,,,,,,即.要證,只需證,即證,不妨設.令,則,則要證,即證.令,則.令,則,在上單調遞增,.,在上單調遞增,,即成立,即成立..【點睛】本題考查函數(shù)與導數(shù)的綜合應用,涉及到函數(shù)單調性、極值、零點、不等式證明,構造函數(shù)函數(shù)是解題的關鍵,意在考查直觀想象、邏輯推理、數(shù)學計算能力,屬于較難題.18、(1)證明見解析,;(2)11202.【解析】
(1)由n,,成等差數(shù)列,可得,,兩式相減,由等比數(shù)列的定義可得是等比數(shù)列,可求數(shù)列的通項公式;(2)由(1)中的可求出,根據(jù)和求出數(shù)列,中的公共項,分組求和,結合等比數(shù)列和等差數(shù)列的求和公式,可得答案.【詳解】(1)證明:因為n,,成等差數(shù)列,所以,①所以.②①-②,得,所以.又當時,,所以,所以,故數(shù)列是首項為2,公比為2的等比數(shù)列,所以,即.(2)根據(jù)(1)求解知,,,所以,所以數(shù)列是以1為首項,2為公差的等差數(shù)列.又因為,,,,,,,,,,,所以.【點睛】本題考查等比數(shù)列的定義,考查分組求和,屬于中檔題.19、(1)見解析,或;(2)存在,.【解析】
(1)滿足題意有兩種組合:①,,,②,,,分別計算即可;(2)由(1)分別討論兩種情況,假設存在正整數(shù),使得,,成等比數(shù)列,即,解方程是否存在正整數(shù)解即可.【詳解】(1)由題意可知:有兩種組合滿足條件:①,,,此時等差數(shù)列,,,所以其通項公式為.②,,,此時等差數(shù)列,,,所以其通項公式為.(2)若選擇①,.則.若,,成等比數(shù)列,則,即,整理,得,即,此方程無正整數(shù)解,故不存在正整數(shù),使,,成等比數(shù)列.若選則②,,則,若,,成等比數(shù)列,則,即,整理得,因為為正整數(shù),所以.故存在正整數(shù),使,,成等比數(shù)列.【點睛】本題考查等差數(shù)列的通項公式及前n項和,涉及到等比數(shù)列的性質,是一道中檔題.20、(1);(2)20【解析】
(1)利用即可得到答案;(2)利用直線參數(shù)方程的幾何意義,.【詳解】解:(1)由,得圓C的直角坐標方程為,即.(2)將直線l的參數(shù)方程代入圓C的直角坐標方程,得,即,設兩交點A,B所對應的參數(shù)分別為,,從而,則.【點睛】本題考查了極坐標方程與普通方程的互化、直線參數(shù)方程的幾何意義等知識,考查學生的計算能力,是一道容易題.21、(1)證明見解析(2)45°【解析】
(1)設的中點為,連接,設的中點為,連接,,從而即為二面角的平面角,,推導出,從而平面,則,即,進而平面,推導四邊形為平行四邊形,從而,平面,由此即可得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度二手房買賣合同延期過戶與裝修進度監(jiān)督協(xié)議6篇
- 2025年中國氣體零售行業(yè)發(fā)展監(jiān)測及投資戰(zhàn)略研究報告
- 2025年PE塑料管項目可行性研究報告
- 2024-2026年中國金融外包市場深度評估及行業(yè)投資前景咨詢報告
- 2025年中國果口含片行業(yè)深度評估及行業(yè)投資潛力預測報告
- 2024污水提升器材環(huán)保認證與市場推廣合作合同3篇
- 2025年A4規(guī)格勞動合同樣本制作合同6篇
- 2024年環(huán)保設施采購項目合同
- 2024戊方提供技術培訓合同
- 2025版精裝修出租房裝修保證金合同3篇
- (八省聯(lián)考)河南省2025年高考綜合改革適應性演練 思想政治試卷(含答案)
- 《特種設備重大事故隱患判定準則》知識培訓
- 山東省棗莊市滕州市2023-2024學年高二上學期期末考試政治試題 含答案
- 《外盤期貨介紹》課件
- 2024年07月11396藥事管理與法規(guī)(本)期末試題答案
- 《PMC培訓資料》課件
- 2025年初級社會工作者綜合能力全國考試題庫(含答案)
- 企業(yè)發(fā)展培訓
- 江蘇省徐州市2023-2024學年高一上學期1月期末抽測試題 化學 含答案
- 紅藍光譜治療儀
- 軍事理論-綜合版智慧樹知到期末考試答案章節(jié)答案2024年國防大學
評論
0/150
提交評論