2023-2024學(xué)年南師附中集團中考聯(lián)考數(shù)學(xué)試卷含解析_第1頁
2023-2024學(xué)年南師附中集團中考聯(lián)考數(shù)學(xué)試卷含解析_第2頁
2023-2024學(xué)年南師附中集團中考聯(lián)考數(shù)學(xué)試卷含解析_第3頁
2023-2024學(xué)年南師附中集團中考聯(lián)考數(shù)學(xué)試卷含解析_第4頁
2023-2024學(xué)年南師附中集團中考聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學(xué)年南師附中集團中考聯(lián)考數(shù)學(xué)試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,已知點E在正方形ABCD內(nèi),滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是()A.48 B.60C.76 D.802.下列運算中,正確的是()A.(ab2)2=a2b4B.a(chǎn)2+a2=2a4C.a(chǎn)2?a3=a6D.a(chǎn)6÷a3=a23.如圖,在△ABC中,∠C=90°,AC=BC=3cm.動點P從點A出發(fā),以cm/s的速度沿AB方向運動到點B.動點Q同時從點A出發(fā),以1cm/s的速度沿折線ACCB方向運動到點B.設(shè)△APQ的面積為y(cm2).運動時間為x(s),則下列圖象能反映y與x之間關(guān)系的是()A. B.C. D.4.如圖,已知∠1=∠2,要使△ABD≌△ACD,需從下列條件中增加一個,錯誤的選法是()A.∠ADB=∠ADC B.∠B=∠C C.AB=AC D.DB=DC5.九章算術(shù)是中國古代數(shù)學(xué)專著,九章算術(shù)方程篇中有這樣一道題:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,問幾何步及之?”這是一道行程問題,意思是說:走路快的人走100步的時候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追趕,問走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,設(shè)走路快的人要走

x

步才能追上走路慢的人,那么,下面所列方程正確的是A. B. C. D.6.如圖,扇形AOB中,半徑OA=2,∠AOB=120°,C是弧AB的中點,連接AC、BC,則圖中陰影部分面積是()A. B.C. D.7.已知△ABC,D是AC上一點,尺規(guī)在AB上確定一點E,使△ADE∽△ABC,則符合要求的作圖痕跡是()A. B.C. D.8.下列運算正確的是()A.a(chǎn)12÷a4=a3 B.a(chǎn)4?a2=a8 C.(﹣a2)3=a6 D.a(chǎn)?(a3)2=a79.如圖,這是根據(jù)某班40名同學(xué)一周的體育鍛煉情況繪制的條形統(tǒng)計圖,根據(jù)統(tǒng)計圖提供的信息,可得到該班40名同學(xué)一周參加體育鍛煉時間的眾數(shù)、中位數(shù)分別是()A.8,9 B.8,8.5 C.16,8.5 D.16,10.510.如圖,⊙O的半徑為6,直徑CD過弦EF的中點G,若∠EOD=60°,則弦CF的長等于()A.6 B.6 C.3 D.911.如圖,I是?ABC的內(nèi)心,AI向延長線和△ABC的外接圓相交于點D,連接BI,BD,DC下列說法中錯誤的一項是()A.線段DB繞點D順時針旋轉(zhuǎn)一定能與線段DC重合B.線段DB繞點D順時針旋轉(zhuǎn)一定能與線段DI熏合C.∠CAD繞點A順時針旋轉(zhuǎn)一定能與∠DAB重合D.線段ID繞點I順時針旋轉(zhuǎn)一定能與線段IB重合12.如圖,△ABC在邊長為1個單位的方格紙中,它的頂點在小正方形的頂點位置.如果△ABC的面積為10,且sinA=,那么點C的位置可以在()A.點C1處 B.點C2處 C.點C3處 D.點C4處二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,直線y1=mx經(jīng)過P(2,1)和Q(-4,-2)兩點,且與直線y2=kx+b交于點P,則不等式kx+b>mx>-2的解集為_________________.14.不等式組的解集為_____.15.如圖,已知△ABC中,AB=AC=5,BC=8,將△ABC沿射線BC方向平移m個單位得到△DEF,頂點A,B,C分別與D,E,F(xiàn)對應(yīng),若以A,D,E為頂點的三角形是等腰三角形,且AE為腰,則m的值是______.16.因式分解:16a3﹣4a=_____.17.如圖,已知正方形ABCD中,∠MAN=45°,連接BD與AM,AN分別交于E,F(xiàn)點,則下列結(jié)論正確的有_____.①MN=BM+DN②△CMN的周長等于正方形ABCD的邊長的兩倍;③EF1=BE1+DF1;④點A到MN的距離等于正方形的邊長⑤△AEN、△AFM都為等腰直角三角形.⑥S△AMN=1S△AEF⑦S正方形ABCD:S△AMN=1AB:MN⑧設(shè)AB=a,MN=b,則≥1﹣1.18.如圖所示:在平面直角坐標(biāo)系中,△OCB的外接圓與y軸交于A(0,),∠OCB=60°,∠COB=45°,則OC=.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)漳州市某中學(xué)對全校學(xué)生進行文明禮儀知識測試,為了解測試結(jié)果,隨機抽取部分學(xué)生的成績進行分析,將成績分為三個等級:不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計圖(不完整).請你根據(jù)圖中所給的信息解答下列問題:請將以上兩幅統(tǒng)計圖補充完整;若“一般”和“優(yōu)秀”均被視為達標(biāo)成績,則該校被抽取的學(xué)生中有_▲人達標(biāo);若該校學(xué)生有1200人,請你估計此次測試中,全校達標(biāo)的學(xué)生有多少人?20.(6分)計算:|﹣2|+8+(2017﹣π)0﹣4cos45°21.(6分)尺規(guī)作圖:用直尺和圓規(guī)作圖,不寫作法,保留痕跡.已知:如圖,線段a,h.求作:△ABC,使AB=AC,且∠BAC=∠α,高AD=h.22.(8分)如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(m≠0)的圖象交于第二、四象限內(nèi)的A、B兩點,與x軸交于點C,點A(﹣2,3),點B(6,n).(1)求該反比例函數(shù)和一次函數(shù)的解析式;(2)求△AOB的面積;(3)若M(x1,y1),N(x2,y2)是反比例函數(shù)y=(m≠0)的圖象上的兩點,且x1<x2,y1<y2,指出點M、N各位于哪個象限.23.(8分)八年級一班開展了“讀一本好書”的活動,班委會對學(xué)生閱讀書籍的情況進行了問卷調(diào)查,問卷設(shè)置了“小說”“戲劇”“散文”“其他”四個類型,每位同學(xué)僅選一項,根據(jù)調(diào)查結(jié)果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計圖.類別頻數(shù)(人數(shù))頻率小說0.5戲劇4散文100.25其他6合計1根據(jù)圖表提供的信息,解答下列問題:八年級一班有多少名學(xué)生?請補全頻數(shù)分布表,并求出扇形統(tǒng)計圖中“其他”類所占的百分比;在調(diào)查問卷中,甲、乙、丙、丁四位同學(xué)選擇了“戲劇”類,現(xiàn)從以上四位同學(xué)中任意選出2名同學(xué)參加學(xué)校的戲劇興趣小組,請用畫樹狀圖或列表法的方法,求選取的2人恰好是乙和丙的概率.24.(10分)如圖,在△ABC中,D是AB邊上任意一點,E是BC邊中點,過點C作AB的平行線,交DE的延長線于點F,連接BF,CD.(1)求證:四邊形CDBF是平行四邊形;(2)若∠FDB=30°,∠ABC=45°,BC=4,求DF的長.25.(10分)如圖,點A,C,B,D在同一條直線上,BE∥DF,∠A=∠F,AB=FD,求證:AE=FC.26.(12分)如圖,四邊形ABCD的頂點在⊙O上,BD是⊙O的直徑,延長CD、BA交于點E,連接AC、BD交于點F,作AH⊥CE,垂足為點H,已知∠ADE=∠ACB.(1)求證:AH是⊙O的切線;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若,求證:CD=DH.27.(12分)如圖,在△OAB中,OA=OB,C為AB中點,以O(shè)為圓心,OC長為半徑作圓,AO與⊙O交于點E,OB與⊙O交于點F和D,連接EF,CF,CF與OA交于點G(1)求證:直線AB是⊙O的切線;(2)求證:△GOC∽△GEF;(3)若AB=4BD,求sinA的值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】試題解析:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S陰影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故選C.考點:勾股定理.2、A【解析】

直接利用積的乘方運算法則以及合并同類項法則和同底數(shù)冪的乘除運算法則分別分析得出答案.【詳解】解:A、(ab2)2=a2b4,故此選項正確;B、a2+a2=2a2,故此選項錯誤;C、a2?a3=a5,故此選項錯誤;D、a6÷a3=a3,故此選項錯誤;故選:A.【點睛】此題主要考查了積的乘方運算以及合并同類項和同底數(shù)冪的乘除運算,正確掌握運算法則是解題關(guān)鍵.3、D【解析】

在△ABC中,∠C=90°,AC=BC=3cm,可得AB=,∠A=∠B=45°,分當(dāng)0<x≤3(點Q在AC上運動,點P在AB上運動)和當(dāng)3≤x≤6時(點P與點B重合,點Q在CB上運動)兩種情況求出y與x的函數(shù)關(guān)系式,再結(jié)合圖象即可解答.【詳解】在△ABC中,∠C=90°,AC=BC=3cm,可得AB=,∠A=∠B=45°,當(dāng)0<x≤3時,點Q在AC上運動,點P在AB上運動(如圖1),由題意可得AP=x,AQ=x,過點Q作QN⊥AB于點N,在等腰直角三角形AQN中,求得QN=x,所以y==(0<x≤3),即當(dāng)0<x≤3時,y隨x的變化關(guān)系是二次函數(shù)關(guān)系,且當(dāng)x=3時,y=4.5;當(dāng)3≤x≤6時,點P與點B重合,點Q在CB上運動(如圖2),由題意可得PQ=6-x,AP=3,過點Q作QN⊥BC于點N,在等腰直角三角形PQN中,求得QN=(6-x),所以y==(3≤x≤6),即當(dāng)3≤x≤6時,y隨x的變化關(guān)系是一次函數(shù),且當(dāng)x=6時,y=0.由此可得,只有選項D符合要求,故選D.【點睛】本題考查了動點函數(shù)圖象,解決本題要正確分析動線運動過程,然后再正確計算其對應(yīng)的函數(shù)解析式,由函數(shù)的解析式對應(yīng)其圖象,由此即可解答.4、D【解析】

由全等三角形的判定方法ASA證出△ABD≌△ACD,得出A正確;由全等三角形的判定方法AAS證出△ABD≌△ACD,得出B正確;由全等三角形的判定方法SAS證出△ABD≌△ACD,得出C正確.由全等三角形的判定方法得出D不正確;【詳解】A正確;理由:在△ABD和△ACD中,∵∠1=∠2,AD=AD,∠ADB=∠ADC,∴△ABD≌△ACD(ASA);B正確;理由:在△ABD和△ACD中,∵∠1=∠2,∠B=∠C,AD=AD∴△ABD≌△ACD(AAS);C正確;理由:在△ABD和△ACD中,∵AB=AC,∠1=∠2,AD=AD,∴△ABD≌△ACD(SAS);D不正確,由這些條件不能判定三角形全等;故選:D.【點睛】本題考查了全等三角形的判定方法;三角形全等的判定是中考的熱點,熟練掌握全等三角形的判定方法是解決問題的關(guān)鍵.5、B【解析】解:設(shè)走路快的人要走x步才能追上走路慢的人,根據(jù)題意得:.故選B.點睛:本題考查了一元一次方程的應(yīng)用.找準(zhǔn)等量關(guān)系,列方程是關(guān)鍵.6、A【解析】試題分析:連接AB、OC,ABOC,所以可將四邊形AOBC分成三角形ABC、和三角形AOB,進行求面積,求得四邊形面積是,扇形面積是S=πr2=,所以陰影部分面積是扇形面積減去四邊形面積即.故選A.7、A【解析】

以DA為邊、點D為頂點在△ABC內(nèi)部作一個角等于∠B,角的另一邊與AB的交點即為所求作的點.【詳解】如圖,點E即為所求作的點.故選:A.【點睛】本題主要考查作圖-相似變換,根據(jù)相似三角形的判定明確過點D作一角等于∠B或∠C,并熟練掌握做一個角等于已知角的作法式解題的關(guān)鍵.8、D【解析】

分別根據(jù)同底數(shù)冪的除法、乘法和冪的乘方的運算法則逐一計算即可得.【詳解】解:A、a12÷a4=a8,此選項錯誤;

B、a4?a2=a6,此選項錯誤;

C、(-a2)3=-a6,此選項錯誤;

D、a?(a3)2=a?a6=a7,此選項正確;

故選D.【點睛】本題主要考查冪的運算,解題的關(guān)鍵是掌握同底數(shù)冪的除法、乘法和冪的乘方的運算法則.9、A【解析】

根據(jù)中位數(shù)、眾數(shù)的概念分別求得這組數(shù)據(jù)的中位數(shù)、眾數(shù).【詳解】解:眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),即8;而將這組數(shù)據(jù)從小到大的順序排列后,處于20,21兩個數(shù)的平均數(shù),由中位數(shù)的定義可知,這組數(shù)據(jù)的中位數(shù)是9.故選A.【點睛】考查了中位數(shù)、眾數(shù)的概念.本題為統(tǒng)計題,考查眾數(shù)與中位數(shù)的意義,中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到小)重新排列后,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù),如果中位數(shù)的概念掌握得不好,不把數(shù)據(jù)按要求重新排列,就會錯誤地將這組數(shù)據(jù)最中間的那個數(shù)當(dāng)作中位數(shù).10、B【解析】

連接DF,根據(jù)垂徑定理得到,得到∠DCF=∠EOD=30°,根據(jù)圓周角定理、余弦的定義計算即可.【詳解】解:連接DF,∵直徑CD過弦EF的中點G,∴,∴∠DCF=∠EOD=30°,∵CD是⊙O的直徑,

∴∠CFD=90°,

∴CF=CD?cos∠DCF=12×=,故選B.【點睛】本題考查的是垂徑定理的推論、解直角三角形,掌握平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧是解題的關(guān)鍵.11、D【解析】解:∵I是△ABC的內(nèi)心,∴AI平分∠BAC,BI平分∠ABC,∴∠BAD=∠CAD,∠ABI=∠CBI,故C正確,不符合題意;∴=,∴BD=CD,故A正確,不符合題意;∵∠DAC=∠DBC,∴∠BAD=∠DBC.∵∠IBD=∠IBC+∠DBC,∠BID=∠ABI+∠BAD,∴∠DBI=∠DIB,∴BD=DI,故B正確,不符合題意.故選D.點睛:本題考查了三角形的內(nèi)切圓和內(nèi)心的,以及等腰三角形的判定與性質(zhì),同弧所對的圓周角相等.12、D【解析】如圖:∵AB=5,,∴D=4,∵,∴,∴AC=4,∵在RT△AD中,D,AD=8,∴A=,故答案為D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、-4<x<1【解析】將P(1,1)代入解析式y(tǒng)1=mx,先求出m的值為,將Q點縱坐標(biāo)y=1代入解析式y(tǒng)=x,求出y1=mx的橫坐標(biāo)x=-4,即可由圖直接求出不等式kx+b>mx>-1的解集為y1>y1>-1時,x的取值范圍為-4<x<1.

故答案為-4<x<1.

點睛:本題考查了一次函數(shù)與一元一次不等式,求出函數(shù)圖象的交點坐標(biāo)及函數(shù)與x軸的交點坐標(biāo)是解題的關(guān)鍵.14、﹣2≤x<【解析】

根據(jù)解不等式的步驟從而得到答案.【詳解】,解不等式①可得:x≥-2,解不等式②可得:x<,故答案為-2≤x<.【點睛】本題主要考查了解不等式,解本題的要點在于分別求解①,②不等式,從而得到答案.15、或5或1.【解析】

根據(jù)以點A,D,E為頂點的三角形是等腰三角形分類討論即可.【詳解】解:如圖(1)當(dāng)在△ADE中,DE=5,當(dāng)AD=DE=5時為等腰三角形,此時m=5.(2)又AC=5,當(dāng)平移m個單位使得E、C點重合,此時AE=ED=5,平移的長度m=BC=1,(3)可以AE、AD為腰使ADE為等腰三角形,設(shè)平移了m個單位:則AN=3,AC=,AD=m,得:,得m=,綜上所述:m為或5或1,所以答案:或5或1.【點睛】本題主要考查等腰三角形的性質(zhì),注意分類討論的完整性.16、4a(2a+1)(2a﹣1)【解析】

首先提取公因式,再利用平方差公式分解即可.【詳解】原式=4a(4a2﹣1)=4a(2a+1)(2a﹣1),故答案為4a(2a+1)(2a﹣1)【點睛】本題考查了提公因式法與公式法的綜合運用,解題的關(guān)鍵是熟練掌握因式分解的方法.17、①②③④⑤⑥⑦.【解析】

將△ABM繞點A逆時針旋轉(zhuǎn),使AB與AD重合,得到△ADH.證明△MAN≌△HAN,得到MN=NH,根據(jù)三角形周長公式計算判斷①;判斷出BM=DN時,MN最小,即可判斷出⑧;根據(jù)全等三角形的性質(zhì)判斷②④;將△ADF繞點A順時針性質(zhì)90°得到△ABH,連接HE.證明△EAH≌△EAF,得到∠HBE=90°,根據(jù)勾股定理計算判斷③;根據(jù)等腰直角三角形的判定定理判斷⑤;根據(jù)等腰直角三角形的性質(zhì)、三角形的面積公式計算,判斷⑥,根據(jù)點A到MN的距離等于正方形ABCD的邊長、三角形的面積公式計算,判斷⑦.【詳解】將△ABM繞點A逆時針旋轉(zhuǎn),使AB與AD重合,得到△ADH.則∠DAH=∠BAM,∵四邊形ABCD是正方形,∴∠BAD=90°,∵∠MAN=45°,∴∠BAN+∠DAN=45°,∴∠NAH=45°,在△MAN和△HAN中,,∴△MAN≌△HAN,∴MN=NH=BM+DN,①正確;∵BM+DN≥1,(當(dāng)且僅當(dāng)BM=DN時,取等號)∴BM=DN時,MN最小,∴BM=b,∵DH=BM=b,∴DH=DN,∵AD⊥HN,∴∠DAH=∠HAN=11.5°,在DA上取一點G,使DG=DH=b,∴∠DGH=45°,HG=DH=b,∵∠DGH=45°,∠DAH=11.5°,∴∠AHG=∠HAD,∴AG=HG=b,∴AB=AD=AG+DG=b+b=b=a,∴,∴,當(dāng)點M和點B重合時,點N和點C重合,此時,MN最大=AB,即:,∴≤≤1,⑧錯誤;∵MN=NH=BM+DN∴△CMN的周長=CM+CN+MN=CM+BM+CN+DN=CB+CD,∴△CMN的周長等于正方形ABCD的邊長的兩倍,②結(jié)論正確;∵△MAN≌△HAN,∴點A到MN的距離等于正方形ABCD的邊長AD,④結(jié)論正確;如圖1,將△ADF繞點A順時針性質(zhì)90°得到△ABH,連接HE.∵∠DAF+∠BAE=90°-∠EAF=45°,∠DAF=∠BAE,∴∠EAH=∠EAF=45°,∵EA=EA,AH=AD,∴△EAH≌△EAF,∴EF=HE,∵∠ABH=∠ADF=45°=∠ABD,∴∠HBE=90°,在Rt△BHE中,HE1=BH1+BE1,∵BH=DF,EF=HE,∵EF1=BE1+DF1,③結(jié)論正確;∵四邊形ABCD是正方形,∴∠ADC=90°,∠BDC=∠ADB=45°,∵∠MAN=45°,∴∠EAN=∠EDN,∴A、E、N、D四點共圓,∴∠ADN+∠AEN=180°,∴∠AEN=90°∴△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;⑤結(jié)論正確;∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,∴AM=AF,AN=AE,如圖3,過點M作MP⊥AN于P,在Rt△APM中,∠MAN=45°,∴MP=AMsin45°,∵S△AMN=AN?MP=AM?AN?sin45°,S△AEF=AE?AF?sin45°,∴S△AMN:S△AEF=1,∴S△AMN=1S△AEF,⑥正確;∵點A到MN的距離等于正方形ABCD的邊長,∴S正方形ABCD:S△AMN==1AB:MN,⑦結(jié)論正確.即:正確的有①②③④⑤⑥⑦,故答案為①②③④⑤⑥⑦.【點睛】此題是四邊形綜合題,主要考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),等腰直角三角形的判定和性質(zhì),解本題的關(guān)鍵是構(gòu)造全等三角形.18、1+【解析】試題分析:連接AB,由圓周角定理知AB必過圓心M,Rt△ABO中,易知∠BAO=∠OCB=60°,已知了OA=,即可求得OB的長;過B作BD⊥OC,通過解直角三角形即可求得OD、BD、CD的長,進而由OC=OD+CD求出OC的長.解:連接AB,則AB為⊙M的直徑.Rt△ABO中,∠BAO=∠OCB=60°,∴OB=OA=×=.過B作BD⊥OC于D.Rt△OBD中,∠COB=45°,則OD=BD=OB=.Rt△BCD中,∠OCB=60°,則CD=BD=1.∴OC=CD+OD=1+.故答案為1+.點評:此題主要考查了圓周角定理及解直角三角形的綜合應(yīng)用能力,能夠正確的構(gòu)建出與已知和所求相關(guān)的直角三角形是解答此題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)1;(3)估計全校達標(biāo)的學(xué)生有10人【解析】

(1)成績一般的學(xué)生占的百分比=1-成績優(yōu)秀的百分比-成績不合格的百分比,測試的學(xué)生總數(shù)=不合格的人數(shù)÷不合格人數(shù)的百分比,繼而求出成績優(yōu)秀的人數(shù).(2)將成績一般和優(yōu)秀的人數(shù)相加即可;(3)該校學(xué)生文明禮儀知識測試中成績達標(biāo)的人數(shù)=1200×成績達標(biāo)的學(xué)生所占的百分比.【詳解】解:(1)成績一般的學(xué)生占的百分比=1﹣20%﹣50%=30%,測試的學(xué)生總數(shù)=24÷20%=120人,成績優(yōu)秀的人數(shù)=120×50%=60人,所補充圖形如下所示:(2)該校被抽取的學(xué)生中達標(biāo)的人數(shù)=36+60=1.(3)1200×(50%+30%)=10(人).答:估計全校達標(biāo)的學(xué)生有10人.20、1.【解析】

直接利用零指數(shù)冪的性質(zhì)以及特殊角的三角函數(shù)值和絕對值的性質(zhì)分別化簡得出答案.【詳解】解:原式=2+22+1﹣4×2=2+22+1﹣22=1.【點睛】此題主要考查了實數(shù)運算,正確化簡各數(shù)是解題關(guān)鍵.21、見解析【解析】

作∠CAB=∠α,再作∠CAB的平分線,在角平分線上截取AD=h,可得點D,過點D作AD的垂線,從而得出△ABC.【詳解】解:如圖所示,△ABC即為所求.【點睛】考查作圖-復(fù)雜作圖,掌握做一個角等于已知角、作角平分線及過直線上一點作已知直線的垂線的基本作圖和等腰三角形的性質(zhì)是解題的關(guān)鍵.22、(1)反比例函數(shù)的解析式為y=﹣;一次函數(shù)的解析式為y=﹣x+2;(2)8;(3)點M、N在第二象限,或點M、N在第四象限.【解析】

(1)把A(﹣2,3)代入y=,可得m=﹣2×3=﹣6,∴反比例函數(shù)的解析式為y=﹣;把點B(6,n)代入,可得n=﹣1,∴B(6,﹣1).把A(﹣2,3),B(6,﹣1)代入y=kx+b,可得,解得,∴一次函數(shù)的解析式為y=﹣x+2;(2)∵y=﹣x+2,令y=0,則x=4,∴C(4,0),即OC=4,∴△AOB的面積=×4×(3+1)=8;(3)∵反比例函數(shù)y=﹣的圖象位于二、四象限,∴在每個象限內(nèi),y隨x的增大而增大,∵x1<x2,y1<y2,∴M,N在相同的象限,∴點M、N在第二象限,或點M、N在第四象限.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,求三角形的面積,求函數(shù)的解析式,正確掌握反比例函數(shù)的性質(zhì)是解題的關(guān)鍵.23、(1)41(2)15%(3)【解析】

(1)用散文的頻數(shù)除以其頻率即可求得樣本總數(shù);(2)根據(jù)其他類的頻數(shù)和總?cè)藬?shù)求得其百分比即可;(3)畫樹狀圖得出所有等可能的情況數(shù),找出恰好是丙與乙的情況,即可確定出所求概率.【詳解】(1)∵喜歡散文的有11人,頻率為1.25,∴m=11÷1.25=41;(2)在扇形統(tǒng)計圖中,“其他”類所占的百分比為×111%=15%,故答案為15%;(3)畫樹狀圖,如圖所示:所有等可能的情況有12種,其中恰好是丙與乙的情況有2種,∴P(丙和乙)==.24、(1)證明見解析;(2)1.【解析】

(1)先證明出△CEF≌△BED,得出CF=BD即可證明四邊形CDBF是平行四邊形;(2)作EM⊥DB于點M,根據(jù)平行四邊形的性質(zhì)求出BE,DF的值,再根據(jù)三角函數(shù)值求出EM的值,∠EDM=30°,由此可得出結(jié)論.【詳解】解:(1)證明:∵CF∥AB,∴∠ECF=∠EBD.∵E是BC中點,∴CE=BE.∵∠CEF=∠BED,∴△CEF≌△BED.∴CF=BD.∴四邊形CDBF是平行四邊形.(2)解:如圖,作EM⊥DB于點M,∵四邊形CDBF是平行四邊形,BC=,∴,DF=2DE.在Rt△EMB中,EM=BE?sin∠ABC=2,在Rt△EMD中,∵∠EDM=30°,∴DE=2EM=4,∴DF=2DE=1.【點睛】本題考查了平行四邊形的判定與全等三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握平行四邊形的判定與全等三角形的判定與性質(zhì).25、證明見解析.【解析】由已知條件BE∥DF,可得出∠ABE=∠D,再利用ASA證明△ABE≌△FDC即可.證明:∵BE∥DF,∴∠ABE=∠D,在△ABE和△F

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論