版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
專題02反比例函數(shù)與幾何綜合問題一、【知識(shí)回顧】(1)平面直角坐標(biāo)系中對(duì)稱點(diǎn)的坐標(biāo)特征平面直角坐標(biāo)系內(nèi)有一點(diǎn)P(a,b)點(diǎn)P(a,b)關(guān)于x軸的對(duì)稱點(diǎn)(a,-b)點(diǎn)P(a,b)關(guān)于y軸的對(duì)稱點(diǎn)(-a,b)點(diǎn)P(a,b)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)(-a,-b)點(diǎn)P(a,b)關(guān)于y=x的對(duì)稱點(diǎn)(b,a)點(diǎn)P(a,b)關(guān)于y=-x的對(duì)稱點(diǎn)(-b,-a)(2)反比例函數(shù)k的幾何意義常見模型備注:熟練運(yùn)用幾大模型:①一點(diǎn)一垂線②一點(diǎn)兩垂線③兩點(diǎn)一垂線④兩點(diǎn)兩垂線⑤兩點(diǎn)也原點(diǎn)反比例函數(shù)幾何綜合解法技巧:設(shè)點(diǎn)的坐標(biāo),利用點(diǎn)的對(duì)稱關(guān)系,表示其他點(diǎn)的坐標(biāo);并通過點(diǎn)的坐標(biāo)表示線段長度,通過面積構(gòu)建方程,解方程。二、【考點(diǎn)類型】考點(diǎn)1:反比例函數(shù)與直線結(jié)合典例1:(2022·安徽馬鞍山·校考一模)如圖,已知正比例函數(shù)SKIPIF1<0的圖象與反比例函數(shù)SKIPIF1<0的圖象交于SKIPIF1<0兩點(diǎn),SKIPIF1<0的值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】先根據(jù)圖象過點(diǎn),坐標(biāo)滿足函數(shù)解析式,再根據(jù)對(duì)稱性求解.【詳解】解:∵反比例函數(shù)SKIPIF1<0的圖象過點(diǎn)SKIPIF1<0∴SKIPIF1<0,∵正比例函數(shù)SKIPIF1<0的圖象與反比例函數(shù)SKIPIF1<0的圖象都是關(guān)于原點(diǎn)成中心對(duì)稱,∴SKIPIF1<0關(guān)于原點(diǎn)成中心對(duì)稱,∴SKIPIF1<0,∴SKIPIF1<0,故選:C.【點(diǎn)睛】本題考查了反比例函數(shù)和一次函數(shù)的交點(diǎn),圖象的對(duì)稱性是解題的關(guān)鍵.【變式1】(2022春·九年級(jí)單元測(cè)試)如圖,在平面直角坐標(biāo)系中,直線SKIPIF1<0(SKIPIF1<0,m為常數(shù))與雙曲線SKIPIF1<0(SKIPIF1<0,k為常數(shù))交于點(diǎn)A,B,若SKIPIF1<0,過點(diǎn)A作SKIPIF1<0軸,垂足為M,連接SKIPIF1<0,則SKIPIF1<0的面積是()A.2 B.SKIPIF1<0 C.3 D.6【答案】C【分析】根據(jù)反比例的圖象關(guān)于原點(diǎn)中心對(duì)稱得到點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)中心對(duì)稱,則SKIPIF1<0,SKIPIF1<0,代入解析式求得SKIPIF1<0,然后根據(jù)反比例函數(shù)SKIPIF1<0系數(shù)k的幾何意義即可得到SKIPIF1<0,進(jìn)一步得出SKIPIF1<0.【詳解】解:∵直線SKIPIF1<0(SKIPIF1<0,m為常數(shù))與雙曲線SKIPIF1<0(SKIPIF1<0,k為常數(shù))交于點(diǎn)A,B,∴點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)中心對(duì)稱,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0軸,垂足為M,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,故選:C.【點(diǎn)睛】本題考查了正比例函數(shù)的性質(zhì),反比例函數(shù)SKIPIF1<0系數(shù)k的幾何意義:從反比例函數(shù)SKIPIF1<0圖象上任意一點(diǎn)向x軸和y軸作垂線,垂線與坐標(biāo)軸所圍成的矩形面積為SKIPIF1<0.【變式2】(2022秋·貴州銅仁·九年級(jí)統(tǒng)考期中)如圖,在平面直角坐標(biāo)系中,反比例函數(shù)SKIPIF1<0的圖象與一次函數(shù)SKIPIF1<0的圖象交于點(diǎn)SKIPIF1<0,則代數(shù)式SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)反比例函數(shù)SKIPIF1<0的圖象與一次函數(shù)SKIPIF1<0的圖象交于點(diǎn)SKIPIF1<0,得到SKIPIF1<0,利用整體思想代入SKIPIF1<0,求值即可.【詳解】解:∵反比例函數(shù)SKIPIF1<0的圖象與一次函數(shù)SKIPIF1<0的圖象交于點(diǎn)SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0;故選A.【點(diǎn)睛】本題考查反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,以及分式求值.熟練掌握交點(diǎn)坐標(biāo)同時(shí)滿足反比例函數(shù)解析式和一次函數(shù)解析式,利用整體思想,進(jìn)行求值,是解題的關(guān)鍵.【變式3】(2021·四川內(nèi)江·統(tǒng)考中考真題)如圖,一次函數(shù)SKIPIF1<0的圖象與反比例函數(shù)SKIPIF1<0的圖像相交于SKIPIF1<0、SKIPIF1<0兩點(diǎn).(1)求一次函數(shù)和反比例函數(shù)的解析式;(2)根據(jù)圖象,直接寫出滿足SKIPIF1<0的SKIPIF1<0的取值范圍;(3)若點(diǎn)SKIPIF1<0在線段SKIPIF1<0上,且SKIPIF1<0,求點(diǎn)SKIPIF1<0的坐標(biāo).【答案】(1)一次函數(shù)的解析式為SKIPIF1<0;反比例函數(shù)為SKIPIF1<0;(2)SKIPIF1<0或SKIPIF1<0;(3)SKIPIF1<0,SKIPIF1<0.【分析】(1)將A點(diǎn)坐標(biāo)代入反比例函數(shù)求得SKIPIF1<0,再將B點(diǎn)代入反比例函數(shù)求得n,再把A、B兩點(diǎn)坐標(biāo)代入一次函數(shù)求得SKIPIF1<0從而得出兩函數(shù)解析式;(2)觀察圖案結(jié)合(1)題求得A、B兩點(diǎn)坐標(biāo)即可求出所求x的范圍;(3)連接BO、AO,則△AOP和△BOP高相同,面積之比就是底邊長度之比,因此BP:AP=4:1,再用AB之間橫坐標(biāo)差值按比例分配求得P點(diǎn)橫坐標(biāo),再把橫坐標(biāo)代入一次函數(shù)求得縱坐標(biāo)從而求出P點(diǎn)坐標(biāo).【詳解】解:(1)SKIPIF1<0反比例函數(shù)SKIPIF1<0經(jīng)過SKIPIF1<0,SKIPIF1<0,SKIPIF1<0反比例函數(shù)為SKIPIF1<0,SKIPIF1<0在比例函數(shù)SKIPIF1<0的圖象上,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0經(jīng)過SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0一次函數(shù)的解析式為SKIPIF1<0;(2)觀察圖象,SKIPIF1<0的SKIPIF1<0的取值范圍是SKIPIF1<0或SKIPIF1<0;(3)設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0(舍去),SKIPIF1<0點(diǎn)坐標(biāo)為(SKIPIF1<0,SKIPIF1<0).【點(diǎn)睛】本題考查了一次函數(shù)與反比例函數(shù)的綜合題,涉及了待定系數(shù)法,函數(shù)與不等式,三角形的面積等,熟練掌握相關(guān)知識(shí)是解題的關(guān)鍵.注意數(shù)形結(jié)合思想的應(yīng)用.考點(diǎn)2:反比例函數(shù)與特殊三角形結(jié)合典例2:(2022·四川宜賓·統(tǒng)考中考真題)如圖,△OMN是邊長為10的等邊三角形,反比例函數(shù)y=SKIPIF1<0(x>0)的圖象與邊MN、OM分別交于點(diǎn)A、B(點(diǎn)B不與點(diǎn)M重合).若AB⊥OM于點(diǎn)B,則k的值為______.【答案】SKIPIF1<0【分析】過點(diǎn)B作BC⊥x軸于點(diǎn)C,過點(diǎn)A作AD⊥x軸于點(diǎn)D,設(shè)OC=x,利用含30度角的直角三角形的性質(zhì)以及勾股定理求得點(diǎn)B(x,SKIPIF1<0x),點(diǎn)A(15-2x,2SKIPIF1<0x-5SKIPIF1<0),再利用反比例函數(shù)的性質(zhì)列方程,解方程即可求解.【詳解】解:過點(diǎn)B作BC⊥x軸于點(diǎn)C,過點(diǎn)A作AD⊥x軸于點(diǎn)D,如圖:∵△OMN是邊長為10的等邊三角形,∴OM=MN=ON=10,∠MON=∠MNO=∠M=60°,∴∠OBC=∠MAB=∠NAD=30°,設(shè)OC=x,則OB=2x,BC=SKIPIF1<0x,MB=10-2x,MA=2MB=20-4x,∴NA=10-MA=4x-10,DN=SKIPIF1<0NA=2x-5,AD=SKIPIF1<0DN=SKIPIF1<0(2x-5)=2SKIPIF1<0x-5SKIPIF1<0,∴OD=ON-DN=15-2x,∴點(diǎn)B(x,SKIPIF1<0x),點(diǎn)A(15-2x,2SKIPIF1<0x-5SKIPIF1<0),∵反比例函數(shù)y=SKIPIF1<0(x>0)的圖象與邊MN、OM分別交于點(diǎn)A、B,∴x?SKIPIF1<0x=(15-2x)(2SKIPIF1<0x-5SKIPIF1<0),解得x=5(舍去)或x=3,∴點(diǎn)B(3,SKIPIF1<0),∴k=9SKIPIF1<0.故答案為:9SKIPIF1<0.【點(diǎn)睛】本題是反比例函數(shù)的綜合題,考查了等邊三角形的性質(zhì),含30度角的直角三角形的性質(zhì)以及勾股定理,解題的關(guān)鍵是學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問題.【變式1】(2022·安徽合肥·統(tǒng)考一模)如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(4,0),點(diǎn)B在第一象限,且SKIPIF1<0OAB為等邊三角形,若反比例函數(shù)y=SKIPIF1<0在第一象限的圖象經(jīng)過邊AB的中點(diǎn),則k的值為___________【答案】SKIPIF1<0【分析】設(shè)AB中點(diǎn)為D,分別過B、D作BN⊥OA、DM⊥OA,根據(jù)等邊三角形的邊長為4,利用等邊三角形的性質(zhì),算出OM和DM的長,從而得出點(diǎn)D的坐標(biāo),即可得出k的值.【詳解】設(shè)AB中點(diǎn)為D,分別過B、D作BN⊥OA、DM⊥OA,垂足分別為N、M如圖所示:∵OA=4,△OAB為等邊三角形,∴AB=OA=OB=4,SKIPIF1<0,∵BN⊥OA,∴ON=AN=2,BN=SKIPIF1<02SKIPIF1<0,∵DM⊥OA,∴SKIPIF1<0,∴SKIPIF1<0,∵點(diǎn)D為AB的中點(diǎn),∴SKIPIF1<0,∴DM=SKIPIF1<0,AM=1,∴OM=OA-AM=4-1=3,∴D(3,SKIPIF1<0),∴k=3×SKIPIF1<0=3SKIPIF1<0.故答案為:3SKIPIF1<0.【點(diǎn)睛】本題主要考查了等邊三角形的性質(zhì),求反比例函數(shù)關(guān)系式和平行線分線段成比例定理,作出相應(yīng)的輔助線是解題的關(guān)鍵.【變式2】(2020·吉林長春·統(tǒng)考模擬預(yù)測(cè))如圖,在平面直角坐標(biāo)系中,函數(shù)y=SKIPIF1<0(k>0,x>0)的圖象與等邊三角形OAB的邊OA,AB分別交于點(diǎn)M,N,且OM=2MA,若AB=3,那么點(diǎn)N的橫坐標(biāo)為()A.SKIPIF1<0 B.SKIPIF1<0 C.4 D.6【答案】B【分析】根據(jù)等邊三角形的性質(zhì)和已知條件,可求出OM,通過做垂線,利用解直角三角形,求出點(diǎn)M的坐標(biāo),進(jìn)而確定反比例函數(shù)的關(guān)系式;用直線AB的關(guān)系式與反比例函數(shù)的關(guān)系式組成方程組,解出x的值即可.【詳解】過點(diǎn)N、M分別作NC⊥OB,MD⊥OB,垂足為C、D,∵△AOB是等邊三角形,∴AB=OA=OB=3,∠AOB=∠ABO=60°,又∵OM=2MA,∴OM=2,MA=1,在Rt△MOD中,∠OMD=90SKIPIF1<0-∠MOD=30°,OD=SKIPIF1<0OM=1,MDSKIPIF1<0ODSKIPIF1<0,∴點(diǎn)M的坐標(biāo)為(1,SKIPIF1<0),∴反比例函數(shù)的關(guān)系式為:y=SKIPIF1<0,設(shè)OC=a,則BC=3-a,NC=SKIPIF1<0,在Rt△BCN中,∠BNC=90SKIPIF1<0-∠NBC=30°,∴NC=SKIPIF1<0BC,∴SKIPIF1<0=SKIPIF1<0(3-a),解得:SKIPIF1<0,SKIPIF1<0(舍去),∴點(diǎn)N的橫坐標(biāo)為SKIPIF1<0,故選:B.【點(diǎn)睛】本題是反比例函數(shù)與幾何的綜合題,考查了等邊三角形的性質(zhì)、含30度角直角三角形的性質(zhì)、待定系數(shù)法求函數(shù)的表達(dá)式、反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,求得交點(diǎn)坐標(biāo)是解題的關(guān)鍵.【變式3】(2023秋·河南許昌·九年級(jí)??计谀┮阎c(diǎn)SKIPIF1<0在反比例函數(shù)SKIPIF1<0的圖象上,點(diǎn)SKIPIF1<0在SKIPIF1<0軸正半軸上,若SKIPIF1<0為等腰三角形,且腰長為5,則點(diǎn)SKIPIF1<0坐標(biāo)為______.【答案】SKIPIF1<0或SKIPIF1<0或SKIPIF1<0【分析】因?yàn)榈妊切蔚难淮_定,所以分三種情況分別計(jì)算即可.【詳解】解:當(dāng)SKIPIF1<0時(shí),過點(diǎn)A作SKIPIF1<0,垂足為C,∵SKIPIF1<0,設(shè)SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0或SKIPIF1<0(舍)或SKIPIF1<0(舍),代入SKIPIF1<0計(jì)算可得:SKIPIF1<0或SKIPIF1<0,∴點(diǎn)B的坐標(biāo)為SKIPIF1<0或SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),∵腰長為5,∴SKIPIF1<0,∴點(diǎn)B坐標(biāo)為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),∵腰長為5,∴SKIPIF1<0,∴點(diǎn)B坐標(biāo)為SKIPIF1<0;綜上:點(diǎn)B的坐標(biāo)為SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì),反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,考查分類討論的思想,當(dāng)SKIPIF1<0時(shí),求出點(diǎn)SKIPIF1<0的坐標(biāo)是解題的關(guān)鍵.考點(diǎn)3:反比例函數(shù)與特殊四邊形結(jié)合典例3:(2022春·福建龍巖·九年級(jí)校考階段練習(xí))如圖,反比例函數(shù)SKIPIF1<0點(diǎn)SKIPIF1<0,SKIPIF1<0是該反比例函數(shù)圖象上的另外兩點(diǎn),且點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0關(guān)于原點(diǎn)對(duì)稱.若已知四邊形SKIPIF1<0為矩形,SKIPIF1<0,且矩形SKIPIF1<0的面積為18,則SKIPIF1<0的值為___________.【答案】SKIPIF1<0【分析】利用矩形面積以及長寬的關(guān)系,找出關(guān)系式,再利用完全平方公式算出SKIPIF1<0.【詳解】解:由題意可知,設(shè)SKIPIF1<0點(diǎn)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,反比例函數(shù)SKIPIF1<0SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0故答案為SKIPIF1<0.【點(diǎn)睛】本題考查了反比例函數(shù),勾股定理,完全平方公式,解題關(guān)鍵是利用矩形的面積及長寬關(guān)系找出關(guān)系式.【變式1】(2020·福建漳州·統(tǒng)考二模)如圖,在直角坐標(biāo)系中,四邊形OABC為菱形,OA在x軸的正半軸上,∠AOC=60°,過點(diǎn)C的反比例函數(shù)SKIPIF1<0的圖象與AB交于點(diǎn)D,則△COD的面積為()A.SKIPIF1<0 B.SKIPIF1<0 C.4 D.SKIPIF1<0【答案】B【分析】易證S菱形ABCO=2S△CDO,再根據(jù)tan∠AOC的值即可求得菱形的邊長,即可求得點(diǎn)C的坐標(biāo),可得菱形的面積和結(jié)論.【詳解】解:作DF∥AO,CE⊥AO,∵∠AOC=60°,∴tan∠AOC=SKIPIF1<0,∴設(shè)OE=x,CE=SKIPIF1<0x,∴x?SKIPIF1<0x=4SKIPIF1<0,∴x=±2,∴OE=2,CE=2SKIPIF1<0,由勾股定理得:OC=4,∴S菱形OABC=OA?CE=4×2SKIPIF1<0=8SKIPIF1<0,∵四邊形OABC為菱形,∴AB∥CO,AO∥BC,∵DF∥AO,∴S△ADO=S△DFO,同理S△BCD=S△CDF,∵S菱形ABCO=S△ADO+S△DFO+S△BCD+S△CDF,∴S菱形ABCO=2(S△DFO+S△CDF)=2S△CDO=8SKIPIF1<0,∴S△CDO=4SKIPIF1<0;故選:B.【點(diǎn)睛】本題考查了菱形的性質(zhì),反比例函數(shù)的性質(zhì),三角函數(shù)的定義,考查了菱形面積的計(jì)算,本題中求得S菱形ABCO=2S△CDO是解題的關(guān)鍵.【變式2】(2022·福建漳州·九年級(jí)統(tǒng)考期末)如圖,反比例函數(shù)SKIPIF1<0(x>0)的圖象經(jīng)過矩形OABC對(duì)角線的交點(diǎn)M,分別于AB、BC交于點(diǎn)D、E,若四邊形ODBE的面積為9,則k的值為【】A.1 B.2 C.3 D.4【答案】C【分析】本題可從反比例函數(shù)圖象上的點(diǎn)E、M、D入手,分別找出△OCE、△OAD、矩形OABC的面積與|k|的關(guān)系,列出等式求出k值.【詳解】由題意得:E、M、D位于反比例函數(shù)圖象上,則SKIPIF1<0,過點(diǎn)M作MG⊥y軸于點(diǎn)G,作MN⊥x軸于點(diǎn)N,則S□ONMG=|k|.又∵M(jìn)為矩形ABCO對(duì)角線的交點(diǎn),∴S矩形ABCO=4S□ONMG=4|k|,∵函數(shù)圖象在第一象限,k>0,∴SKIPIF1<0.解得:k=3.故選C.【點(diǎn)睛】本題考查反比例函數(shù)系數(shù)k的幾何意義,過雙曲線上的任意一點(diǎn)分別向兩條坐標(biāo)軸作垂線,與坐標(biāo)軸圍成的矩形面積就等于|k|,本知識(shí)點(diǎn)是中考的重要考點(diǎn),同學(xué)們應(yīng)高度關(guān)注.【變式3】(2022·山東濟(jì)南·統(tǒng)考模擬預(yù)測(cè))正方形ABCD的邊長為4,AC,BD交于點(diǎn)E.在點(diǎn)A處建立平面直角坐標(biāo)系如圖所示.(1)如圖(1),雙曲線y=SKIPIF1<0過點(diǎn)E,完成填空:點(diǎn)C的坐標(biāo)是,點(diǎn)E的坐標(biāo)是,雙曲線的解析式是;(2)如圖(2),雙曲線y=SKIPIF1<0與BC,CD分別交于點(diǎn)M,N.求證:SKIPIF1<0;(3)如圖(3),將正方形ABCD向右平移m(m>0)個(gè)單位長度,使過點(diǎn)E的雙曲線y=SKIPIF1<0與AB交于點(diǎn)P.當(dāng)SKIPIF1<0AEP為等腰三角形時(shí),求m的值.【答案】(1)(4,4),(2,2),SKIPIF1<0;(2)見解析;(3)2或2SKIPIF1<0+2【分析】(1)根據(jù)正方形的邊長可確定C點(diǎn)的坐標(biāo),再利用正方形的性質(zhì)得出E點(diǎn)坐標(biāo),用待定系數(shù)法求出雙曲線解析式即可;(2)設(shè)出M點(diǎn)和N點(diǎn)的坐標(biāo),根據(jù)坐標(biāo)的性質(zhì)得出MC=NC,推出∠CMN=∠CDB即可得出MN∥BD;(3)根據(jù)E點(diǎn)的坐標(biāo)求出AE的長,再分三種情況討論分別求出m的值即可.【詳解】解:(1)∵正方形ABCD的邊長為4,AC,BD交于點(diǎn)E,∴C(4,4),E(2,2),將E點(diǎn)坐標(biāo)代入雙曲線y=SKIPIF1<0,得2=SKIPIF1<0,解得k1=4,∴雙曲線的解析式為y=SKIPIF1<0,故答案為:(4,4),(2,2),SKIPIF1<0;(2)∵雙曲線y=SKIPIF1<0與BC,CD分別交于點(diǎn)M,N,∴設(shè)M(m,4),N(4,n),∴4m=4n,∴m=n,∴MC=NC,由正方形可知,∠BCD=90°,∴∠CMN=45°,∠CBD=45°,∴∠CMN=∠CBD,∴MN∥BD;(3)∵正方形邊長為4,由(1)知E(2,2),∴AE=SKIPIF1<0,①當(dāng)AP=AE=2SKIPIF1<0時(shí),∵P(m,2SKIPIF1<0),E(m+2,2),點(diǎn)P、E在反比例函數(shù)圖象上,∴2SKIPIF1<0m=2(m+2),∴m=2SKIPIF1<0+2;②當(dāng)EP=AE時(shí),點(diǎn)P與點(diǎn)B重合,∵P(m,4),E(m+2,2),點(diǎn)P、E在反比例函數(shù)圖象上,∴4m=2(m+2),∴m=2;③SKIPIF1<0SKIPIF1<0當(dāng)EP=AP時(shí),SKIPIF1<0即SKIPIF1<0SKIPIF1<0當(dāng)EP=AP時(shí),點(diǎn)P、E不可能都在反比例函數(shù)圖象上,故此情況不存在;綜上所述,滿足條件的m的值為2或2SKIPIF1<0+2.【點(diǎn)睛】本題考查了反比例函數(shù)與幾何圖形,正方形的性質(zhì),掌握反比例函數(shù)的性質(zhì)是解題的關(guān)鍵.鞏固訓(xùn)練一、單選題1.(2022春·全國·九年級(jí)專題練習(xí))如圖,在平面直角坐標(biāo)系中,平行四邊形SKIPIF1<0的頂點(diǎn)SKIPIF1<0在反比例函數(shù)SKIPIF1<0上,頂點(diǎn)SKIPIF1<0在反比例函數(shù)SKIPIF1<0上,點(diǎn)SKIPIF1<0在SKIPIF1<0軸的正半軸上,則平行四邊形SKIPIF1<0的面積是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.3 D.5【答案】C【分析】過點(diǎn)SKIPIF1<0作SKIPIF1<0軸于點(diǎn)SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,從而可得SKIPIF1<0,再將點(diǎn)SKIPIF1<0的坐標(biāo)分別代入兩個(gè)函數(shù)的解析式可得SKIPIF1<0,然后根據(jù)平行四邊形的面積公式即可得.【詳解】解:如圖,過點(diǎn)SKIPIF1<0作SKIPIF1<0軸于點(diǎn)SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,則SKIPIF1<0,將點(diǎn)SKIPIF1<0代入函數(shù)SKIPIF1<0得:SKIPIF1<0,將點(diǎn)SKIPIF1<0代入函數(shù)SKIPIF1<0得:SKIPIF1<0,則平行四邊形SKIPIF1<0的面積是SKIPIF1<0,故選:C.【點(diǎn)睛】本題考查了反比例函數(shù)與幾何綜合、平行四邊形的面積公式,熟練掌握反比例函數(shù)的性質(zhì)是解題關(guān)鍵.2.(2021秋·廣東佛山·九年級(jí)佛山市第四中學(xué)校考階段練習(xí))兩個(gè)反比例函數(shù)SKIPIF1<0和SKIPIF1<0在第一象限內(nèi)的圖象如圖所示,點(diǎn)SKIPIF1<0在SKIPIF1<0的圖象上,SKIPIF1<0軸于點(diǎn)SKIPIF1<0,交SKIPIF1<0的圖象于點(diǎn)A,SKIPIF1<0軸于點(diǎn)SKIPIF1<0,交SKIPIF1<0的圖象于點(diǎn)SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0在SKIPIF1<0的圖象上運(yùn)動(dòng)時(shí),下列結(jié)論錯(cuò)誤的是(
)A.SKIPIF1<0與SKIPIF1<0的面積相等B.當(dāng)點(diǎn)A是PC的中點(diǎn)時(shí),點(diǎn)B一定是PD的中點(diǎn)C.SKIPIF1<0D.只有當(dāng)四邊形OCPD為正方形時(shí),四邊形PAOB的面積最大【答案】D【分析】設(shè)SKIPIF1<0,SKIPIF1<0,根據(jù)反比例函數(shù)的性質(zhì),分別得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,通過計(jì)算即可得SKIPIF1<0與SKIPIF1<0的面積相等;設(shè)SKIPIF1<0,根據(jù)反比例函數(shù)、坐標(biāo)的性質(zhì)計(jì)算,即可判斷選項(xiàng)B和C;根據(jù)四邊形PAOB的面積=四邊形OCPD面積-SKIPIF1<0-SKIPIF1<0的關(guān)系計(jì)算,推導(dǎo)得四邊形PAOB的面積SKIPIF1<0,即可完成求解.【詳解】設(shè)SKIPIF1<0,SKIPIF1<0根據(jù)題意,得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0與SKIPIF1<0的面積相等,即選項(xiàng)A正確;設(shè)SKIPIF1<0∵SKIPIF1<0軸∴SKIPIF1<0∵點(diǎn)A是PC的中點(diǎn),∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0軸∴點(diǎn)SKIPIF1<0的縱坐標(biāo)為:SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0,即當(dāng)點(diǎn)A是PC的中點(diǎn)時(shí),點(diǎn)B一定是PD的中點(diǎn),即選項(xiàng)B正確;∵SKIPIF1<0∵SKIPIF1<0軸∴SKIPIF1<0∵SKIPIF1<0軸∴點(diǎn)SKIPIF1<0的縱坐標(biāo)為:SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,即選項(xiàng)C正確;根據(jù)題意,四邊形PAOB的面積=四邊形OCPD面積-SKIPIF1<0-SKIPIF1<0=四邊形OCPD面積-1;四邊形OCPD面積SKIPIF1<0∴四邊形PAOB的面積SKIPIF1<0,即無論四邊形OCPD是否為正方形,四邊形PAOB的面積均為SKIPIF1<0∴選項(xiàng)D不正確;故選:D.【點(diǎn)睛】本題考查了反比例函數(shù)、直角坐標(biāo)系的知識(shí);解題的關(guān)鍵是熟練掌握反比例函數(shù)的性質(zhì),從而完成求解.3.(2022秋·吉林長春·九年級(jí)吉林省第二實(shí)驗(yàn)學(xué)校校考階段練習(xí))如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是SKIPIF1<0,點(diǎn)B的坐標(biāo)是(0,SKIPIF1<0),直線SKIPIF1<0與反比例函數(shù)SKIPIF1<0(SKIPIF1<0)的圖象交于點(diǎn)D,過點(diǎn)A作SKIPIF1<0軸與反比例函數(shù)的圖象相交于點(diǎn)C,若SKIPIF1<0,則k的值為(
)A.3 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】設(shè)直線SKIPIF1<0的函數(shù)解析式為SKIPIF1<0,將點(diǎn)A、B代入確定直線解析式,過點(diǎn)D作SKIPIF1<0軸于E,根據(jù)相似三角形的判定可得SKIPIF1<0SKIPIF1<0SKIPIF1<0,得出SKIPIF1<0,進(jìn)而可得D點(diǎn)坐標(biāo),再代入反比例函數(shù)解析式計(jì)算求值即可;【詳解】解:設(shè)直線SKIPIF1<0的函數(shù)解析式為SKIPIF1<0,將點(diǎn)A、B代入得:SKIPIF1<0,解得:SKIPIF1<0,∴一次函數(shù)的解析式為SKIPIF1<0,∴過點(diǎn)D作SKIPIF1<0軸于E,∵點(diǎn)A的坐標(biāo)是SKIPIF1<0,點(diǎn)B的坐標(biāo)是(0,SKIPIF1<0),∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,∵AC⊥x軸,∴C點(diǎn)橫坐標(biāo)SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,∵DE⊥x軸,則SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0(舍去)或SKIPIF1<0,故選:B.【點(diǎn)睛】本題考查了一次函數(shù)和反比例函數(shù)的綜合,相似三角形的判定和性質(zhì),正確作出輔助線是解題關(guān)鍵.4.(2022春·江蘇蘇州·八年級(jí)??计谥校┤鐖D,已知點(diǎn)A是一次函數(shù)SKIPIF1<0的圖像與反比例函數(shù)SKIPIF1<0的圖像在第一象限內(nèi)的交點(diǎn),SKIPIF1<0軸于點(diǎn)B,點(diǎn)C在x軸的負(fù)半軸上,且SKIPIF1<0,SKIPIF1<0的面積為SKIPIF1<0,則SKIPIF1<0的長為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.4【答案】B【分析】先確定反比例函數(shù)解析式為SKIPIF1<0,聯(lián)立方程組SKIPIF1<0,確定點(diǎn)SKIPIF1<0,得到SKIPIF1<0,計(jì)算SKIPIF1<0,利用勾股定理得SKIPIF1<0,計(jì)算即可.【詳解】∵SKIPIF1<0的面積為SKIPIF1<0,∴SKIPIF1<0,∴反比例函數(shù)解析式為SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0,∴點(diǎn)SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故選B.【點(diǎn)睛】本題考查了反比例函數(shù)的解析式,一次函數(shù)與反比例函數(shù)的交點(diǎn),勾股定理,熟練掌握一次函數(shù)與反比例函數(shù)的交點(diǎn)問題,勾股定理是解題的關(guān)鍵.5.(2021·湖北武漢·九年級(jí)專題練習(xí))已知點(diǎn)A是雙曲線y=SKIPIF1<0在第一象限分支上的一個(gè)動(dòng)點(diǎn),連接AO并延長交另一分支于點(diǎn)B,以AB為邊作等邊三角形ABC,點(diǎn)C在第四象限內(nèi),隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也不斷變化,但點(diǎn)C始終在雙曲線y=SKIPIF1<0(x>0)上運(yùn)動(dòng),則k的值是()A.3 B.SKIPIF1<0 C.﹣3 D.﹣SKIPIF1<0【答案】C【分析】連接OC,根據(jù)反比例函數(shù)的中心對(duì)稱性質(zhì),知OA=OB,根據(jù)等腰三角形三線合一,可得OC⊥AB,且OC:OA=SKIPIF1<0,過點(diǎn)A作AD⊥x軸,垂足為點(diǎn)D,過點(diǎn)C作CE⊥x軸,垂足為點(diǎn)E,可證明△DOA∽△ECO,得EC=SKIPIF1<0DO,OE=SKIPIF1<0AD,把線段轉(zhuǎn)化為坐標(biāo),結(jié)合反比例函數(shù)的解析式求解即可.【詳解】如圖,連接OC,根據(jù)反比例函數(shù)的中心對(duì)稱性質(zhì),得OA=OB,∵△ABC是等邊三角形,∴OC⊥AB,∠OCA=30°,∴OC:OA=SKIPIF1<0,過點(diǎn)A作AD⊥x軸,垂足為點(diǎn)D,過點(diǎn)C作CE⊥x軸,垂足為點(diǎn)E,∴∠ADO=∠OEC=90°,∵∠AOD+∠OAD=90°,∠AOD+∠COE=90°,∴∠OAD=∠COE,∴△DOA∽△ECO,∴EC:DO=OE:AD=OC:AD,∴EC=SKIPIF1<0DO,OE=SKIPIF1<0AD,設(shè)點(diǎn)A(a,b),則DO=a,AD=b,ab=1,∵點(diǎn)C在第四象限,∴點(diǎn)C的坐標(biāo)為(SKIPIF1<0b,-SKIPIF1<0a),∵點(diǎn)C始終在雙曲線y=SKIPIF1<0(x>0)上運(yùn)動(dòng),∴k=(-SKIPIF1<0a)×SKIPIF1<0b=-3ab=-3,故選C.【點(diǎn)睛】本題考查了反比例函數(shù)的對(duì)稱性,等腰三角形三線合一的性質(zhì),三角形的相似,坐標(biāo)與線段之間的關(guān)系,熟練掌握反比例函數(shù)的對(duì)稱性,靈活選擇方法證明三角形的相似是解題的關(guān)鍵.6.(2022春·河南南陽·八年級(jí)統(tǒng)考期末)如圖,點(diǎn)A是反比例函數(shù)SKIPIF1<0的圖象上任意一點(diǎn),SKIPIF1<0軸交反比例函數(shù)SKIPIF1<0的圖象于點(diǎn)B,以AB為邊作平行四邊形ABCD,其中C、D在x軸上,則SKIPIF1<0為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】設(shè)A的縱坐標(biāo)是b,則B的縱坐標(biāo)也是b,即可求得A、B的橫坐標(biāo),進(jìn)而可表示AB的長度,然后根據(jù)平行四邊形的面積公式求解即可.【詳解】解:設(shè)A的縱坐標(biāo)是b,∵四邊形SKIPIF1<0是平行四邊形,∴點(diǎn)B的縱坐標(biāo)也是b,把y=b代入SKIPIF1<0得,SKIPIF1<0,∴A的橫坐標(biāo)是SKIPIF1<0,把y=b代入SKIPIF1<0得,SKIPIF1<0,∴B的橫坐標(biāo)是SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.故選:B.【點(diǎn)睛】本題考查了是反比例函數(shù)與平行四邊形的綜合題,理解A、B的縱坐標(biāo)是同一個(gè)值,表示出AB的長度是解決本題關(guān)鍵.7.(2023·全國·九年級(jí)專題練習(xí))如圖,O為坐標(biāo)原點(diǎn),四邊形OACB是菱形,OB在x軸的正半軸上,cos∠AOB=SKIPIF1<0反比例函數(shù)SKIPIF1<0在第一象限內(nèi)的圖象經(jīng)過點(diǎn)A,與BC交于點(diǎn)F,則△AOF的面積等于()A.15 B.20 C.30 D.40【答案】B【分析】過點(diǎn)A作AM⊥x軸于點(diǎn)M,設(shè)OA=a,通過解直角三角形找出點(diǎn)A的坐標(biāo),結(jié)合反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出a的值,再根據(jù)四邊形OACB是菱形、點(diǎn)F在邊BC上,即可得出SKIPIF1<0,結(jié)合菱形的面積公式即可得出結(jié)論.【詳解】解:過點(diǎn)A作AM⊥x軸于點(diǎn)M,如圖所示.設(shè)OA=a,在Rt△OAM中,∠AMO=90°,OA=a,cos∠AOB=SKIPIF1<0,∴OM=OA?cos∠AOB=SKIPIF1<0a,AM=SKIPIF1<0=SKIPIF1<0a,∴點(diǎn)A的坐標(biāo)為(SKIPIF1<0a,SKIPIF1<0a).∵點(diǎn)A在反比例函數(shù)y=SKIPIF1<0的圖象上,∴SKIPIF1<0a×SKIPIF1<0a=24,解得:a=5SKIPIF1<0,或a=-5SKIPIF1<0(舍去).∴OM=3SKIPIF1<0,AM=4SKIPIF1<0,OB=OA=5SKIPIF1<0.∵四邊形OBCA是菱形,點(diǎn)F在邊BC上,∴SKIPIF1<0.故選:B.【點(diǎn)睛】本題考查了菱形的性質(zhì)、解直角三角形以及反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是找出SKIPIF1<0.8.(2012春·福建泉州·八年級(jí)統(tǒng)考期末)如圖,A、B是雙曲線SKIPIF1<0上關(guān)于原點(diǎn)對(duì)稱的任意兩點(diǎn),AC∥y軸,BD∥y軸,則四邊形ACBD的面積S滿足()A.S=1 B.1<S<2 C.S=2 D.S>2【答案】C【分析】連接AB,利用反比例函數(shù)比例系數(shù)k的幾何意義及等底等高的兩個(gè)三角形面積相等,即可求得結(jié)果.【詳解】解:如圖,連接AB,∵A,B是函數(shù)SKIPIF1<0的圖象上關(guān)于原點(diǎn)O對(duì)稱的任意兩點(diǎn),且AC平行于y軸,BD平行于y軸,∴S△AOC=S△BOD=SKIPIF1<0,假設(shè)A點(diǎn)坐標(biāo)為(x,y),則B點(diǎn)坐標(biāo)為(-x,-y),則OC=OD=x,∴S△AOD=S△AOC=SKIPIF1<0,S△BOC=S△BOD=SKIPIF1<0,∴四邊形ABCD面積=S△AOD+S△AOC+S△BOC+S△BOD=SKIPIF1<0,故選C.【點(diǎn)睛】本題考查了反比例函數(shù)比例系數(shù)的幾何意義,掌握這一知識(shí)是關(guān)鍵.9.(2022春·全國·九年級(jí)專題練習(xí))如圖,點(diǎn)SKIPIF1<0為函數(shù)SKIPIF1<0圖象上一點(diǎn),連結(jié)SKIPIF1<0,交函數(shù)SKIPIF1<0的圖象于點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0是SKIPIF1<0軸上一點(diǎn),且SKIPIF1<0,則三角形SKIPIF1<0的面積為(
)A.9 B.12 C.20 D.36【答案】B【分析】根據(jù)題意可以分別設(shè)出點(diǎn)A、點(diǎn)B的坐標(biāo),根據(jù)點(diǎn)O、A、B在同一條直線上可以得到A、B的坐標(biāo)之間的關(guān)系,由AO=AC可知點(diǎn)C的橫坐標(biāo)是點(diǎn)A的橫坐標(biāo)的2倍,從而可以得到△ABC的面積.【詳解】解:設(shè)點(diǎn)A的坐標(biāo)為(a,SKIPIF1<0),點(diǎn)B的坐標(biāo)為(b,SKIPIF1<0),∵點(diǎn)C是x軸上一點(diǎn),且AO=AC,∴點(diǎn)C的坐標(biāo)是(2a,0),設(shè)過點(diǎn)O(0,0),A(a,SKIPIF1<0)的直線的解析式為:y=kx,∴SKIPIF1<0=ak,解得,k=SKIPIF1<0,又∵點(diǎn)B(b,SKIPIF1<0)在y=SKIPIF1<0x上,∴SKIPIF1<0=SKIPIF1<0?b,解得,SKIPIF1<0或SKIPIF1<0(舍去),∴S△ABC=S△AOC-S△OBC=SKIPIF1<0=18-6=12.故選:B.【點(diǎn)睛】本題考查反比例函數(shù)的圖象、三角形的面積、等腰三角形的性質(zhì),解題的關(guān)鍵是明確題意,找出所求問題需要的條件.10.(2023·全國·九年級(jí)專題練習(xí))如圖,直角三角形的直角頂點(diǎn)在坐標(biāo)原點(diǎn),SKIPIF1<0,點(diǎn)A在反比例函數(shù)SKIPIF1<0的圖象上,則經(jīng)過點(diǎn)B的反比例函數(shù)解析式為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】直接利用相似三角形的判定與性質(zhì)得出SKIPIF1<0,進(jìn)而得出SKIPIF1<0,即可得出答案.【詳解】解:過點(diǎn)B作SKIPIF1<0軸于點(diǎn)C,過點(diǎn)A作SKIPIF1<0軸于點(diǎn)D,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵點(diǎn)A在反比例函數(shù)SKIPIF1<0上,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵經(jīng)過點(diǎn)B的反比例函數(shù)圖象在第二象限,故反比例函數(shù)解析式為:SKIPIF1<0.故選:B.【點(diǎn)睛】此題主要考查了相似三角形的判定與性質(zhì)以及反比例函數(shù)數(shù)的性質(zhì),正確得出SKIPIF1<0是解題關(guān)鍵.二、填空題11.(2022秋·湖南懷化·九年級(jí)校考階段練習(xí))如圖,設(shè)直線SKIPIF1<0與雙曲線SKIPIF1<0相交于SKIPIF1<0兩點(diǎn),則SKIPIF1<0的值為___________.【答案】10【分析】根據(jù)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)并結(jié)合函數(shù)圖象上點(diǎn)的坐標(biāo)特征來解答即可.【詳解】解:根據(jù)題意,SKIPIF1<0,并且SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.故答案為:10.【點(diǎn)睛】本題考查了反比例函數(shù)圖象的對(duì)稱性,重點(diǎn)是掌握兩點(diǎn)關(guān)于原點(diǎn)成中心對(duì)稱.12(2023春·遼寧沈陽·九年級(jí)沈陽市南昌初級(jí)中學(xué)(沈陽市第二十三中學(xué))校考開學(xué)考試)如圖,點(diǎn)A在雙曲線SKIPIF1<0上,點(diǎn)B在雙曲線SKIPIF1<0上,點(diǎn)A在點(diǎn)B的左側(cè),SKIPIF1<0軸,點(diǎn)C,D在x軸上,若四邊形SKIPIF1<0為面積是9的矩形,則k的值為______.【答案】13【分析】延長SKIPIF1<0交y軸于點(diǎn)E,根據(jù)反比例函數(shù)系數(shù)k的幾何意義,可得四邊形SKIPIF1<0的面積是4,四邊形SKIPIF1<0的面積是SKIPIF1<0,再由四邊形SKIPIF1<0的面積是9,即可求出.【詳解】解:延長SKIPIF1<0交y軸于點(diǎn)E,則SKIPIF1<0軸,∵點(diǎn)A在反比例函數(shù)SKIPIF1<0上,∴四邊形SKIPIF1<0的面積是4,∵點(diǎn)B在反比例函數(shù)SKIPIF1<0上,∴四邊形SKIPIF1<0的面積是SKIPIF1<0,∵四邊形SKIPIF1<0的面積是9,∴SKIPIF1<0,∵反比例函數(shù)SKIPIF1<0在第一象限,∴SKIPIF1<0.故答案為13.【點(diǎn)睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義,靈活運(yùn)用數(shù)形結(jié)合思想是解題的關(guān)鍵。13.(2019·福建三明·統(tǒng)考一模)如圖,在直角坐標(biāo)系中,四邊形OABC為菱形,OA在x軸的正半軸上,∠AOC=60°,過點(diǎn)C的反比例函數(shù)SKIPIF1<0的圖象與AB交于點(diǎn)D,則△COD的面積為_____.【答案】SKIPIF1<0【分析】易證S菱形ABCO=2S△CDO,再根據(jù)tan∠AOC的值即可求得菱形的邊長,即可求得點(diǎn)C的坐標(biāo),可得菱形的面積和結(jié)論.【詳解】解:作DF∥AO,CE⊥AO,∵∠AOC=60°,∴tan∠AOC=SKIPIF1<0,∴設(shè)OE=x,CE=SKIPIF1<0,∴x?SKIPIF1<0,∴x=±2,∴OE=2,CE=2SKIPIF1<0,由勾股定理得:OC=4,∴S菱形OABC=OA?CE=4×2SKIPIF1<0,∵四邊形OABC為菱形,∴AB∥CO,AO∥BC,∵DF∥AO,∴S△ADO=S△DFO,同理S△BCD=S△CDF,∵S菱形ABCO=S△ADO+S△DFO+S△BCD+S△CDF,∴S菱形ABCO=2(S△DFO+S△CDF)=2S△CDO=8SKIPIF1<0,∴S△CDO=4SKIPIF1<0;故答案為4SKIPIF1<0.【點(diǎn)睛】本題考查了菱形的性質(zhì),反比例函數(shù)的性質(zhì),三角函數(shù)的定義,考查了菱形面積的計(jì)算,本題中求得S菱形ABCO=2S△CDO是解題的關(guān)鍵.14.(2021春·福建泉州·八年級(jí)統(tǒng)考期末)圖,已知在平面直角坐標(biāo)系SKIPIF1<0中,SKIPIF1<0的直角頂點(diǎn)SKIPIF1<0在SKIPIF1<0軸的正半軸上,點(diǎn)SKIPIF1<0在第一象限,反比例函數(shù)SKIPIF1<0的圖象經(jīng)過SKIPIF1<0的中點(diǎn)SKIPIF1<0.交SKIPIF1<0于點(diǎn)SKIPIF1<0,連接SKIPIF1<0.若SKIPIF1<0的面積是3,則四邊形SKIPIF1<0的面積是______.【答案】5【分析】作輔助線,構(gòu)建直角三角形,利用反比例函數(shù)SKIPIF1<0的幾何意義得到SKIPIF1<0,根據(jù)SKIPIF1<0的中點(diǎn)SKIPIF1<0,利用中線的性質(zhì)和三線合一得到△OCE和△OAB的面積比為SKIPIF1<0,代入可得結(jié)論.【詳解】解:連接SKIPIF1<0,SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0軸于SKIPIF1<0,SKIPIF1<0,反比例函數(shù)SKIPIF1<0的圖象經(jīng)過SKIPIF1<0的中點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴CE⊥OB,∴OE=BE,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0的面積為SKIPIF1<0,故答案為:5.【點(diǎn)睛】本題考查了反比例函數(shù)比例系數(shù)SKIPIF1<0的幾何意義:在反比例函數(shù)SKIPIF1<0圖象中任取一點(diǎn),過這一個(gè)點(diǎn)向SKIPIF1<0軸和SKIPIF1<0軸分別作垂線,與坐標(biāo)軸圍成的矩形的面積是定值SKIPIF1<0.在反比例函數(shù)的圖象上任意一點(diǎn)向坐標(biāo)軸作垂線,這一點(diǎn)和垂足以及坐標(biāo)原點(diǎn)所構(gòu)成的三角形的面積是SKIPIF1<0,且保持不變.15.(2022·江蘇淮安·模擬預(yù)測(cè))如圖,一次函數(shù)SKIPIF1<0的圖像交坐標(biāo)軸于SKIPIF1<0、SKIPIF1<0兩點(diǎn),交反比例函數(shù)SKIPIF1<0圖像的一個(gè)分支于點(diǎn)SKIPIF1<0,若點(diǎn)SKIPIF1<0恰好是SKIPIF1<0的中點(diǎn),則SKIPIF1<0的值是___________.【答案】SKIPIF1<0【分析】由一次函數(shù)解析式可得SKIPIF1<0、SKIPIF1<0的坐標(biāo),再由點(diǎn)SKIPIF1<0恰好是SKIPIF1<0的中點(diǎn)求得SKIPIF1<0的坐標(biāo),然后代入SKIPIF1<0求得k即可解答.【詳解】解:SKIPIF1<0一次函數(shù)SKIPIF1<0的圖像交坐標(biāo)軸于SKIPIF1<0、SKIPIF1<0兩點(diǎn),SKIPIF1<0,SKIPIF1<0點(diǎn)SKIPIF1<0恰好是SKIPIF1<0的中點(diǎn),SKIPIF1<0,SKIPIF1<0反比例函數(shù)SKIPIF1<0圖像過點(diǎn)SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0【點(diǎn)睛】本題主要考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題、一次函數(shù)圖像上點(diǎn)的坐標(biāo)特征、運(yùn)用待定系數(shù)法求反比例函數(shù)的解析式等知識(shí)點(diǎn),求得點(diǎn)SKIPIF1<0的坐標(biāo)是解題的關(guān)鍵.16.(2021春·福建廈門·九年級(jí)廈門市湖濱中學(xué)??计谥校┤鐖D,已知A、B兩點(diǎn)都在反比例函數(shù)y=SKIPIF1<0位于第二象限部分的圖像上,且△OAB為等邊三角形,若AB=6,則k的值為____.【答案】-9【分析】根據(jù)等邊三角形和反比例函數(shù)圖象的軸對(duì)稱性,可知:A、B兩點(diǎn)關(guān)于直線y=-x軸對(duì)稱,從而設(shè)A(m,n),則B(-n,-m),結(jié)合兩點(diǎn)間的距離公式,即可求解.【詳解】∵A、B兩點(diǎn)都在反比例函數(shù)y=SKIPIF1<0位于第二象限部分的圖像上,且△OAB為等邊三角形,∴A、B兩點(diǎn)關(guān)于直線y=-x軸對(duì)稱,設(shè)A(m,n),則B(-n,-m),∵AB=OA=6,∴SKIPIF1<0且SKIPIF1<0,化簡整理得:-4mn=36,∴mn=-9,即:k=-9.故答案是:-9【點(diǎn)睛】本題主要考查反比例函數(shù)的圖象和性質(zhì),等邊三角形的性質(zhì),掌握反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,反比例函數(shù)圖象的軸對(duì)稱性以及兩點(diǎn)間的距離公式,是解題的關(guān)鍵.三、解答題17.(2022秋·福建福州·九年級(jí)??计谀┤鐖D,在平面直角坐標(biāo)系中,四邊形SKIPIF1<0為矩形,C,A兩點(diǎn)分別在x軸的正半軸上和y軸的正半軸上,D為線段SKIPIF1<0的中點(diǎn),反比例函數(shù)SKIPIF1<0的圖象經(jīng)過點(diǎn)B.(1)當(dāng)點(diǎn)C坐標(biāo)為SKIPIF1<0時(shí),求點(diǎn)D的坐標(biāo);(用含k的代數(shù)式表示)(2)若一次函數(shù)SKIPIF1<0的圖象經(jīng)過C,D兩點(diǎn),求k的值.【答案】(1)SKIPIF1<0(2)k的值為6【分析】(1)先由B點(diǎn)的橫坐標(biāo)為1,反比例函數(shù)SKIPIF1<0的圖象經(jīng)過點(diǎn)B,求得SKIPIF1<0,進(jìn)而根據(jù)D為線段SKIPIF1<0的中點(diǎn)即可得解;(2)根據(jù)求得SKIPIF1<0,SKIPIF1<0,進(jìn)而得SKIPIF1<0,又由點(diǎn)D為SKIPIF1<0的中點(diǎn),得點(diǎn)SKIPIF1<0,再由點(diǎn)D在直線SKIPIF1<0上,即可求解.【詳解】(1)解:∵四邊形SKIPIF1<0為矩形,C,A兩點(diǎn)分別在x軸的正半軸上和y軸的正半軸上,點(diǎn)C坐標(biāo)為SKIPIF1<0,∴B點(diǎn)的橫坐標(biāo)為1,∵反比例函數(shù)SKIPIF1<0的圖象經(jīng)過點(diǎn)B,∴SKIPIF1<0,∵D為線段SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 移動(dòng)通信技術(shù)課程設(shè)計(jì)
- 瑜伽內(nèi)臟培訓(xùn)課程設(shè)計(jì)
- 紡織理論課程設(shè)計(jì)
- 溫度計(jì)的實(shí)驗(yàn)課程設(shè)計(jì)
- 電熱物理課程設(shè)計(jì)
- 2024年海南省建筑安全員考試題庫
- 程序設(shè)計(jì)與課程設(shè)計(jì)
- 2025江蘇省建筑安全員考試題庫及答案
- 組合邏輯控制器課程設(shè)計(jì)
- 2024年電機(jī)驅(qū)動(dòng)系統(tǒng)技術(shù)支持協(xié)議版B版
- GB 7681-2008鍘草機(jī)安全技術(shù)要求
- 新員工入職培訓(xùn)手冊(cè)PPT
- 醫(yī)藥公司開票業(yè)務(wù)技巧課件
- 門窗安裝施工組織設(shè)計(jì)方案
- 華能玉環(huán)電廠1000MW汽輪機(jī)培訓(xùn)講義-課件
- NB∕T 10626-2021 海上風(fēng)電場工程防腐蝕設(shè)計(jì)規(guī)范
- 教學(xué)第11章組合邏輯電路-課件
- 幼年特發(fā)性關(guān)節(jié)炎1課件
- PCB常見不良品圖片及改善措施匯總
- 甲狀腺功能檢測(cè)醫(yī)學(xué)課件
- 電梯維保服務(wù)質(zhì)量年度考核表格
評(píng)論
0/150
提交評(píng)論