版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇省無錫市錫中2024年中考數(shù)學(xué)猜題卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,正方形ABCD中,E,F(xiàn)分別在邊AD,CD上,AF,BE相交于點(diǎn)G,若AE=3ED,DF=CF,則的值是A. B. C. D.2.如圖,已知A、B兩點(diǎn)的坐標(biāo)分別為(-2,0)、(0,1),⊙C的圓心坐標(biāo)為(0,-1),半徑為1.若D是⊙C上的一個(gè)動(dòng)點(diǎn),射線AD與y軸交于點(diǎn)E,則△ABE面積的最大值是A.3 B. C. D.43.如圖是拋物線y=ax2+bx+c(a≠0)的圖象的一部分,拋物線的頂點(diǎn)坐標(biāo)是A(1,4),與x軸的一個(gè)交點(diǎn)是B(3,0),下列結(jié)論:①abc>0;②2a+b=0;③方程ax2+bx+c=4有兩個(gè)相等的實(shí)數(shù)根;④拋物線與x軸的另一個(gè)交點(diǎn)是(﹣2.0);⑤x(ax+b)≤a+b,其中正確結(jié)論的個(gè)數(shù)是()A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)4.如圖1,在矩形ABCD中,動(dòng)點(diǎn)E從A出發(fā),沿AB→BC方向運(yùn)動(dòng),當(dāng)點(diǎn)E到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),過點(diǎn)E做FE⊥AE,交CD于F點(diǎn),設(shè)點(diǎn)E運(yùn)動(dòng)路程為x,F(xiàn)C=y(tǒng),如圖2所表示的是y與x的函數(shù)關(guān)系的大致圖象,當(dāng)點(diǎn)E在BC上運(yùn)動(dòng)時(shí),F(xiàn)C的最大長(zhǎng)度是,則矩形ABCD的面積是()A. B.5 C.6 D.5.2cos30°的值等于()A.1 B. C. D.26.下列各式中的變形,錯(cuò)誤的是(()A.2-3x=-23x B.-b7.如圖,AB∥CD,DE⊥BE,BF、DF分別為∠ABE、∠CDE的角平分線,則∠BFD=()A.110° B.120° C.125° D.135°8.要使式子有意義,x的取值范圍是()A.x≠1 B.x≠0 C.x>﹣1且≠0 D.x≥﹣1且x≠09.如圖,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,則BC的長(zhǎng)度為()A. B. C.3 D.10.在解方程-1=時(shí),兩邊同時(shí)乘6,去分母后,正確的是()A.3x-1-6=2(3x+1) B.(x-1)-1=2(x+1)C.3(x-1)-1=2(3x+1) D.3(x-1)-6=2(3x+1)11.如圖,將邊長(zhǎng)為2cm的正方形OABC放在平面直角坐標(biāo)系中,O是原點(diǎn),點(diǎn)A的橫坐標(biāo)為1,則點(diǎn)C的坐標(biāo)為()A.(,-1) B.(2,﹣1) C.(1,-) D.(﹣1,)12.在娛樂節(jié)目“墻來了!”中,參賽選手背靠水池,迎面沖來一堵泡沫墻,墻上有人物造型的空洞.選手需要按墻上的造型擺出相同的姿勢(shì),才能穿墻而過,否則會(huì)被墻推入水池.類似地,有一塊幾何體恰好能以右圖中兩個(gè)不同形狀的“姿勢(shì)”分別穿過這兩個(gè)空洞,則該幾何體為()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.計(jì)算_______.14.比較大小:___1.(填“>”、“<”或“=”)15.一天晚上,小偉幫助媽媽清洗兩個(gè)只有顏色不同的有蓋茶杯,突然停電了,小偉只好把杯蓋和茶杯隨機(jī)地搭配在一起,則顏色搭配正確的概率是_____.16.已知關(guān)于x的一元二次方程mx2+5x+m2﹣2m=0有一個(gè)根為0,則m=_____.17.“若實(shí)數(shù)a,b,c滿足a<b<c,則a+b<c”,能夠說明該命題是假命題的一組a,b,c的值依次為_____.18.我國(guó)古代《易經(jīng)》一書中記載,遠(yuǎn)古時(shí)期,人們通過在繩子上打結(jié)來記錄數(shù)量,即“結(jié)繩記數(shù)”.如圖,一位婦女在從右到左依次排列的繩子上打結(jié),滿六進(jìn)一,用來記錄采集到的野果數(shù)量,由圖可知,她一共采集到的野果數(shù)量為_____個(gè).三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某商場(chǎng)同時(shí)購(gòu)進(jìn)甲、乙兩種商品共200件,其進(jìn)價(jià)和售價(jià)如表,商品名稱甲乙進(jìn)價(jià)(元/件)80100售價(jià)(元/件)160240設(shè)其中甲種商品購(gòu)進(jìn)x件,該商場(chǎng)售完這200件商品的總利潤(rùn)為y元.(1)求y與x的函數(shù)關(guān)系式;(2)該商品計(jì)劃最多投入18000元用于購(gòu)買這兩種商品,則至少要購(gòu)進(jìn)多少件甲商品?若售完這些商品,則商場(chǎng)可獲得的最大利潤(rùn)是多少元?(3)在(2)的基礎(chǔ)上,實(shí)際進(jìn)貨時(shí),生產(chǎn)廠家對(duì)甲種商品的出廠價(jià)下調(diào)a元(50<a<70)出售,且限定商場(chǎng)最多購(gòu)進(jìn)120件,若商場(chǎng)保持同種商品的售價(jià)不變,請(qǐng)你根據(jù)以上信息及(2)中的條件,設(shè)計(jì)出使該商場(chǎng)獲得最大利潤(rùn)的進(jìn)貨方案.20.(6分)我省有關(guān)部門要求各中小學(xué)要把“陽光體育”寫入課表,為了響應(yīng)這一號(hào)召,某校圍繞著“你最喜歡的體育活動(dòng)項(xiàng)目是什么?(只寫一項(xiàng))”的問題,對(duì)在校學(xué)生進(jìn)行了隨機(jī)抽樣調(diào)查,從而得到一組數(shù)據(jù),如圖1是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖回答下列問題:該校對(duì)多少名學(xué)生進(jìn)行了抽樣調(diào)查?本次抽樣調(diào)查中,最喜歡足球活動(dòng)的有多少人?占被調(diào)查人數(shù)的百分比是多少?若該校九年級(jí)共有400名學(xué)生,圖2是根據(jù)各年級(jí)學(xué)生人數(shù)占全校學(xué)生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計(jì)圖,請(qǐng)你估計(jì)全校學(xué)生中最喜歡籃球活動(dòng)的人數(shù)約為多少?21.(6分)如圖1在正方形ABCD的外側(cè)作兩個(gè)等邊三角形ADE和DCF,連接AF,BE.請(qǐng)判斷:AF與BE的數(shù)量關(guān)系是,位置關(guān)系;如圖2,若將條件“兩個(gè)等邊三角形ADE和DCF”變?yōu)椤皟蓚€(gè)等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)問中的結(jié)論是否仍然成立?請(qǐng)作出判斷并給予證明;若三角形ADE和DCF為一般三角形,且AE=DF,ED=FC,第(1)問中的結(jié)論都能成立嗎?請(qǐng)直接寫出你的判斷.22.(8分)如圖,在△ABC中,∠ABC=90°.(1)作∠ACB的平分線交AB邊于點(diǎn)O,再以點(diǎn)O為圓心,OB的長(zhǎng)為半徑作⊙O;(要求:不寫做法,保留作圖痕跡)(2)判斷(1)中AC與⊙O的位置關(guān)系,直接寫出結(jié)果.23.(8分)如圖,AB是半徑為2的⊙O的直徑,直線l與AB所在直線垂直,垂足為C,OC=3,P是圓上異于A、B的動(dòng)點(diǎn),直線AP、BP分別交l于M、N兩點(diǎn).(1)當(dāng)∠A=30°時(shí),MN的長(zhǎng)是;(2)求證:MC?CN是定值;(3)MN是否存在最大或最小值,若存在,請(qǐng)寫出相應(yīng)的最值,若不存在,請(qǐng)說明理由;(4)以MN為直徑的一系列圓是否經(jīng)過一個(gè)定點(diǎn),若是,請(qǐng)確定該定點(diǎn)的位置,若不是,請(qǐng)說明理由.24.(10分)如圖1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.(1)OC的長(zhǎng)為;(2)D是OA上一點(diǎn),以BD為直徑作⊙M,⊙M交AB于點(diǎn)Q.當(dāng)⊙M與y軸相切時(shí),sin∠BOQ=;(3)如圖2,動(dòng)點(diǎn)P以每秒1個(gè)單位長(zhǎng)度的速度,從點(diǎn)O沿線段OA向點(diǎn)A運(yùn)動(dòng);同時(shí)動(dòng)點(diǎn)D以相同的速度,從點(diǎn)B沿折線B﹣C﹣O向點(diǎn)O運(yùn)動(dòng).當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).過點(diǎn)P作直線PE∥OC,與折線O﹣B﹣A交于點(diǎn)E.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(秒).求當(dāng)以B、D、E為頂點(diǎn)的三角形是直角三角形時(shí)點(diǎn)E的坐標(biāo).25.(10分)嘉興市2010~2014年社會(huì)消費(fèi)品零售總額及增速統(tǒng)計(jì)圖如下:請(qǐng)根據(jù)圖中信息,解答下列問題:(1)求嘉興市2010~2014年社會(huì)消費(fèi)品零售總額增速這組數(shù)據(jù)的中位數(shù).(2)求嘉興市近三年(2012~2014年)的社會(huì)消費(fèi)品零售總額這組數(shù)據(jù)的平均數(shù).(3)用適當(dāng)?shù)姆椒A(yù)測(cè)嘉興市2015年社會(huì)消費(fèi)品零售總額(只要求列出算式,不必計(jì)算出結(jié)果).26.(12分)如圖平行四邊形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,EF過點(diǎn)O,并與AD,BC分別交于點(diǎn)E,F(xiàn),已知AE=3,BF=5(1)求BC的長(zhǎng);(2)如果兩條對(duì)角線長(zhǎng)的和是20,求三角形△AOD的周長(zhǎng).27.(12分)某商場(chǎng)計(jì)劃購(gòu)進(jìn)、兩種新型節(jié)能臺(tái)燈共盞,這兩種臺(tái)燈的進(jìn)價(jià)、售價(jià)如表所示:()若商場(chǎng)預(yù)計(jì)進(jìn)貨款為元,則這兩種臺(tái)燈各購(gòu)進(jìn)多少盞?()若商場(chǎng)規(guī)定型臺(tái)燈的進(jìn)貨數(shù)量不超過型臺(tái)燈數(shù)量的倍,應(yīng)怎樣進(jìn)貨才能使商場(chǎng)在銷售完這批臺(tái)燈時(shí)獲利最多?此時(shí)利潤(rùn)為多少元?
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】
如圖作,F(xiàn)N∥AD,交AB于N,交BE于M.設(shè)DE=a,則AE=3a,利用平行線分線段成比例定理解決問題即可.【詳解】如圖作,F(xiàn)N∥AD,交AB于N,交BE于M.∵四邊形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四邊形ANFD是平行四邊形,∵∠D=90°,∴四邊形ANFD是矩形,∵AE=3DE,設(shè)DE=a,則AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴,故選C.【點(diǎn)睛】本題考查正方形的性質(zhì)、平行線分線段成比例定理、三角形中位線定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造平行線解決問題,學(xué)會(huì)利用參數(shù)解決問題,屬于中考??碱}型.2、B【解析】試題分析:解:當(dāng)射線AD與⊙C相切時(shí),△ABE面積的最大.連接AC,∵∠AOC=∠ADC=90°,AC=AC,OC=CD,∴Rt△AOC≌Rt△ADC,∴AD=AO=2,連接CD,設(shè)EF=x,∴DE2=EF?OE,∵CF=1,∴DE=,∴△CDE∽△AOE,∴=,即=,解得x=,S△ABE===.故選B.考點(diǎn):1.切線的性質(zhì);2.三角形的面積.3、B【解析】
通過圖象得到、、符號(hào)和拋物線對(duì)稱軸,將方程轉(zhuǎn)化為函數(shù)圖象交點(diǎn)問題,利用拋物線頂點(diǎn)證明.【詳解】由圖象可知,拋物線開口向下,則,,拋物線的頂點(diǎn)坐標(biāo)是,拋物線對(duì)稱軸為直線,,,則①錯(cuò)誤,②正確;方程的解,可以看做直線與拋物線的交點(diǎn)的橫坐標(biāo),由圖象可知,直線經(jīng)過拋物線頂點(diǎn),則直線與拋物線有且只有一個(gè)交點(diǎn),則方程有兩個(gè)相等的實(shí)數(shù)根,③正確;由拋物線對(duì)稱性,拋物線與軸的另一個(gè)交點(diǎn)是,則④錯(cuò)誤;不等式可以化為,拋物線頂點(diǎn)為,當(dāng)時(shí),,故⑤正確.故選:.【點(diǎn)睛】本題是二次函數(shù)綜合題,考查了二次函數(shù)的各項(xiàng)系數(shù)與圖象位置的關(guān)系、拋物線對(duì)稱性和最值,以及用函數(shù)的觀點(diǎn)解決方程或不等式.4、B【解析】
易證△CFE∽△BEA,可得,根據(jù)二次函數(shù)圖象對(duì)稱性可得E在BC中點(diǎn)時(shí),CF有最大值,列出方程式即可解題.【詳解】若點(diǎn)E在BC上時(shí),如圖∵∠EFC+∠AEB=90°,∠FEC+∠EFC=90°,∴∠CFE=∠AEB,∵在△CFE和△BEA中,,∴△CFE∽△BEA,由二次函數(shù)圖象對(duì)稱性可得E在BC中點(diǎn)時(shí),CF有最大值,此時(shí),BE=CE=x﹣,即,∴,當(dāng)y=時(shí),代入方程式解得:x1=(舍去),x2=,∴BE=CE=1,∴BC=2,AB=,∴矩形ABCD的面積為2×=5;故選B.【點(diǎn)睛】本題考查了二次函數(shù)頂點(diǎn)問題,考查了相似三角形的判定和性質(zhì),考查了矩形面積的計(jì)算,本題中由圖象得出E為BC中點(diǎn)是解題的關(guān)鍵.5、C【解析】分析:根據(jù)30°角的三角函數(shù)值代入計(jì)算即可.詳解:2cos30°=2×=.故選C.點(diǎn)睛:此題主要考查了特殊角的三角函數(shù)值的應(yīng)用,熟記30°、45°、60°角的三角函數(shù)值是解題關(guān)鍵.6、D【解析】
根據(jù)分式的分子分母都乘以(或除以)同一個(gè)不為零的數(shù)(整式),分式的值不變,可得答案.【詳解】A、2-3B、分子、分母同時(shí)乘以﹣1,分式的值不發(fā)生變化,故B正確;C、分子、分母同時(shí)乘以3,分式的值不發(fā)生變化,故C正確;D、yx≠y故選:D.【點(diǎn)睛】本題考查了分式的基本性質(zhì),分式的分子分母都乘以(或除以)同一個(gè)不為零的數(shù)(整式),分式的值不變.7、D【解析】
如圖所示,過E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分別為∠ABE,∠CDE的角平分線,∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故選D.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)以及角平分線的定義的運(yùn)用,解題時(shí)注意:兩直線平行,同旁內(nèi)角互補(bǔ).解決問題的關(guān)鍵是作平行線.8、D【解析】
根據(jù)二次根式由意義的條件是:被開方數(shù)大于或等于1,和分母不等于1,即可求解.【詳解】根據(jù)題意得:,解得:x≥-1且x≠1.故選:D.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)為:分式有意義,分母不為1;二次根式的被開方數(shù)是非負(fù)數(shù).9、A【解析】∵∠AED=∠B,∠A=∠A
∴△ADE∽△ACB∴,∵DE=6,AB=10,AE=8,∴,解得BC=.故選A.10、D【解析】解:,∴3(x﹣1)﹣6=2(3x+1),故選D.點(diǎn)睛:本題考查了等式的性質(zhì),解題的關(guān)鍵是正確理解等式的性質(zhì),本題屬于基礎(chǔ)題型.11、A【解析】
作AD⊥y軸于D,作CE⊥y軸于E,則∠ADO=∠OEC=90°,得出∠1+∠1=90°,由正方形的性質(zhì)得出OC=AO,∠1+∠3=90°,證出∠3=∠1,由AAS證明△OCE≌△AOD,得到OE=AD=1,CE=OD=,即可得出結(jié)果.【詳解】解:作AD⊥y軸于D,作CE⊥y軸于E,如圖所示:則∠ADO=∠OEC=90°,∴∠1+∠1=90°.∵AO=1,AD=1,∴OD=,∴點(diǎn)A的坐標(biāo)為(1,),∴AD=1,OD=.∵四邊形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠1.在△OCE和△AOD中,∵,∴△OCE≌△AOD(AAS),∴OE=AD=1,CE=OD=,∴點(diǎn)C的坐標(biāo)為(,﹣1).故選A.【點(diǎn)睛】本題考查了正方形的性質(zhì)、坐標(biāo)與圖形性質(zhì)、全等三角形的判定與性質(zhì);熟練掌握正方形的性質(zhì),證明三角形全等得出對(duì)應(yīng)邊相等是解決問題的關(guān)鍵.12、C【解析】試題分析:通過圖示可知,要想通過圓,則可以是圓柱、圓錐、球,而能通過三角形的只能是圓錐,綜合可知只有圓錐符合條件.故選C二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、【解析】
根據(jù)同底數(shù)冪的乘法法則計(jì)算即可.【詳解】故答案是:【點(diǎn)睛】本題考查了同底數(shù)冪的乘法,熟練掌握同底數(shù)冪的乘法運(yùn)算法則是解題的關(guān)鍵.14、<.【解析】
根據(jù)算術(shù)平方根的定義即可求解.【詳解】解:∵=1,∴<=1,∴<1.故答案為<.【點(diǎn)睛】考查了算術(shù)平方根,非負(fù)數(shù)a的算術(shù)平方根a有雙重非負(fù)性:①被開方數(shù)a是非負(fù)數(shù);②算術(shù)平方根a本身是非負(fù)數(shù).15、【解析】分析:根據(jù)概率的計(jì)算公式.顏色搭配總共有4種可能,分別列出搭配正確和搭配錯(cuò)誤的可能,進(jìn)而求出各自的概率即可.詳解:用A和a分別表示第一個(gè)有蓋茶杯的杯蓋和茶杯;用B和b分別表示第二個(gè)有蓋茶杯的杯蓋和茶杯、經(jīng)過搭配所能產(chǎn)生的結(jié)果如下:Aa、Ab、Ba、Bb.所以顏色搭配正確的概率是.故答案為:.點(diǎn)睛:此題考查概率的求法:如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.16、1【解析】【分析】根據(jù)一元二次方程的定義以及一元二次方程的解的定義列出關(guān)于m的方程,通過解關(guān)于m的方程求得m的值即可.【詳解】∵關(guān)于x的一元二次方程mx1+5x+m1﹣1m=0有一個(gè)根為0,∴m1﹣1m=0且m≠0,解得,m=1,故答案是:1.【點(diǎn)睛】本題考查了一元二次方程ax1+bx+c=0(a≠0)的解的定義.解答該題時(shí)需注意二次項(xiàng)系數(shù)a≠0這一條件.17、答案不唯一,如1,2,3;【解析】分析:設(shè)a,b,c是任意實(shí)數(shù).若a<b<c,則a+b<c”是假命題,則若a<b<c,則a+b≥c”是真命題,舉例即可,本題答案不唯一詳解:設(shè)a,b,c是任意實(shí)數(shù).若a<b<c,則a+b<c”是假命題,則若a<b<c,則a+b≥c”是真命題,可設(shè)a,b,c的值依次1,2,3,(答案不唯一),故答案為1,2,3.點(diǎn)睛:本題考查了命題的真假,舉例說明即可,18、1【解析】分析:類比于現(xiàn)在我們的十進(jìn)制“滿十進(jìn)一”,可以表示滿六進(jìn)一的數(shù)為:萬位上的數(shù)×64+千位上的數(shù)×63+百位上的數(shù)×62+十位上的數(shù)×6+個(gè)位上的數(shù),即1×64+2×63+3×62+0×6+2=1.詳解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1,故答案為:1.點(diǎn)睛:本題是以古代“結(jié)繩計(jì)數(shù)”為背景,按滿六進(jìn)一計(jì)數(shù),運(yùn)用了類比的方法,根據(jù)圖中的數(shù)學(xué)列式計(jì)算;本題題型新穎,一方面讓學(xué)生了解了古代的數(shù)學(xué)知識(shí),另一方面也考查了學(xué)生的思維能力.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y=﹣60x+28000;(2)若售完這些商品,則商場(chǎng)可獲得的最大利潤(rùn)是22000元;(3)商場(chǎng)應(yīng)購(gòu)進(jìn)甲商品120件,乙商品80件,獲利最大【解析】分析:(1)根據(jù)總利潤(rùn)=(甲的售價(jià)-甲的進(jìn)價(jià))×購(gòu)進(jìn)甲的數(shù)量+(乙的售價(jià)-乙的進(jìn)價(jià))×購(gòu)進(jìn)乙的數(shù)量代入列關(guān)系式,并化簡(jiǎn)即可;(2)根據(jù)總成本≤18000列不等式即可求出x的取值,再根據(jù)函數(shù)的增減性確定其最值問題;(3)把50<a<70分三種情況討論:一次項(xiàng)x的系數(shù)大于0、等于0、小于0,根據(jù)函數(shù)的增減性得出結(jié)論.詳解:(1)根據(jù)題意得:y=(160﹣80)x+(240﹣100)(200﹣x),=﹣60x+28000,則y與x的函數(shù)關(guān)系式為:y=﹣60x+28000;(2)80x+100(200﹣x)≤18000,解得:x≥100,∴至少要購(gòu)進(jìn)100件甲商品,y=﹣60x+28000,∵﹣60<0,∴y隨x的增大而減小,∴當(dāng)x=100時(shí),y有最大值,y大=﹣60×100+28000=22000,∴若售完這些商品,則商場(chǎng)可獲得的最大利潤(rùn)是22000元;(3)y=(160﹣80+a)x+(240﹣100)(200﹣x)(100≤x≤120),y=(a﹣60)x+28000,①當(dāng)50<a<60時(shí),a﹣60<0,y隨x的增大而減小,∴當(dāng)x=100時(shí),y有最大利潤(rùn),即商場(chǎng)應(yīng)購(gòu)進(jìn)甲商品100件,乙商品100件,獲利最大,②當(dāng)a=60時(shí),a﹣60=0,y=28000,即商場(chǎng)應(yīng)購(gòu)進(jìn)甲商品的數(shù)量滿足100≤x≤120的整數(shù)件時(shí),獲利最大,③當(dāng)60<a<70時(shí),a﹣60>0,y隨x的增大而增大,∴當(dāng)x=120時(shí),y有最大利潤(rùn),即商場(chǎng)應(yīng)購(gòu)進(jìn)甲商品120件,乙商品80件,獲利最大.點(diǎn)睛:本題是一次函數(shù)和一元一次不等式的綜合應(yīng)用,屬于銷售利潤(rùn)問題,在此類題中,要明確售價(jià)、進(jìn)價(jià)、利潤(rùn)的關(guān)系式:?jiǎn)渭麧?rùn)=售價(jià)-進(jìn)價(jià),總利潤(rùn)=單個(gè)利潤(rùn)×數(shù)量;認(rèn)真讀題,弄清題中的每一個(gè)條件;對(duì)于最值問題,可利用一次函數(shù)的增減性來解決:形如y=kx+b中,當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小.20、(1)該校對(duì)50名學(xué)生進(jìn)行了抽樣調(diào)查;(2)最喜歡足球活動(dòng)的人占被調(diào)查人數(shù)的20%;(3)全校學(xué)生中最喜歡籃球活動(dòng)的人數(shù)約為720人.【解析】
(1)根據(jù)條形統(tǒng)計(jì)圖,求個(gè)部分?jǐn)?shù)量的和即可;(2)根據(jù)部分除以總體求得百分比;(3)根據(jù)扇形統(tǒng)計(jì)圖中各部分占總體的百分比之和為1,求出百分比即可求解.【詳解】(1)4+8+10+18+10=50(名)答:該校對(duì)50名學(xué)生進(jìn)行了抽樣調(diào)查.(2)最喜歡足球活動(dòng)的有10人,,∴最喜歡足球活動(dòng)的人占被調(diào)查人數(shù)的20%.(3)全校學(xué)生人數(shù):400÷(1﹣30%﹣24%﹣26%)=400÷20%=2000(人)則全校學(xué)生中最喜歡籃球活動(dòng)的人數(shù)約為2000×=720(人).【點(diǎn)睛】此題主要考查了條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚的表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖中各部分占總體的百分比之和為1,直接反應(yīng)部分占全體的百分比的大小.21、(1)AF=BE,AF⊥BE;(2)證明見解析;(3)結(jié)論仍然成立【解析】試題分析:(1)根據(jù)正方形和等邊三角形可證明△ABE≌△DAF,然后可得BE=AF,∠ABE=∠DAF,進(jìn)而通過直角可證得BE⊥AF;(2)類似(1)的證法,證明△ABE≌△DAF,然后可得AF=BE,AF⊥BE,因此結(jié)論還成立;(3)類似(1)(2)證法,先證△AED≌△DFC,然后再證△ABE≌△DAF,因此可得證結(jié)論.試題解析:解:(1)AF=BE,AF⊥BE.(2)結(jié)論成立.證明:∵四邊形ABCD是正方形,∴BA="AD"=DC,∠BAD=∠ADC=90°.在△EAD和△FDC中,∴△EAD≌△FDC.∴∠EAD=∠FDC.∴∠EAD+∠DAB=∠FDC+∠CDA,即∠BAE=∠ADF.在△BAE和△ADF中,∴△BAE≌△ADF.∴BE=AF,∠ABE=∠DAF.∵∠DAF+∠BAF=90°,∴∠ABE+∠BAF=90°,∴AF⊥BE.(3)結(jié)論都能成立.考點(diǎn):正方形,等邊三角形,三角形全等22、(1)見解析(2)相切【解析】
(1)首先利用角平分線的作法得出CO,進(jìn)而以點(diǎn)O為圓心,OB為半徑作⊙O即可;(2)利用角平分線的性質(zhì)以及直線與圓的位置關(guān)系進(jìn)而求出即可.【詳解】(1)如圖所示:;(2)相切;過O點(diǎn)作OD⊥AC于D點(diǎn),∵CO平分∠ACB,∴OB=OD,即d=r,∴⊙O與直線AC相切,【點(diǎn)睛】此題主要考查了復(fù)雜作圖以及角平分線的性質(zhì)與作法和直線與圓的位置關(guān)系,正確利用角平分線的性質(zhì)求出d=r是解題關(guān)鍵.23、(1);(2)MC?NC=5;(3)a+b的最小值為2;(4)以MN為直徑的一系列圓經(jīng)過定點(diǎn)D,此定點(diǎn)D在直線AB上且CD的長(zhǎng)為.【解析】
(1)由題意得AO=OB=2、OC=3、AC=5、BC=1,根據(jù)MC=ACtan∠A=、CN=可得答案;(2)證△ACM∽△NCB得,由此即可求得答案;(3)設(shè)MC=a、NC=b,由(2)知ab=5,由P是圓上異于A、B的動(dòng)點(diǎn)知a>0,可得b=(a>0),根據(jù)反比例函數(shù)的性質(zhì)得a+b不存在最大值,當(dāng)a=b時(shí),a+b最小,據(jù)此求解可得;(4)設(shè)該圓與AC的交點(diǎn)為D,連接DM、DN,證△MDC∽△DNC得,即MC?NC=DC2=5,即DC=,據(jù)此知以MN為直徑的一系列圓經(jīng)過定點(diǎn)D,此頂點(diǎn)D在直線AB上且CD的長(zhǎng)為.【詳解】(1)如圖所示,根據(jù)題意知,AO=OB=2、OC=3,則AC=OA+OC=5,BC=OC﹣OB=1,∵AC⊥直線l,∴∠ACM=∠ACN=90°,∴MC=ACtan∠A=5×=,∵∠ABP=∠NBC,∴∠BNC=∠A=30°,∴CN=,則MN=MC+CN=+=,故答案為:;(2)∵∠ACM=∠NCB=90°,∠A=∠BNC,∴△ACM∽△NCB,∴,即MC?NC=AC?BC=5×1=5;(3)設(shè)MC=a、NC=b,由(2)知ab=5,∵P是圓上異于A、B的動(dòng)點(diǎn),∴a>0,∴b=(a>0),根據(jù)反比例函數(shù)的性質(zhì)知,a+b不存在最大值,當(dāng)a=b時(shí),a+b最小,由a=b得a=,解之得a=(負(fù)值舍去),此時(shí)b=,此時(shí)a+b的最小值為2;(4)如圖,設(shè)該圓與AC的交點(diǎn)為D,連接DM、DN,∵M(jìn)N為直徑,∴∠MDN=90°,則∠MDC+∠NDC=90°,∵∠DCM=∠DCN=90°,∴∠MDC+∠DMC=90°,∴∠NDC=∠DMC,則△MDC∽△DNC,∴,即MC?NC=DC2,由(2)知MC?NC=5,∴DC2=5,∴DC=,∴以MN為直徑的一系列圓經(jīng)過定點(diǎn)D,此定點(diǎn)D在直線AB上且CD的長(zhǎng)為.【點(diǎn)睛】本題考查的是圓的綜合問題,解題的關(guān)鍵是掌握相似三角形的判定與性質(zhì)、三角函數(shù)的應(yīng)用、反比例函數(shù)的性質(zhì)等知識(shí)點(diǎn).24、(4)4;(2);(4)點(diǎn)E的坐標(biāo)為(4,2)、(,)、(4,2).【解析】分析:(4)過點(diǎn)B作BH⊥OA于H,如圖4(4),易證四邊形OCBH是矩形,從而有OC=BH,只需在△AHB中運(yùn)用三角函數(shù)求出BH即可.(2)過點(diǎn)B作BH⊥OA于H,過點(diǎn)G作GF⊥OA于F,過點(diǎn)B作BR⊥OG于R,連接MN、DG,如圖4(2),則有OH=2,BH=4,MN⊥OC.設(shè)圓的半徑為r,則MN=MB=MD=r.在Rt△BHD中運(yùn)用勾股定理可求出r=2,從而得到點(diǎn)D與點(diǎn)H重合.易證△AFG∽△ADB,從而可求出AF、GF、OF、OG、OB、AB、BG.設(shè)OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,進(jìn)而可求出BR.在Rt△ORB中運(yùn)用三角函數(shù)就可解決問題.(4)由于△BDE的直角不確定,故需分情況討論,可分三種情況(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)討論,然后運(yùn)用相似三角形的性質(zhì)及三角函數(shù)等知識(shí)建立關(guān)于t的方程就可解決問題.詳解:(4)過點(diǎn)B作BH⊥OA于H,如圖4(4),則有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四邊形OCBH是矩形,∴OC=BH,BC=OH.∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.∵∠BHA=90°,∠BAO=45°,∴tan∠BAH==4,∴BH=HA=4,∴OC=BH=4.故答案為4.(2)過點(diǎn)B作BH⊥OA于H,過點(diǎn)G作GF⊥OA于F,過點(diǎn)B作BR⊥OG于R,連接MN、DG,如圖4(2).由(4)得:OH=2,BH=4.∵OC與⊙M相切于N,∴MN⊥OC.設(shè)圓的半徑為r,則MN=MB=MD=r.∵BC⊥OC,OA⊥OC,∴BC∥MN∥OA.∵BM=DM,∴CN=ON,∴MN=(BC+OD),∴OD=2r﹣2,∴DH==.在Rt△BHD中,∵∠BHD=90°,∴BD2=BH2+DH2,∴(2r)2=42+(2r﹣4)2.解得:r=2,∴DH=0,即點(diǎn)D與點(diǎn)H重合,∴BD⊥0A,BD=AD.∵BD是⊙M的直徑,∴∠BGD=90°,即DG⊥AB,∴BG=AG.∵GF⊥OA,BD⊥OA,∴GF∥BD,∴△AFG∽△ADB,∴===,∴AF=AD=2,GF=BD=2,∴OF=4,∴OG===2.同理可得:OB=2,AB=4,∴BG=AB=2.設(shè)OR=x,則RG=2﹣x.∵BR⊥OG,∴∠BRO=∠BRG=90°,∴BR2=OB2﹣OR2=BG2﹣RG2,∴(2)2﹣x2=(2)2﹣(2﹣x)2.解得:x=,∴BR2=OB2﹣OR2=(2)2﹣()2=,∴BR=.在Rt△ORB中,sin∠BOR===.故答案為.(4)①當(dāng)∠BDE=90°時(shí),點(diǎn)D在直線PE上,如圖2.此時(shí)DP=OC=4,BD+OP=BD+CD=BC=2,BD=t,OP=t.則有2t=2.解得:t=4.則OP=CD=DB=4.∵DE∥OC,∴△BDE∽△BCO,∴==,∴DE=2,∴EP=2,∴點(diǎn)E的坐標(biāo)為(4,2).②當(dāng)∠BED=90°時(shí),如圖4.∵∠DBE=OBC,∠DEB=∠BCO=90°,∴△DBE∽△OBC,∴==,∴BE=t.∵PE∥OC,∴∠OEP=∠BOC.∵∠OPE=∠BCO=90°,∴△OPE∽△BCO,∴==,∴OE=t.∵OE+BE=OB=2t+t=2.解得:t=,∴OP=,OE=,∴PE==,∴點(diǎn)E的坐標(biāo)為().③當(dāng)∠DBE=90°時(shí),如圖4.此時(shí)PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.則有OD=PE,EA==(6﹣t)=6﹣t,∴BE=BA﹣EA=4﹣(6﹣t)=t﹣2.∵PE∥OD,OD=PE,∠DOP=90°,∴四邊形ODEP是矩形,∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.在Rt△DBE中,cos∠BED==,∴DE=BE,∴t=t﹣2)=2t﹣4.解得:t=4,∴OP=4,PE=6﹣4=2,∴點(diǎn)E的坐標(biāo)為(4,2).綜上所述:當(dāng)以B、D、E為頂點(diǎn)的三角形是直角三角形時(shí)點(diǎn)E的坐標(biāo)為(4,2)、()、(4,2).點(diǎn)睛:本題考查了圓周角定理、切線的性質(zhì)、相似三角形的判定與性質(zhì)、三角函數(shù)的定義、平行線分線段成比例、矩形的判定與性質(zhì)、勾股定理等知識(shí),還考查了分類討論的數(shù)學(xué)思想,有一定的綜合性.25、(115)這組數(shù)據(jù)的中位數(shù)為15.116%;(116)這組數(shù)據(jù)的平均數(shù)是11511609
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 44745-2024糧油機(jī)械移動(dòng)式散糧出倉(cāng)機(jī)
- 江蘇省南京市2024-2025學(xué)年高二上學(xué)期期中考試 數(shù)學(xué) 含解析
- 淺談初中歷史作業(yè)錯(cuò)題的歸納和利用方法
- 《廣東省常規(guī)跨徑公路鋼橋安裝標(biāo)準(zhǔn)化指南(2024版)》
- 《新聞學(xué)基礎(chǔ)》題集
- 市小型農(nóng)田水利項(xiàng)目可行性研究報(bào)告
- 2025新譯林版英語七年級(jí)下Unit 3 My hometown單詞表
- 《培養(yǎng)良好書寫習(xí)慣》主題班會(huì)教案3篇
- 部編小學(xué)語文三下二單元(《守株待兔》《陶罐和鐵罐》《鹿角和鹿腿》《池子與河流》)大單元學(xué)習(xí)任務(wù)群教學(xué)設(shè)計(jì)
- 2024年?duì)I林及木竹采伐機(jī)械項(xiàng)目資金申請(qǐng)報(bào)告代可行性研究報(bào)告
- 新人教版八年級(jí)物理上冊(cè)期中考試及答案【可打印】
- 綠色鋼鐵產(chǎn)業(yè)鏈構(gòu)建
- 2024年企業(yè)股東退股補(bǔ)償協(xié)議版
- 河南省商丘市2023-2024學(xué)年高一上學(xué)期期中考試化學(xué)試題(含答案)
- V帶傳動(dòng)設(shè)計(jì)說明書
- 墓地長(zhǎng)期租用合同模板
- 培訓(xùn)員工的課件
- 2025年九省聯(lián)考新高考 數(shù)學(xué)試卷(含答案解析)
- 2024秋期國(guó)家開放大學(xué)《公共行政學(xué)》一平臺(tái)在線形考(形考任務(wù)一至三)試題及答案
- (中圖版)地理八年級(jí)知識(shí)總結(jié)
- 職校開學(xué)第一課課件:誰說職業(yè)沒前途
評(píng)論
0/150
提交評(píng)論