版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
陜西省榆林市重點(diǎn)中學(xué)2024年中考數(shù)學(xué)模擬精編試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.若a與﹣3互為倒數(shù),則a=()A.3 B.﹣3 C.13 D.-2.下列運(yùn)算正確的是()A.2+a=3 B.=C. D.=3.如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2,則EC的長為()A. B.8 C. D.4.估計-1的值在()A.0到1之間 B.1到2之間 C.2到3之間 D.3至4之間5.一元二次方程的根的情況是A.有兩個不相等的實(shí)數(shù)根 B.有兩個相等的實(shí)數(shù)根C.沒有實(shí)數(shù)根 D.無法判斷6.如圖,AD,CE分別是△ABC的中線和角平分線.若AB=AC,∠CAD=20°,則∠ACE的度數(shù)是()A.20° B.35° C.40° D.70°7.拋物線y=x2+2x+3的對稱軸是()A.直線x=1 B.直線x=-1C.直線x=-2 D.直線x=28.下列計算正確的是()A.x2x3=x6 B.(m+3)2=m2+9C.a(chǎn)10÷a5=a5 D.(xy2)3=xy69.若點(diǎn)A(2,),B(-3,),C(-1,)三點(diǎn)在拋物線的圖象上,則、、的大小關(guān)系是()A.B.C.D.10.用五個完全相同的小正方體組成如圖所示的立體圖形,從正面看到的圖形是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.在如圖所示的正方形方格紙中,每個小的四邊形都是相同的正方形,A、B、C、D都是格點(diǎn),AB與CD相交于M,則AM:BM=__.12.如圖,將矩形ABCD繞點(diǎn)C沿順時針方向旋轉(zhuǎn)90°到矩形A′B′CD′的位置,AB=2,AD=4,則陰影部分的面積為_____.13.已知二次函數(shù)的部分圖象如圖所示,則______;當(dāng)x______時,y隨x的增大而減?。?4.為了估計池塘里有多少條魚,從池塘里捕撈了1000條魚做上標(biāo)記,然后放回池塘里,經(jīng)過一段時間,等有標(biāo)記的魚完全混合于魚群中以后,再捕撈200條,若其中有標(biāo)記的魚有10條,則估計池塘里有魚_____條.15.分解因式:.16.已知:如圖,矩形ABCD中,AB=5,BC=3,E為AD上一點(diǎn),把矩形ABCD沿BE折疊,若點(diǎn)A恰好落在CD上點(diǎn)F處,則AE的長為_____.三、解答題(共8題,共72分)17.(8分)如圖,熱氣球探測器顯示,從熱氣球A處看一棟樓頂部B處的仰角為30°,看這棟樓底部C處的俯角為60°,熱氣球與樓的水平距離AD為100米,試求這棟樓的高度BC.18.(8分)為厲行節(jié)能減排,倡導(dǎo)綠色出行,今年3月以來.“共享單車”(俗稱“小黃車”)公益活動登陸我市中心城區(qū).某公司擬在甲、乙兩個街道社區(qū)投放一批“小黃車”,這批自行車包括A、B兩種不同款型,請回答下列問題:問題1:單價該公司早期在甲街區(qū)進(jìn)行了試點(diǎn)投放,共投放A、B兩型自行車各50輛,投放成本共計7500元,其中B型車的成本單價比A型車高10元,A、B兩型自行車的單價各是多少?問題2:投放方式該公司決定采取如下投放方式:甲街區(qū)每1000人投放a輛“小黃車”,乙街區(qū)每1000人投放輛“小黃車”,按照這種投放方式,甲街區(qū)共投放1500輛,乙街區(qū)共投放1200輛,如果兩個街區(qū)共有15萬人,試求a的值.19.(8分)已知:如圖,∠ABC=∠DCB,BD、CA分別是∠ABC、∠DCB的平分線.求證:AB=DC.20.(8分)如圖,△ABC是等腰直角三角形,且AC=BC,P是△ABC外接圓⊙O上的一動點(diǎn)(點(diǎn)P與點(diǎn)C位于直線AB的異側(cè))連接AP、BP,延長AP到D,使PD=PB,連接BD.(1)求證:PC∥BD;(2)若⊙O的半徑為2,∠ABP=60°,求CP的長;(3)隨著點(diǎn)P的運(yùn)動,的值是否會發(fā)生變化,若變化,請說明理由;若不變,請給出證明.21.(8分)甲、乙兩人在5次打靶測試中命中的環(huán)數(shù)如下:甲:8,8,7,8,9乙:5,9,7,10,9(1)填寫下表:平均數(shù)
眾數(shù)
中位數(shù)
方差
甲
8
8
0.4
乙
9
3.2
(2)教練根據(jù)這5次成績,選擇甲參加射擊比賽,教練的理由是什么?(3)如果乙再射擊1次,命中8環(huán),那么乙的射擊成績的方差.(填“變大”、“變小”或“不變”).22.(10分)圖1是一輛吊車的實(shí)物圖,圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉(zhuǎn)動點(diǎn)A離地面BD的高度AH為3.4m.當(dāng)起重臂AC長度為9m,張角∠HAC為118°時,求操作平臺C離地面的高度(結(jié)果保留小數(shù)點(diǎn)后一位:參考數(shù)據(jù):sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)23.(12分)如圖1,在正方形ABCD中,E是AB上一點(diǎn),F(xiàn)是AD延長線上一點(diǎn),且DF=BE,求證:CE=CF;如圖2,在正方形ABCD中,E是AB上一點(diǎn),G是AD上一點(diǎn),如果∠GCE=45°,請你利用(1)的結(jié)論證明:GE=BE+GD;運(yùn)用(1)(2)解答中所積累的經(jīng)驗和知識,完成下題:如圖3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一點(diǎn),且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面積.24.某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,如圖是水平放置的破裂管道有水部分的截面.(1)請你用直尺和圓規(guī)作出這個輸水管道的圓形截面的圓心(保留作圖痕跡);(2)若這個輸水管道有水部分的水面寬AB=8cm,水面最深地方的高度為2cm,求這個圓形截面的半徑.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】試題分析:根據(jù)乘積是1的兩個數(shù)互為倒數(shù),可得3a=1,∴a=13故選C.考點(diǎn):倒數(shù).2、D【解析】
根據(jù)整式的混合運(yùn)算計算得到結(jié)果,即可作出判斷.【詳解】A、2與a不是同類項,不能合并,不符合題意;B、=,不符合題意;C、原式=,不符合題意;D、=,符合題意,故選D.【點(diǎn)睛】此題考查了整式的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.3、D【解析】∵⊙O的半徑OD⊥弦AB于點(diǎn)C,AB=8,∴AC=AB=1.設(shè)⊙O的半徑為r,則OC=r-2,在Rt△AOC中,∵AC=1,OC=r-2,∴OA2=AC2+OC2,即r2=12+(r﹣2)2,解得r=2.∴AE=2r=3.連接BE,∵AE是⊙O的直徑,∴∠ABE=90°.在Rt△ABE中,∵AE=3,AB=8,∴.在Rt△BCE中,∵BE=6,BC=1,∴.故選D.4、B【解析】試題分析:∵2<<3,∴1<-1<2,即-1在1到2之間,故選B.考點(diǎn):估算無理數(shù)的大?。?、A【解析】
把a(bǔ)=1,b=-1,c=-1,代入,然后計算,最后根據(jù)計算結(jié)果判斷方程根的情況.【詳解】方程有兩個不相等的實(shí)數(shù)根.故選A.【點(diǎn)睛】本題考查根的判別式,把a(bǔ)=1,b=-1,c=-1,代入計算是解題的突破口.6、B【解析】
先根據(jù)等腰三角形的性質(zhì)以及三角形內(nèi)角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分線定義即可得出∠ACE=∠ACB=35°.【詳解】∵AD是△ABC的中線,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.∵CE是△ABC的角平分線,∴∠ACE=∠ACB=35°.故選B.【點(diǎn)睛】本題考查了等腰三角形的兩個底角相等的性質(zhì),等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合的性質(zhì),三角形內(nèi)角和定理以及角平分線定義,求出∠ACB=70°是解題的關(guān)鍵.7、B【解析】
根據(jù)拋物線的對稱軸公式:計算即可.【詳解】解:拋物線y=x2+2x+3的對稱軸是直線故選B.【點(diǎn)睛】此題考查的是求拋物線的對稱軸,掌握拋物線的對稱軸公式是解決此題的關(guān)鍵.8、C【解析】
根據(jù)乘方的運(yùn)算法則、完全平方公式、同底數(shù)冪的除法和積的乘方進(jìn)行計算即可得到答案.【詳解】x2?x3=x5,故選項A不合題意;(m+3)2=m2+6m+9,故選項B不合題意;a10÷a5=a5,故選項C符合題意;(xy2)3=x3y6,故選項D不合題意.故選:C.【點(diǎn)睛】本題考查乘方的運(yùn)算法則、完全平方公式、同底數(shù)冪的除法和積的乘方解題的關(guān)鍵是掌握乘方的運(yùn)算法則、完全平方公式、同底數(shù)冪的除法和積的乘方的運(yùn)算.9、C【解析】首先求出二次函數(shù)的圖象的對稱軸x==2,且由a=1>0,可知其開口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在對稱軸的左側(cè),而在對稱軸的左側(cè),y隨x得增大而減小,所以.總結(jié)可得.故選C.點(diǎn)睛:此題主要考查了二次函數(shù)的圖像與性質(zhì),解答此題的關(guān)鍵是(1)找到二次函數(shù)的對稱軸;(2)掌握二次函數(shù)的圖象性質(zhì).10、A【解析】從正面看第一層是三個小正方形,第二層左邊一個小正方形,故選:A.二、填空題(本大題共6個小題,每小題3分,共18分)11、5:1【解析】
根據(jù)題意作出合適的輔助線,然后根據(jù)三角形相似即可解答本題.【詳解】解:作AE∥BC交DC于點(diǎn)E,交DF于點(diǎn)F,設(shè)每個小正方形的邊長為a,則△DEF∽△DCN,∴==,∴EF=a,∵AF=2a,∴AE=a,∵△AME∽△BMC,∴===,故答案為:5:1.【點(diǎn)睛】本題考查相似三角形的判定與性質(zhì),解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.12、【解析】試題解析:連接∵四邊形ABCD是矩形,∴CE=BC=4,∴CE=2CD,由勾股定理得:∴陰影部分的面積是S=S扇形CEB′?S△CDE故答案為13、3,>1【解析】
根據(jù)函數(shù)圖象與x軸的交點(diǎn),可求出c的值,根據(jù)圖象可判斷函數(shù)的增減性.【詳解】解:因為二次函數(shù)的圖象過點(diǎn).
所以,
解得.
由圖象可知:時,y隨x的增大而減小.
故答案為(1).3,(2).>1【點(diǎn)睛】此題考查二次函數(shù)圖象的性質(zhì),數(shù)形結(jié)合法是解決函數(shù)問題經(jīng)常采用的一種方法,關(guān)鍵是要找出圖象與函數(shù)解析式之間的聯(lián)系.14、20000【解析】試題分析:1000÷=20000(條).考點(diǎn):用樣本估計總體.15、.【解析】要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式后繼續(xù)應(yīng)用平方差公式分解即可:.考點(diǎn):提公因式法和應(yīng)用公式法因式分解.16、【解析】
根據(jù)矩形的性質(zhì)得到CD=AB=5,AD=BC=3,∠D=∠C=90°,根據(jù)折疊得到BF=AB=5,EF=EA,根據(jù)勾股定理求出CF,由此得到DF的長,再根據(jù)勾股定理即可求出AE.【詳解】∵矩形ABCD中,AB=5,BC=3,∴CD=AB=5,AD=BC=3,∠D=∠C=90°,由折疊的性質(zhì)可知,BF=AB=5,EF=EA,在Rt△BCF中,CF==4,∴DF=DC﹣CF=1,設(shè)AE=x,則EF=x,DE=3﹣x,在Rt△DEF中,EF2=DE2+DF2,即x2=(3﹣x)2+12,解得,x=,故答案為:.【點(diǎn)睛】此題考查矩形的性質(zhì),勾股定理,折疊的性質(zhì),由折疊得到BF的長度是解題的關(guān)鍵.三、解答題(共8題,共72分)17、這棟樓的高度BC是米.【解析】試題分析:在直角三角形ADB中和直角三角形ACD中,根據(jù)銳角三角函數(shù)中的正切可以分別求得BD和CD的長,從而可以求得BC的長.試題解析:解:∵°,°,°,AD=100,∴在Rt中,,在Rt中,.∴.點(diǎn)睛:本題考查解直角三角形的應(yīng)用-仰角俯角問題,解答此類問題的關(guān)鍵是明確已知邊、已知角和未知邊之間的三角函數(shù)關(guān)系.18、問題1:A、B兩型自行車的單價分別是70元和80元;問題2:a的值為1【解析】
問題1:設(shè)A型車的成本單價為x元,則B型車的成本單價為(x+10)元,依題意得50x+50(x+10)=7500,解得x=70,∴x+10=80,答:A、B兩型自行車的單價分別是70元和80元;問題2:由題可得,×1000+×1000=10000,解得a=1,經(jīng)檢驗:a=1是分式方程的解,故a的值為1.19、∵平分平分,∴在與中,.【解析】分析:根據(jù)角平分線性質(zhì)和已知求出∠ACB=∠DBC,根據(jù)ASA推出△ABC≌△DCB,根據(jù)全等三角形的性質(zhì)推出即可.解答:證明:∵AC平分∠BCD,BC平分∠ABC,∴∠DBC=∠ABC,∠ACB=∠DCB,∵∠ABC=∠DCB,∴∠ACB=∠DBC,∵在△ABC與△DCB中,,∴△ABC≌△DCB,∴AB=DC.20、(1)證明見解析;(2)+;(3)的值不變,.【解析】
(1)根據(jù)等腰三角形的性質(zhì)得到∠ABC=45°,∠ACB=90°,根據(jù)圓周角定理得到∠APB=90°,得到∠APC=∠D,根據(jù)平行線的判定定理證明;(2)作BH⊥CP,根據(jù)正弦、余弦的定義分別求出CH、PH,計算即可;(3)證明△CBP∽△ABD,根據(jù)相似三角形的性質(zhì)解答.【詳解】(1)證明:∵△ABC是等腰直角三角形,且AC=BC,∴∠ABC=45°,∠ACB=90°,∴∠APC=∠ABC=45°,∴AB為⊙O的直徑,∴∠APB=90°,∵PD=PB,∴∠PBD=∠D=45°,∴∠APC=∠D=45°,∴PC∥BD;(2)作BH⊥CP,垂足為H,∵⊙O的半徑為2,∠ABP=60°,∴BC=2,∠BCP=∠BAP=30°,∠CPB=∠BAC=45°,在Rt△BCH中,CH=BC?cos∠BCH=,BH=BC?sin∠BCH=,在Rt△BHP中,PH=BH=,∴CP=CH+PH=+;(3)的值不變,∵∠BCP=∠BAP,∠CPB=∠D,∴△CBP∽△ABD,∴=,∴=,即=.【點(diǎn)睛】本題考查的是圓周角定理、相似三角形的判定和性質(zhì)以及銳角三角函數(shù)的概念,掌握圓周角定理、相似三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.21、(1)填表見解析;(2)理由見解析;(3)變小.【解析】
(1)根據(jù)眾數(shù)、平均數(shù)和中位數(shù)的定義求解:(2)方差就是和中心偏離的程度,用來衡量一批數(shù)據(jù)的波動大小(即這批數(shù)據(jù)偏離平均數(shù)的大?。┰跇颖救萘肯嗤那闆r下,方差越大,說明數(shù)據(jù)的波動越大,越不穩(wěn)定.(3)根據(jù)方差公式求解:如果乙再射擊1次,命中8環(huán),那么乙的射擊成績的方差變?。驹斀狻吭囶}分析:試題解析:解:(1)甲的眾數(shù)為8,乙的平均數(shù)=(5+9+7+10+9)=8,乙的中位數(shù)為9.故填表如下:平均數(shù)
眾數(shù)
中位數(shù)
方差
甲
8
8
8
0.4
乙
8
9
9
3.2
(2)因為他們的平均數(shù)相等,而甲的方差小,發(fā)揮比較穩(wěn)定,所以選擇甲參加射擊比賽;(3)如果乙再射擊1次,命中8環(huán),平均數(shù)不變,根據(jù)方差公式可得乙的射擊成績的方差變?。键c(diǎn):1.方差;2.算術(shù)平均數(shù);3.中位數(shù);4.眾數(shù).22、操作平臺C離地面的高度為7.6m.【解析】分析:作CE⊥BD于F,AF⊥CE于F,如圖2,易得四邊形AHEF為矩形,則EF=AH=3.4m,∠HAF=90°,再計算出∠CAF=28°,則在Rt△ACF中利用正弦可計算出CF,然后計算CF+EF即可.詳解:作CE⊥BD于F,AF⊥CE于F,如圖2,易得四邊形AHEF為矩形,∴EF=AH=3.4m,∠HAF=90°,∴∠CAF=∠CAH-∠HAF=118°-90°=28°,在Rt△ACF中,∵sin∠CAF=,∴CF=9sin28°=9×0.47=4.23,∴CE=CF+EF=4.23+3.4≈7.6(m),答:操作平臺C離地面的高度為7.6m.點(diǎn)睛:本題考查了解直角三角形的應(yīng)用:先將實(shí)際問題抽象為數(shù)學(xué)問題(畫出平面圖形,構(gòu)造出直角三角形轉(zhuǎn)化為解直角三角形問題),然后利用勾股定理和三角函數(shù)的定義進(jìn)行幾何計算.23、(1)、(2)證明見解析(3)28【解析】試題分析:(1)根據(jù)正方形的性質(zhì),可直接證明△CBE≌△CDF,從而得出CE=CF;(2)延長AD至F,使DF=BE,連接CF,根據(jù)(1)知∠BCE=∠DCF,即可證明∠ECF=∠BCD=90°,根據(jù)∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;(3)過C作CF⊥AD的延長線于點(diǎn)F.則四邊形ABCF是正方形,設(shè)DF=x,則AD=12-x,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年油罐項目環(huán)保設(shè)施運(yùn)行監(jiān)測與數(shù)據(jù)分析合同范本3篇
- 2025年度出租車行業(yè)新能源車輛推廣應(yīng)用合同3篇
- 2024年版技術(shù)服務(wù)合同:云計算平臺建設(shè)與維護(hù)
- 2024年食品工業(yè)原料采購協(xié)議示例版
- 2025年度沖擊鉆施工材料采購與供應(yīng)鏈管理合同3篇
- 2025年度智能家居安全系統(tǒng)承包套房裝修合同3篇
- 2025年度新型環(huán)保項目貸款合同范本3篇
- 2024限定版汽車銷售協(xié)議范本一
- 2024年茶葉種植與加工項目合作協(xié)議版
- 2024年項目實(shí)施委托協(xié)議版B版
- 外科手術(shù)抗凝藥物停用指南
- 健康管理師培訓(xùn)課
- 農(nóng)作物植保員培訓(xùn)課件
- 2024韓束品牌拆解-蟬媽媽
- 建筑企業(yè)合同管理培訓(xùn)課件
- 化工有限公司3萬噸水合肼及配套項目環(huán)評可研資料環(huán)境影響
- 非急救轉(zhuǎn)運(yùn)公司計劃書
- 2023年中國軟件行業(yè)基準(zhǔn)數(shù)據(jù)SSM-BK-202310
- 天津市部分區(qū)2023-2024學(xué)年高一上學(xué)期期末練習(xí)生物試題【含答案解析】
- 稀土鋁合金電纜項目招商引資方案
- 人教版六年級數(shù)學(xué)下冊全冊分層作業(yè)設(shè)計含答案
評論
0/150
提交評論