版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
試卷第1頁,共SECTIONPAGES1頁2021-2023年全國高考數(shù)學典例真題匯編(新高考模式訓練)20姓名:___________班級:___________一.單選題1.【2021-全國新高II卷】復數(shù)在復平面內(nèi)對應(yīng)的點所在的象限為()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.【2022-全國II卷數(shù)學高考真題】已知集合,則()A. B. C. D.3.【2023-新課標全國Ⅰ卷真題】已知,則()A. B. C.0 D.14.【2021-全國新高II卷】拋物線的焦點到直線的距離為,則()A.1 B.2 C. D.45.【2021-天津卷】從某網(wǎng)絡(luò)平臺推薦的影視作品中抽取部,統(tǒng)計其評分分數(shù)據(jù),將所得個評分數(shù)據(jù)分為組:、、、,并整理得到如下的費率分布直方圖,則評分在區(qū)間內(nèi)的影視作品數(shù)量是()A. B. C. D.6.【2022-全國II卷數(shù)學高考真題】正三棱臺高為1,上下底邊長分別為和,所有頂點在同一球面上,則球的表面積是()A. B. C. D.7.【2021-全國甲卷(理)】將4個1和2個0隨機排成一行,則2個0不相鄰的概率為()A. B. C. D.8.【2023-天津卷數(shù)學真題】在三棱錐中,線段上的點滿足,線段上的點滿足,則三棱錐和三棱錐的體積之比為()A. B. C. D.二.多選題9.【2021-全國新高II卷】下列統(tǒng)計量中,能度量樣本的離散程度的是()A.樣本的標準差 B.樣本的中位數(shù)C.樣本的極差 D.樣本的平均數(shù)10.【2021-全國新高II卷】如圖,在正方體中,O為底面的中心,P為所在棱的中點,M,N為正方體的頂點.則滿足的是()A. B.C. D.11.【2021-新高考Ⅰ卷】已知點在圓上,點、,則()A.點到直線的距離小于B.點到直線的距離大于C.當最小時,D.當最大時,三.填空題12.【2023-天津卷數(shù)學真題】在的展開式中,項的系數(shù)為_________.13.【2022-天津數(shù)學高考真題】在中,,D是AC中點,,試用表示為___________,若,則的最大值為____________14.【2022-天津數(shù)學高考真題】設(shè),對任意實數(shù)x,記.若至少有3個零點,則實數(shù)取值范圍為______.四.解答題15.【2021-全國甲卷(理)】已知數(shù)列的各項均為正數(shù),記為的前n項和,從下面①②③中選取兩個作為條件,證明另外一個成立.①數(shù)列是等差數(shù)列:②數(shù)列是等差數(shù)列;③.注:若選擇不同的組合分別解答,則按第一個解答計分.16.【2022-北京數(shù)學高考真題】在校運動會上,只有甲、乙、丙三名同學參加鉛球比賽,比賽成績達到以上(含)的同學將獲得優(yōu)秀獎.為預測獲得優(yōu)秀獎的人數(shù)及冠軍得主,收集了甲、乙、丙以往的比賽成績,并整理得到如下數(shù)據(jù)(單位:m):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,935,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假設(shè)用頻率估計概率,且甲、乙、丙的比賽成績相互獨立.(1)估計甲在校運動會鉛球比賽中獲得優(yōu)秀獎的概率;(2)設(shè)X是甲、乙、丙在校運動會鉛球比賽中獲得優(yōu)秀獎的總?cè)藬?shù),估計X的數(shù)學期望E(X);(3)在校運動會鉛球比賽中,甲、乙、丙誰獲得冠軍的概率估計值最大?(結(jié)論不要求證明)17.【2023-全國數(shù)學乙卷(文)高考真題】如圖,在三棱錐中,,,,,的中點分別為,點在上,.(1)求證://平面;(2)若,求三棱錐的體積.18.【2023-全國數(shù)學乙卷(文)高考真題】在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線:(為參數(shù),).(1)寫出的直角坐標方程;(2)若直線既與沒有公共點,也與沒有公共點,求的取值范圍.19.【2021-全國甲卷(理)】在直角坐標系中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為.(1)將C的極坐標方程化為直角坐標方程;(2)設(shè)點A的直角坐標為,M為C上的動點,點P滿足,寫出Р的軌跡的參數(shù)方程,并判斷C與是否有公共點.答案第1頁,共SECTIONPAGES1頁2021-2023年全國高考數(shù)學典例真題匯編(新高考模式訓練)20【參考答案】1.答案:A解析:,所以該復數(shù)對應(yīng)的點為,該點在第一象限,故選:A2.答案:B解析:,故,故選:B.3.答案:A解析:因為,所以,即.故選:A.4.答案:B解析:拋物線的焦點坐標為,其到直線的距離:,解得:(舍去).故選:B.5.答案:D解析:由頻率分布直方圖可知,評分在區(qū)間內(nèi)的影視作品數(shù)量為.故選:D.6.答案:A解析:設(shè)正三棱臺上下底面所在圓面的半徑,所以,即,設(shè)球心到上下底面的距離分別為,球的半徑為,所以,,故或,即或,解得符合題意,所以球的表面積為.故選:A.7.答案:C解析:將4個1和2個0隨機排成一行,可利用插空法,4個1產(chǎn)生5個空,若2個0相鄰,則有種排法,若2個0不相鄰,則有種排法,所以2個0不相鄰的概率為.故選:C.8.答案:B解析:如圖,分別過作,垂足分別為.過作平面,垂足為,連接,過作,垂足為.因為平面,平面,所以平面平面.又因為平面平面,,平面,所以平面,且.在中,因為,所以,所以,在中,因為,所以,所以故選:B9.答案:AC解析:由標準差的定義可知,標準差考查的是數(shù)據(jù)的離散程度;由中位數(shù)的定義可知,中位數(shù)考查的是數(shù)據(jù)的集中趨勢;由極差的定義可知,極差考查的是數(shù)據(jù)的離散程度;由平均數(shù)的定義可知,平均數(shù)考查的是數(shù)據(jù)的集中趨勢;故選:AC.10.答案:BC解析:設(shè)正方體的棱長為,對于A,如圖(1)所示,連接,則,故(或其補角)為異面直線所成的角,直角三角形,,,故,故不成立,故A錯誤.對于B,如圖(2)所示,取的中點為,連接,,則,,由正方體可得平面,而平面,故,而,故平面,又平面,,而,所以平面,而平面,故,故B正確.對于C,如圖(3),連接,則,由B的判斷可得,故,故C正確.對于D,如圖(4),取的中點,的中點,連接,則,因為,故,故,所以或其補角為異面直線所成的角,因為正方體的棱長為2,故,,,,故不是直角,故不垂直,故D錯誤.故選:BC.11.答案:ACD解析:圓的圓心為,半徑為,直線的方程為,即,圓心到直線的距離為,所以,點到直線的距離的最小值為,最大值為,A選項正確,B選項錯誤;如下圖所示:當最大或最小時,與圓相切,連接、,可知,,,由勾股定理可得,CD選項正確.故選:ACD.【點睛】結(jié)論點睛:若直線與半徑為圓相離,圓心到直線的距離為,則圓上一點到直線的距離的取值范圍是.12.答案:解析:展開式的通項公式,令可得,,則項的系數(shù)為.故答案為:60.13.答案:①.②.解析:法二:以點為原點建立平面直角坐標系,設(shè),由可得點的軌跡為以為圓心,以為半徑的圓,方程為,即可根據(jù)幾何性質(zhì)可知,當且僅當與相切時,最大,即求出.方法一:
,,,當且僅當時取等號,而,所以.故答案為:;.方法二:如圖所示,建立坐標系:,,,所以點的軌跡是以為圓心,以為半徑的圓,當且僅當與相切時,最大,此時.故答案為:;.
14.答案:解析:設(shè),,由可得.要使得函數(shù)至少有個零點,則函數(shù)至少有一個零點,則,解得或.①當時,,作出函數(shù)、的圖象如下圖所示:此時函數(shù)只有兩個零點,不合乎題意;②當時,設(shè)函數(shù)的兩個零點分別為、,要使得函數(shù)至少有個零點,則,所以,,解得;③當時,,作出函數(shù)、的圖象如下圖所示:由圖可知,函數(shù)的零點個數(shù)為,合乎題意;④當時,設(shè)函數(shù)的兩個零點分別為、,要使得函數(shù)至少有個零點,則,可得,解得,此時.綜上所述,實數(shù)的取值范圍是.故答案為:.【點睛】方法點睛:已知函數(shù)有零點(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,進而構(gòu)造兩個函數(shù),然后在同一平面直角坐標系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解.
15.答案:答案見解析解析:選①③作條件證明②時,根據(jù)等差數(shù)列的求和公式表示出,結(jié)合等差數(shù)列定義可證;選②③作條件證明①時,設(shè)出,結(jié)合的關(guān)系求出,根據(jù)可求,然后可證是等差數(shù)列.選①②作條件證明③:設(shè),則,當時,;當時,;因為也是等差數(shù)列,所以,解得;所以,所以.選①③作條件證明②:因為,是等差數(shù)列,所以公差,所以,即,因為,所以是等差數(shù)列.選②③作條件證明①:設(shè),則,當時,;當時,;因為,所以,解得或;當時,,當時,滿足等差數(shù)列的定義,此時為等差數(shù)列;當時,,不合題意,舍去.綜上可知為等差數(shù)列.【點睛】這類題型在解答題中較為罕見,求解的關(guān)鍵是牢牢抓住已知條件,結(jié)合相關(guān)公式,逐步推演,等差數(shù)列的證明通常采用定義法或者等差中項法.16.答案:(1)0.4(2)(3)丙解析:(2)求解得X的分布列,即可計算出X的數(shù)學期望.(3)計算出各自獲得最高成績的概率,再根據(jù)其各自的最高成績可判斷丙奪冠的概率估計值最大.【小問1詳解】由頻率估計概率可得甲獲得優(yōu)秀的概率為0.4,乙獲得優(yōu)秀的概率為0.5,丙獲得優(yōu)秀的概率為0.5,故答案為0.4【小問2詳解】設(shè)甲獲得優(yōu)秀為事件A1,乙獲得優(yōu)秀為事件A2,丙獲得優(yōu)秀為事件A3,,,.∴X的分布列為X0123P∴【小問3詳解】丙奪冠概率估計值最大.因為鉛球比賽無論比賽幾次就取最高成績.比賽一次,丙獲得9.85的概率為,甲獲得9.80的概率為,乙獲得9.78的概率為.并且丙的最高成績是所有成績中最高的,比賽次數(shù)越多,對丙越有利.17.答案:(1)證明見解析(2)解析:(2)作出并證明為棱錐的高,利用三棱錐的體積公式直接可求體積.【小問1詳解】連接,設(shè),則,,,則,解得,則為的中點,由分別為的中點,于是,即,則四邊形為平行四邊形,,又平面平面,所以平面.【小問2詳解】過作垂直的延長線交于點,因為是中點,所以,在中,,所以,因為,所以,又,平面,所以平面,又平面,所以,又,平面,所以平面,即三棱錐的高為,因為,所以,所以,又,所以.18.答案:(1)(2)解析:(2)根據(jù)曲線的方程,結(jié)合圖形通過平移直線分析相應(yīng)的臨界位置,結(jié)合點到直線的距離公式運算求解即可.【小問1詳解】因為,即,可得,整理得,表示以為圓心,半徑為1的圓,又因為,且,則,則,故.【小問2詳解】因為(為參數(shù),),整理得,表示圓心為,半徑為2,且位于第二象限的圓弧,如圖所示,若直線過,則,解得;若直線,即與相切,則,解得,若直線與均沒有公共點,則或,即實數(shù)的取值范圍.【選修4-5】(10分)19
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度文化傳播公司公司掛靠文化傳播合作協(xié)議3篇
- 2025年度食堂員工綜合培訓與服務(wù)合同3篇
- 二零二五年度全日制勞務(wù)合同書(新能源發(fā)電運維)3篇
- 二零二五年度農(nóng)村土地承包權(quán)與農(nóng)業(yè)科技應(yīng)用合作合同3篇
- 2025年度養(yǎng)羊產(chǎn)業(yè)市場調(diào)研與分析合作協(xié)議2篇
- 二零二五年度勞動合同集合與勞動爭議預防合同3篇
- 二零二五年度衛(wèi)浴行業(yè)綠色環(huán)保產(chǎn)品認證合同3篇
- 2025年度光伏電站設(shè)備維修保養(yǎng)合同3篇
- 2025年度員工合同模板匯編:員工培訓與發(fā)展計劃篇2篇
- 2025年度新能源汽車充電樁合作股權(quán)協(xié)議書模板3篇
- 2024-2030年全球與中國汽車音頻DSP芯片組市場銷售前景及競爭策略分析報告
- 2025禮品定制合同范本
- 醫(yī)院消毒隔離制度范文(2篇)
- 2024年01月11026經(jīng)濟學(本)期末試題答案
- 烘干煤泥合同范例
- 2025年“三基”培訓計劃
- 第20課 北洋軍閥統(tǒng)治時期的政治、經(jīng)濟與文化 教案
- 住房公積金稽核審計工作方案例文(4篇)
- 山東省青島實驗高中2025屆高三物理第一學期期末綜合測試試題含解析
- 物理人教版2024版八年級上冊6.2密度課件03
- 2024-2030年中國光纖傳感器行業(yè)競爭格局及發(fā)展趨勢分析報告
評論
0/150
提交評論