版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PAGE
PAGE
1
IntervalAnalysisanditsApplicationstoOptimizationinBehaviouralEcology
by
JustinTung
CS490IndependentResearchReport
Instructor:DavidSchwartz
Date:December19,2001
TableofContents
Abstract 4
Introduction 5
IntervalAnalysis 5
BasicsandNotation 5
UncertaintyandApproximatingValues 5
IntervalArithmeticandFunctions 6
ForagingTheory 7
BasicsofForagingModels 7
SimplisticAnalyticForagingModel 8
TheOptimalResidenceTime 11
2.ResearchProblemandMethods 12
Motivation 12
ProblemswithFixedPointOptimizationinForagingModels 12
IntervalAnalysisasUncertaintyinMethod 13
ResearchProblem 13
Software 14
Methodology 14
Fixed-PointAnalysis 14
GeneralMethod 14
Algorithm:BisectionMethod 15
IntervalAnalysis 16
GeneralMethod 16
Algorithm:IntervalNewton’sMethod 16
VariationandConstraintsonParameters 17
3.NumericalAnalysisofModel 18
FixedPointAnalysis 18
GraphicalAnalysis 18
OptimizationandAnalysis 23
IntervalAnalysis 26
TrueSolutionsandIntervalOptimization 26
StabilityAnalysis 29
4.ConclusionsandFutureExploration 30
ResultsofNumericalStudy 30
ComparisonofFixedPointandIntervalRoots 30
ApplicationstoForagingModel 30
FutureExploration 32
Bibliography 33
Abstract
IntervalAnalysisisameansofrepresentinguncertaintybyreplacingsingle(fixed-point)valueswithintervals.Inthisproject,intervalanalysisisappliedtoaforagingmodelinbehaviouralecology.Themodeldescribesanindividualforaginginacollectionofcontinuouslyrenewingresourcepatches.Thismodelisusedtodeterminetheoptimalresidencetimeoftheforagerinaresourcepatchassumingtheforagerwantstomaximizeitsrateofresourceintake.Beforeapplyingintervalanalysis,fixed-point(non-interval)optimizationwillbedonetoserveasabasis.Certainparametersinthemodelwillthenbereplacedwithintervalsandinterval-basedoptimizationconducted.Acomparisonoftheintervalandfixed-pointresultswillbedoneaswellasanalysisofparameterintervalsandtheirconstraints,rootapproximations,andapplicationstothemodel.
Chapter1:Introduction
1.1IntervalAnalysis
1.1.1BasicsandNotation
ThispaperwillexplainonlythebasicsofIntervalAnalysis(IA)neededtounderstandthetopicscoveredandassumessomepriorknowledgeofIAandMatlab(see2.1.4regardingMatlab).ForaformalmathematicalintroductionandindepthcoverageofconceptsseeSchwartz(1999)orMoore(1966)listedinthereferences.Intervalanalysiswasinitiallydevelopedinthelate1960’stoboundcomputationalerroranditisadeterministicwayofrepresentinguncertaintyinvaluesbyreplacinganumberwitharangeofvalues(Schwartz17).Fixed-pointanalysisissimplyanalysisusingnon-intervalvalueswherethereisnouncertaintyinthevalues.Asaresult,IAuncertaintyconceptscanbeusedtomodelvaryingbiologicalparametersintheecologicalmodeltobeexploredinsection1.2andalsotoframefixed-pointresults.
IA’smathematicaldefinitionsandnotationsareextendedfromsettheoryandorderednumericalsetscalledintervals(Schwartz30).Thispaperconsidersclosedintervalanalysiswiththefollowingdefinitionsofaninterval(usingMatlabupperbound,lowerboundstylenotation):
inf(x)–denotestheinfinum,orlowerboundofx
sup(x)–denotesthesupremumorupperboundofx
1.1.2UncertaintyandApproximatingValues
Thereareaseveralusefulquantitiesrelatedtotheconceptoftheinterval:size,radius,andmidpoint.Thesize(orthickness)ofanintervalindicatestheuncertaintyinavalueandisspecifiedasawidth:w(x)=sup(x)-inf(x)(Schwartz32-33).Intervalswithzerothicknessarecrispintervalswhereasnon-crispintervalssaidtobethick.Theconceptsofradiusandmidpointareusefulindescribingintervalsaswellasconstructingthem.Theradiusandmidpointaredefinedas(Schwartz33):
rad(x)=w(x)/2
mid(x)=(sup(x)+inf(x))/2
Toconstructanewinterval,onewayistouseanoriginalvalue,whichisavaluethatsuppliesthemidpointpointofanewinterval.Then,acertainradius(uncertainty)canbeaddedtoandsubtractedfromtheoriginalvaluetoobtainanewinterval(Schwartz35).Similarly,themidpointcanalsoserveasanapproximationtoavaluewithanerrorofplusorminustheradius.Usingthesedefinitions,thepercentageuncertaintyinamidpointvaluewouldbe:p=100*rad(x)/mid(x)(Schwartz148).
1.1.3IntervalArithmeticandFunctions
Theresultsandpropertiesofintervalarithmeticwillbeomittedforthissection;however,IrecommendreferringtoSchwartz(1999)tounderstandthebasicsofintervalarithmetic.Thefundamentalprinciplesinintervaloperationsareindependenceandextremes.Independencemeansnumericalvaluesvaryindependentlybetweenintervalsandextremesmeansintervaloperationsgeneratethewidestpossibleboundsgiventherangesofvalues(Schwartz37-38).Interval-valuedfunctionsfollowfromintervalarithmeticofwhichtherearetwotypes:intervalextensionsandunitedextensions(ortruesolutionsets).Intervalextensionsarefunctionswhereintervalarithmeticisappliedtocalculateresults.Unitedextensionsaremorecomputationallyintensiveandinvolvecalculatingfixed-pointresultswithallpossiblecombinationsofvariableintervalendpoints.Thedisadvantageoftheintervalextensionsisthattheycanoverexpandthetruesolutionsetsofafunction(Schwartz45-49).Thisqualityofintervalextensionsisunfortunatesincebothtypesofextensionsguaranteecontainmentofallpossiblenumericalresultsofthefunctiongiventheinputs.Also,bothextensionssatisfyapropertycalledinclusionmonotonicity(giveninputs,anextensiongeneratesthewidestpossiblebounds),whichissimilartotheextremesprincipleofintervalarithmetic(Schwartz56).
1.2ForagingTheory
1.2.1BasicsofForagingModels
Foragingmodelsingeneralstudytwobasicproblemsofaforager:whichfood/preyitemstoconsumeandwhentoleaveanareacontainingfood(aresourcepatch).Thispaperwillconcentrateonthelatterasanoptimizationproblem.Beforegoingintodetailsofthemodel,itisimportanttounderstandtheframeworkofforagingmodels.StephensandKrebspointoutthatforagingandoptimalitymodelshavethreemaincomponents,decision,currency,andconstraintassumptions(5).Decisionassumptionsdeterminewhichproblems(orchoices)oftheforageraretobeanalyzedandthesechoicesareusuallyexpressedasvariables.Theoptimizationproblemcomesfromassumingbehaviourandevolutionarymechanismsoptimizetheoutcomeofaforager’schoices.Currencyassumptionsprovidemeansofevaluatingchoices.Thesechoicesusuallyinvolvemaximization,minimization,orstabilityofasituation.Choiceevaluationisembodiedinthecurrencyfunction(arealvaluedfunction),whichtakesthedecisionvariablesandevaluatestheiroutcomeintoasinglevalue.Constraintassumptionsarelimitationstothemodelandrelatedecisionvariableswiththecurrency.Limitationscanbegeneralizedto2types,extrinsic(environmentlimitsonanimal)andintrinsic(animal’sownlimitations).Also,therearethreegeneralconstraintassumptions(alsoassumedbythemodelinsection1.2.2)forconventionalforagingmodels:
1)Exclusivityofsearchandexploitation–thepredatorcanonlyconsumeorsearchforpatches/preyandnotperformbothactionsarethesametime
2)SequentialPoissonencounters–items(preyorpatches)areencounteredoneatatimeandthereisaconstantprobabilityregardingprey/patchmeetingsinashorttimeperiod
3)Completeinformation–theforagerbehavesasifitknowstherulesofthemodel
Thesethreeconceptsofdecision,currency,andconstraintprovidemeansofoptimizationgivenchoices,howtodeterminetheirsuccess,andlimitations(StephensandKrebs6-11).
1.2.2SimplisticAnalyticForagingModel
Giventhestructureofaforagingmodel,itiseasytoframeamodelexaminingtheforagingofasingleanimaloveracollectionofdistinctresourcepatches.Ihavetakenthemodelalongwithitsdecision,currency,andconstraintassumptionsfromWilson(2000)soderivationsofthemodel’sequations,itsorigins,andananalysisandextensionsofthemodelinCcanbefoundinhisbook.Therulesoftheforagerinthemodelarethattheanimalstaysforafixedtimebeforemovingtoanewresourcepatch,timeisdiscrete,andpatchresourcevalues(biomass,energy,etc)growlogistically.Thedecisionassumptionliesinthedeterminationofthefixedtimevalue.Thecurrencyfunctionallowsustooptimizetheanimal’ssituationgiventhisfixedtimeandalsoallowsustoapplyconstraintstothemodel(Wilson152).Despiteitsname,thesimplisticanalyticforagingmodelactuallycharacterizesforagingsimulationresultswellusingthemodel’sspecifications.Hereisalistofparameterstakeninbythemodel:
Toderivethemodel,wecanstartanalyzingtheresourcesideassumingthattheithpatchwithouttheforagerconsuminggrowslogistically:
Wheretistimeandriistheamountofresourcesintheithpatch.Ifaforagerentersagivenpatchf,resourcedynamicscanbemodeledasfollows:
Inthefthpatch,theconsumerdecreasestherateofgrowthbyafactorrelatedtobeta,theconsumingrate.Tomodeloverallpatchgrowth,averagepatchgrowthforN-1identicalpatchesisaddedtothepatchgrowth(ordecay)ofthefthpatch:
Toachieveanequilibriumresourcedensityr*,wesetdr/dt=0andsolveforryielding:
AquickanalysisofthelimitasNapproachesinfinityshowsthattheforager’seffectisinsignificantatequilibriumsincethetermcontainingbetagoestozeroandr*goestoKasexpected(Wilson153-154).Theresourcesideprovidesuswithanenvironmentandextrinsicconstraintsthatwillaffectthecurrencyfunctionwhichliesontheforagersideofthemodel.Keytoresourceexploitationmodelsisthegainfunction,g(t).Thegainfunctionspecifiestheamountconsumedfromaresourcepatchgiventimet.Assumingtheforagerlandsonaresourcepatchalwaysinequilibriumr*,g(t)isthetimeintegralofitsinstantaneousconsumptionrateminusitsmetaboliccosts.Metaboliccostsrepresentintrinsicconstraintssincetheanimalmust“pay”thesecostswhenforaging.
Thextandxmconstraintsactasintrinsiclimitationsonthemodelsincethetravelingcostspreventstheforagerfrommovingquicklyfrompatchtopatchandskimmingresources,whilethemetaboliccostcausestheforagertogatherresourcesforthreatofdeath.Inordertoevaluateg(t),werequireananalyticalsolutiontorf,whichmeasurestheresourcesinthepatchtheforagerisin.Solvingthefirstorderdifferentialequationfromtheresourcesidederivationsforrfusingseparationofvariablesyields:
Thensubstitutingthisequationintog(t)andsolvingtheintegralweget:
Usingthisgainfunction,thecrucialequationfromtheforagerperspective,thenetforagingratefunctioncanbecalculatedas:
R(t)isthecurrencyfunctionforourmodelsinceitisthebasisofchoiceevaluationandoptimizationforthemodel(Wilson154-155).Italsocombinesthedecisionvariablesandconstraintsintoonevalueandwillbeabasisforgraphicalanalysislateron.
1.2.3TheOptimalResidenceTime
Assumingbehaviouralandevolutionarymechanismsdriveforagerstooptimizethetimespentoneachpatch.Thisassumptionimpliesthattheywillstaylongenoughtooptimizetherateofresourceconsumption,r(t).Mathematically,thischoiceimpliesthemaximizationofr(t):
wheret*iscalledtheoptimalresidencetime.Forratemaximization,r’’(t*)<0mustalsobechecked;however,assumingr(t*)isatamaximum,weobtaintheequation:
whichrelatesr(t)tothederivativeofthegainfunction.Thesecondfunctionaboveisthefunctiontobeusedforrootfinding.Essentially,theoptimaltimetoleaveapatchiswhentheexpectedrateofresourcereturndecreasestotheaveragerateofreturnofanewpatch.Thisresult,whichisastatementofthemarginalvaluetheoremforforaging,isareasonableestimationofanimalbehaviourconsideringaforager’sdesiretomaximizeonitsresourceintake(Wilson156-157).Oneprobleminoptimizationproblemsisfiguringoutwhetheranoptimalpointexistsandinthiscase,wemustbesurer’’(t*)<0andbesuresuchat*exists.Unfortunately,duetothecomplexityofg(t)isitnotpossibletosolveforanexplicitsolutionoft*sotojustifyexistenceofasolution,weturntotheoreticaljustificationsand,laterinsection3.1.1,graphicalmeans.Duetotheconditionsspecifiedinforagingmodels,gainfunctionsare“well-defined,continuous,deterministic,andnegativelyaccelerated”functions(StephensandKrebs25-26).Thisoutcomeresultsfromassumingpatchresourcesaresufficient(i.e.theequilibriumresourceissufficientlylarge)enoughthat,whentheforagerentersapatch,r(t)willreachamaximumandthendecreaseuntilthegainfunctionreachesanasymptoticmaximumwhenfurthertimespentintheresourcepatchdoesnotyieldsignificantlymoregaininresources.Thereasonforthegainfunction’spropertiesistheassumptionthatpatchescontainafinitenumberofresourcesandforagingdepletesthem.Thisassumption;however,reliesontheassumptionsaboutresidencetime,foragingrates,andresourcepatchdynamicsingeneral(StephensandKrebs25-26).Duetothesimplenatureofthemodel,thesegainfunctionpropertiesholdsor(t)doesreachamaximumatt*andr’’(*t)<0.
Chapter2:ResearchProblemsandMethods
2.1Motivation
2.1.1ProblemswithFixedPointOptimizationinForagingModels
StephensandKrebs(1986)discussvariouslimitationsandcriticismsofbehaviouralecologyoptimalitymodels.Onecriticismhastodowith“staticversusdynamic”modelingsincebasicforagingmodelsoftendonottaketheanimal’sstateintoaccount(i.e.whetherananimalisstarvingorfullyrestedandfed)(StephensandKrebs34).Also,aproblemthatoccursduringtestingphasesofamodeliswhenitbreaksdown.Atthatpoint,theecologistmustre-analyzethemodeltofindwhatisincorrect,oftencheckingconstraints(StephensandKrebs208)
2.1.2IntervalAnalysisasanUncertaintyMethod
IAcanaddressbutnotcompletelysolvetheproblemsstatedabove.OneofthestrengthsofIAisitsabilitytoevaluateawholerangeofvaluesinonecalculationthatwouldtakeaninfinitenumberoffixed-pointcalculationstoproduce.Asaresult,IAcouldsimulatethepresenceofmultiplestatesofananimaland/oritsenvironmentbyplacinguncertaintyinthemodel’sparameters.Thismethodprovideseasydeterministicimplementationofmultiplestatemodelsandproducesrangesofvaluesforevaluation.Thismethodpartiallyaddressesthesecondproblemofwhenamodelbreaksdown.Amodelcouldbreakdownduetoincorrectassumptionsaboutconstantforagerorenvironmentstates.AnotherapplicationofIAtotestingisthatIAisnumericallysuperiorwhenitcomestotestingdifferentacceptableuncertaintiesinvaluescouldhelpidentifyproblemsinthemodelorunrealisticassumptions.
2.1.3ResearchProblem
ThepurposeofthispaperistointroduceIAmethodstothesimplisticanalyticforagingmodelandcalculateintervaloptimalresidencetimesforintervalparameters.Atsametime,solvingthefixedpointoptimalresidencetimewillprovideframeworkfromwhichtoanalyzetheintervalresults.TheoptimizationwillbedoneforpatchsizesN=3,5,10,and20.Theparameterswithuncertaintywillbe:
Theseuncertaintiescouldbestrengthenedwithfieldworkstudies;however,forsimplicitytheyaredeterminedapriori.Aftercomputingintervaloptimalresidencetimes,theintervalsandtheirfixed-pointapproximationswillbecomparedtothefixed-pointoptimaltimestocomparealgorithmsandtoanalyzethefunctions’behaviourunderbothmethods.Onamoretheoreticalside,stabilityanalysisofthemodelwillbeconducted.Thisanalysisinvolvesvaryingoneuncertainparameter,whileholdingtheothersconstantuntilthemodelfails.Therefore,stabilityanalysisisusedtoseeperformanceofthemodelunderparameteruncertaintyperturbations.Conditionsforfailurewillbespecifiedinsection.
2.1.4Software
ThelanguagetobeusedisMatlabversion5.3withanadd-ontoolboxcalledINTLABprogrammedbySiegfriedRump(2001).RefertothereferencesfordocumentationontheINTLABtoolbox.Forthispaper,theINTLABtoolboxisusedtoprovideintervaldatastructures,implementationofintervalarithmeticandinterval-valuedfunctions,aswellasbasicfunctionsforradius,midpoint,andintersectionintervalfunctionsinMatlab.
2.2Methodology
2.2.1Fixed-PointAnalysis
GeneralMethod
Rootfunc(t)specifiedbelowisthefunctionwhoserootweareseeking:
Sincerootfunc(t)hasrelativelycheapfunctionevaluationsitisusefultoperforma“graphicalsearch”fortheroot(VanLoan294).Thisprocedureinvolvesplottingthefunctioninthetimeintervalofinterestandexaminingitsroots.Inadditiontothisfunction,duringthefixed-pointanalysis,wewillalsoplotr(t)tosearchfortheexistenceofmaximumsaswellasrootfunc’’(t)toconfirmthatrootfunc’’(t)isindeednegativeintheintervalofinterest.Although,graphicalsearchesarerathertrivial,theyprovidealargeamountofinformationconfirmingtheoreticalconclusionsinsection1.2aswellasenablingapictorialviewoftheobjectiveandrelatedfunctions.Anotheruseoftheplottingoffunctionsbeforeoptimizationistousetheplotstogeneratestartingintervalsforiterationsofrootfindingmethods.Inordertoplotrootfunc,r(t),andr’’(t)itisnecessarytoimplementequationsforg(t),g’(t),andr’’(t).Thedetailsforcalculatingg’(t)andr’’(t)areleftoutsinceg(t)isarathermessyfunction,butthederivativesareimplementedintheMatlabcodeforsection3.1.1.Assumingthepropertiesofthegainfunctiondiscussedin1.2.3,whichwillbeconfirmedinsection3.1.1,itisnecessarytochooseanalgorithmthatwillproducearootgiventheconditionsofrootfunc(t).
Algorithm:BisectionMethod
Sincerootfunc(t)iscontinuousandchangessignwithintheintervalofinterest,thebisectionmethodcanbeused.Thismethodinvolvescalculatingasequenceofsmallerandsmallerintervalsthatbracket(contain)therootofrootfunc(t).Themainalgorithmproceedsasfollows(ifrootfunct(t)=f(t))givenabracketinginterval[a,b]:
assumef(a)f(b)0andletm=(a+b)/2
eitherf(a)f(m)0orf(m)f(b)0
inthefirstcaseweknowtherootisin[a,m]elseitisit[m,b]
Ineithersituation,thesearchintervalishalvedandthisprocesscanbecontinueduntilasmallenoughintervalisobtained.Sincethesearchintervalishalvedwitheachiteration,thebisectionmethodexhibitsO(n)convergence.Theonlytrickypointsaretooptimizethemethodsothatonlyonefunctionevaluationisrequiredperiterationafterthefirstandtoestablishasafeconvergencecriterionsothatthetoleranceintervalisnotsmallerthanthegapinthefloatingpointnumbersbetweenaandb.VanLoanprovidesthecoreofthecodeforthebisectionmethodwithslightmodificationstofittheparametersofthemodel(280).AlthoughthebisectionmethoddoesnotexperienceO(n^2)convergenceliketheNewtonmethod,rootfunc(t)issimpleenoughthatitconvergesquicklyforpracticalpurposes.Also,itissimple(algorithmicallyanddoesn’trequirerootfunc’(t)implementation)andtranslateswellintotheideaofsearchingusingastartinginterval[a,b],whichwewilluselaterintheintervalrootfinding.
2.2.2IntervalAnalysis
GeneralMethod
Whenchangingfromfixed-pointtointervalbasedrootfindingtherearesomeimmediatedifferences.Therootisnolongeracrispintervalsinceiterationsusinganinterval-valuedfunctionproduceintervals.Asaresult,convergencecriterionsandthegeneralmethodsofrootfindingmusthaveasetvaluedapproach.Becausetheoptimalresidencetimeswillinherentlybethickintervalssincetherootfunc(t)isnowanintervalfunctionwithuncertainparameters,convergencewillbesolvedsimplebysettingamaximumnumberofiterations.ThereasonthisconvergenceguaranteesanenclosureoftherootisduetotheIntervalNewtonmethod,whichisbasedonthefixed-pointone.
IntervalNewtonMethod
Fordetailsofthemathandconvergencepropertiesofthealgorithm,refertoKulischetal.(2001).Thisalgorithm,whenfindingrootsoffixed-pointfunctionsexhibitsO(n^2)convergence.LiketheBisectionMethod,itrequiresabracketingintervaltobeginandwitheachiterationgeneratessmallerandsmallerintervals(ifpossible),whichareboundedbyintersectionswithpreviousiterations.Thealgorithmisasfollows:
wherethex’sareintervals,m(x)isthemidpointofatheintervalx,andfisthefunctionwhoserootweseek(Kulischetal.35-36).Thesimilarityofthisalgorithmtothefixed-pointNewtonmethodisthatastartingintervalmustbesuppliedandtheintervalsizeisdecreasedusingaf(x)/f’(x)termduringiterations.Thisalgorithmisalmostassimpleasthebisectionmethodsinceaneasyconvergencecriterionhasbeenspecified;however,theintervalNewtonrequiresimplementationofrootfunc’(t)andrequiresforanevaluatedintervalx.Throughcomputationaltrials,Ihavedecidedtoincreasethecomplexityofthefunctionevaluationsforthef(x)/f’(x)bycomputingitsunitedextensioninsteadofaintervalextension.Sincebothf(x)andf’(x)involvemanyintervalarithmeticcalculationsinanintervalextension,thevaluesareoverexpandedfromtheirtruesolutionsetandincomputingoptimalresidencetimesweareinterestedinfindingtightboundsontherootgivenmodeluncertainties.Asaresult,theintervalNewtonstepiscalculatedbyfindingtheminimumsandmaximumsoff(x)andf’(x)givenallthecombinationsoftheendpointsoftheparametersandthetimeintervalandproducingunitedextensionvaluesforbothquantities.
VariationandConstraintsonParameters
Asoutlinedin2.1.3,percentuncertaintiesinthealpha,beta,xt,andxmparameterswillbeaddedwhenanalyzingthemodelusingintervalrootfinding.Thisvariationofparametersservestoaddresstheproblemswithfixed-pointoptimizationoutlinedin2.1.1.Thepotentialuseforintervalparametersliesinmodeltesting,simulatingarangeofenvironmentandforagerstates,andrelaxationofconstraints.Besidesreplacingparameterswithintervals,wealsowanttoconductthestabilityanalysismentionedin2.1.3.Thisprocessinvolvesincreasinguncertaintiesofagivenparameterwhilekeepingallotherparametersconstantuntilthemodelfails.AfterspecifyingtheintervalNewtonalgorithmwecanconstructafailurecondition.FailureofthemodelcanbeconsideredtooccurwhentheintervalNewtonmethodreturnsoftheinitialintervalsuppliedtotheintervalrootfinderastheoptimaltimeintervalforanyNnumberofpatches(i.e.thealgorithmwasunabletoprovidetighterboundsforoptimalresidencetimethantheinitialinterval).Thisinitialintervalwillbechosentobeasufficientlythickintervalfromfixed-pointanalysis,whichenclosesthetimeintervalofinterest.Asaresult,theintervalwillbetheonechosentoinitiatethebisectionmethod.Thereareotherconditionsthatcouldclassifyfailure;however,fromamodelstandpoint,averythickintervalforanoptimalresidencetimeisnotveryusefulsinceitimpliestoomuchvariabilityinaforager’sbehaviour.Consequently,stabilityanalysisisanumericallyintensiveprocedureinvolvinggradualincreaseduncertaintiesofaparameteruntilmodelfailure.Itisinterestingmorefromatheoreticalstandpointsinceitdescribeslimitationsofthemodelaswellasextremesituationsandtheireffectsonaforager’soptimalresidencetime.
Chapter3:NumericalAnalysisofModel
Inthischapter,IwillincludeMatlabcodeofkeyfunctionsimplementingthegeneralmethodsdiscussedin2.2,supportingfunctions,andalgorithmsastheyareusedinthenumericalanalysisofthemodel.
3.1Fixed-PointAnalysis
3.1.1GraphicalAnalysis
Insection,thegraphsofr(t),rootfunc(t)androotfunc’(t)wereseentobeinformativeforselectinganinitialintervaltobeginthebisectionandintervalNewtonmethods.Also,thesegraphshelpvisualizethebehaviourofthemodelastimepassesaswellasconfirminganoptimalresidencetimeexists.Thefollowingfunctionsarerequiredtoimplementthefunctionsandgraphthem.Also,thefollowingparameterspecificationsfromWilsonareused(155):
functiongain=gain(t,alpha,K,beta,xt,xm,N)
%GAIN(t,alpha,K,beta,xt,xm,N)GainFunction
%
%Generalevaluationoftheg(t)functionwhich
%takesinthevariablesinorder:time,patchgrowth
%rate,patchcarryingcapacity,consumingrate,
%travelcost,metabolicrate,andnumberof
%resourcepatches
rstar=(1-beta/alpha/N)*K;
deltaBA=beta-alpha;
num=(alpha*rstar+...
K*(deltaBA))*exp(deltaBA*t)-...
alpha*rstar;
denom=K*deltaBA;
inLog=num/denom;
gain=(beta*K/alpha)*(log(inLog)-deltaBA*t)-...
(xt+xm*t);
functionintakeRate=r(t,alpha,K,beta,xt,xm,N)
%R(t,alpha,K,beta,xt,xm,N)IntakeRateFunction
%
%Calculatesthenetintakerate.Takesinthevariables
%inorder:time,patchgrowthrate,patchcarrying
%capacity,consumingrate,travelcost,metabolicrate,
%andnumberofresourcepatches
g=gain(t,alpha,K,beta,xt,xm,N);
intakeRate=g./t;
functiongainprime=gainprime(t,alpha,K,beta,xt,xm,N)
%GAINP(t,alpha,K,beta,xt,xm,N)GainFunctionDerivative
%
%Generalevaluationoftheg'(t)function
%
%Takesinthevariablesinorder:time,patchgrowth
%rate,patchcarryingcapacity,consumingrate,
%travelcost,metabolicrate,andnumberof
%resourcepatches
rstar=(1-beta/alpha/N)*K;
deltaBA=beta-alpha;
exppart=(alpha*rstar+K*deltaBA)*exp(deltaBA*t);
num=deltaBA*exppart;
denom=exppart-alpha*rstar;
gainprime=(beta*K/alpha)*(num./denom-deltaBA)-xm;
functionrootfunc=rootfunc(t,alpha,K,beta,xt,xm,N)
%ROOTFUNC(t,alpha,K,beta,xt,xm,N)RootFunction
%
%Thisfunctiontheonewewanttofindtherootof
%Takesinthevariablesinor
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度農(nóng)業(yè)科技項(xiàng)目可行性研究合同
- 2024年秋八年級(jí)物理上冊(cè) 第六章 第4節(jié) 密度與社會(huì)生活說(shuō)課稿 (新版)新人教版
- 硬質(zhì)材料加工機(jī)床及其零件項(xiàng)目融資渠道探索
- 二零二五年度養(yǎng)老機(jī)構(gòu)聘用護(hù)工服務(wù)合同標(biāo)準(zhǔn)范本4篇
- 5-3《人皆有不忍人之心》說(shuō)課稿高二語(yǔ)文同步高效課堂(統(tǒng)編版 選擇性必修上冊(cè))
- 2024-2025年高中化學(xué) 專(zhuān)題2 第2單元 第2課時(shí) 有機(jī)化合物的命名說(shuō)課稿 蘇教版選修5
- 2025至2030年小兒七珍丹項(xiàng)目投資價(jià)值分析報(bào)告
- 2025至2030年剎車(chē)燈線(xiàn)項(xiàng)目投資價(jià)值分析報(bào)告
- 2025至2030年光面浸塑啞鈴項(xiàng)目投資價(jià)值分析報(bào)告
- 2025至2030年五味寶飲料項(xiàng)目投資價(jià)值分析報(bào)告
- 避暑旅游目的地評(píng)價(jià)指標(biāo)、閾值和評(píng)價(jià)等級(jí)表、人體舒適度、度假氣候指數(shù)和旅游氣候指數(shù)計(jì)算方法
- 允許一切發(fā)生:過(guò)不緊繃松弛的人生
- 注塑生產(chǎn)過(guò)程控制流程
- 教科版六年級(jí)科學(xué)下冊(cè) (廚房里的物質(zhì)與變化)教學(xué)課件
- 公務(wù)員面試應(yīng)急應(yīng)變題目大全及解析
- 浙江省炮制規(guī)范2015版電子版
- 冰心《童年的春節(jié)》
- 鄭州小吃詳細(xì)地點(diǎn)
- 上海高考英語(yǔ)詞匯手冊(cè)
- 2021年江蘇省淮安市淮陰中學(xué)高一政治下學(xué)期期末試題含解析
- 公共政策工具-課件
評(píng)論
0/150
提交評(píng)論