![安徽省蚌埠實驗中學2024年中考數學適應性模擬試題含解析_第1頁](http://file4.renrendoc.com/view2/M01/0F/3A/wKhkFmYMlUGAfaHeAAIesv_Gw4A148.jpg)
![安徽省蚌埠實驗中學2024年中考數學適應性模擬試題含解析_第2頁](http://file4.renrendoc.com/view2/M01/0F/3A/wKhkFmYMlUGAfaHeAAIesv_Gw4A1482.jpg)
![安徽省蚌埠實驗中學2024年中考數學適應性模擬試題含解析_第3頁](http://file4.renrendoc.com/view2/M01/0F/3A/wKhkFmYMlUGAfaHeAAIesv_Gw4A1483.jpg)
![安徽省蚌埠實驗中學2024年中考數學適應性模擬試題含解析_第4頁](http://file4.renrendoc.com/view2/M01/0F/3A/wKhkFmYMlUGAfaHeAAIesv_Gw4A1484.jpg)
![安徽省蚌埠實驗中學2024年中考數學適應性模擬試題含解析_第5頁](http://file4.renrendoc.com/view2/M01/0F/3A/wKhkFmYMlUGAfaHeAAIesv_Gw4A1485.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省蚌埠實驗中學2024年中考數學適應性模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.將拋物線向左平移2個單位長度,再向下平移3個單位長度,得到的拋物線的函數表達式為()A.B.C.D.2.關于x的方程3x+2a=x﹣5的解是負數,則a的取值范圍是()A.a< B.a> C.a<﹣ D.a>﹣3.小明在一次登山活動中撿到一塊礦石,回家后,他使用一把刻度尺,一只圓柱形的玻璃杯和足量的水,就測量出這塊礦石的體積.如果他量出玻璃杯的內直徑d,把礦石完全浸沒在水中,測出杯中水面上升了高度h,則小明的這塊礦石體積是()A. B. C. D.4.若關于的一元二次方程有兩個不相等的實數根,則的取值范圍()A. B. C.且 D.5.將一副直角三角尺如圖放置,若∠AOD=20°,則∠BOC的大小為()A.140° B.160° C.170° D.150°6.下列算式中,結果等于x6的是()A.x2?x2?x2B.x2+x2+x2C.x2?x3D.x4+x27.已知關于x的一元二次方程3x2+4x﹣5=0,下列說法正確的是()A.方程有兩個相等的實數根B.方程有兩個不相等的實數根C.沒有實數根D.無法確定8.在下列四個圖案中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C.. D.9.為考察兩名實習工人的工作情況,質檢部將他們工作第一周每天生產合格產品的個數整理成甲,乙兩組數據,如下表:甲26778乙23488關于以上數據,說法正確的是()A.甲、乙的眾數相同 B.甲、乙的中位數相同C.甲的平均數小于乙的平均數 D.甲的方差小于乙的方差10.設x1,x2是一元二次方程x2﹣2x﹣3=0的兩根,則x12+x22=()A.6B.8C.10D.1211.若3x>﹣3y,則下列不等式中一定成立的是()A. B. C. D.12.已知M=9x2-4x+3,N=5x2+4x-2,則M與N的大小關系是()A.M>N B.M=N C.M<N D.不能確定二、填空題:(本大題共6個小題,每小題4分,共24分.)13.數學家吳文俊院士非常重視古代數學家賈憲提出的“從長方形對角線上任一點作兩條分別平行于兩鄰邊的直線,則所容兩長方形面積相等”這一推論,如圖所示,若SEBMF=1,則SFGDN=_____.14.在平面直角坐標系中,點A,B的坐標分別為(m,7),(3m﹣1,7),若線段AB與直線y=﹣2x﹣1相交,則m的取值范圍為__.15.圖中是兩個全等的正五邊形,則∠α=______.16.已知是整數,則正整數n的最小值為___17.如圖,在Rt△ABC中,∠ACB=90°,AB的垂直平分線DE交AC于E,交BC的延長線于F,若∠F=30°,DE=1,則BE的長是.18.如圖,⊙O的直徑CD垂直于AB,∠AOC=48°,則∠BDC=度.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知:如圖1,拋物線的頂點為M,平行于x軸的直線與該拋物線交于點A,B(點A在點B左側),根據對稱性△AMB恒為等腰三角形,我們規(guī)定:當△AMB為直角三角形時,就稱△AMB為該拋物線的“完美三角形”.(1)①如圖2,求出拋物線的“完美三角形”斜邊AB的長;②拋物線與的“完美三角形”的斜邊長的數量關系是;(2)若拋物線的“完美三角形”的斜邊長為4,求a的值;(3)若拋物線的“完美三角形”斜邊長為n,且的最大值為-1,求m,n的值.20.(6分)撫順某中學為了解八年級學生的體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結果分為A,B,C,D四個等級.請根據兩幅統(tǒng)計圖中的信息回答下列問題:本次抽樣調查共抽取了多少名學生?求測試結果為C等級的學生數,并補全條形圖;若該中學八年級共有700名學生,請你估計該中學八年級學生中體能測試結果為D等級的學生有多少名?若從體能為A等級的2名男生2名女生中隨機的抽取2名學生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.21.(6分)某小學為每個班級配備了一種可以加熱的飲水機,該飲水機的工作程序是:放滿水后,接通電源,則自動開始加熱,每分鐘水溫上升10℃,待加熱到100℃,飲水機自動停止加熱,水溫開始下降,水溫y(℃)和通電時間x(min)成反比例關系,直至水溫降至室溫,飲水機再次自動加熱,重復上述過程.設某天水溫和室溫為20℃,接通電源后,水溫和時間的關系如下圖所示,回答下列問題:(1)分別求出當0≤x≤8和8<x≤a時,y和x之間的關系式;(2)求出圖中a的值;(3)李老師這天早上7:30將飲水機電源打開,若他想再8:10上課前能喝到不超過40℃的開水,問他需要在什么時間段內接水.22.(8分)“校園手機”現象越來越受到社會的關注.“寒假”期間,某校小記者隨機調查了某地區(qū)若干名學生和家長對中學生帶手機現象的看法,統(tǒng)計整理并制作了如下的統(tǒng)計圖:(1)求這次調查的家長人數,并補全圖1;(2)求圖2中表示家長“贊成”的圓心角的度數;(3)已知某地區(qū)共6500名家長,估計其中反對中學生帶手機的大約有多少名家長?23.(8分)發(fā)現如圖1,在有一個“凹角∠A1A2A3”n邊形A1A2A3A4……An中(n為大于3的整數),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠An﹣(n﹣4)×180°.驗證如圖2,在有一個“凹角∠ABC”的四邊形ABCD中,證明:∠ABC=∠A+∠C+∠D.證明3,在有一個“凹角∠ABC”的六邊形ABCDEF中,證明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.延伸如圖4,在有兩個連續(xù)“凹角A1A2A3和∠A2A3A4”的四邊形A1A2A3A4……An中(n為大于4的整數),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠An﹣(n﹣)×180°.24.(10分)已知,,,斜邊,將繞點順時針旋轉,如圖1,連接.(1)填空:;(2)如圖1,連接,作,垂足為,求的長度;(3)如圖2,點,同時從點出發(fā),在邊上運動,沿路徑勻速運動,沿路徑勻速運動,當兩點相遇時運動停止,已知點的運動速度為1.5單位秒,點的運動速度為1單位秒,設運動時間為秒,的面積為,求當為何值時取得最大值?最大值為多少?25.(10分)如圖,在Rt△ABC中,CD,CE分別是斜邊AB上的高,中線,BC=a,AC=b.若a=3,b=4,求DE的長;直接寫出:CD=(用含a,b的代數式表示);若b=3,tan∠DCE=,求a的值.26.(12分)“校園安全”受到全社會的廣泛關注,某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖,請根據統(tǒng)計圖中所提供的信息解答下列問題:接受問卷調查的學生共有人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為度;請補全條形統(tǒng)計圖;若該中學共有學生900人,請根據上述調查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數.27.(12分)如圖,對稱軸為直線x=的拋物線經過點A(6,0)和B(0,4).(1)求拋物線解析式及頂點坐標;(2)設點E(x,y)是拋物線上一動點,且位于第四象限,四邊形OEAF是以OA為對角線的平行四邊形,求四邊形OEAF的面積S與x之間的函數關系式,并寫出自變量x的取值范圍;(3)①當四邊形OEAF的面積為24時,請判斷OEAF是否為菱形?②是否存在點E,使四邊形OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
先確定拋物線y=x2的頂點坐標為(0,0),再根據點平移的規(guī)律得到點(0,0)平移后所得對應點的坐標為(-2,-1),然后根據頂點式寫出平移后的拋物線解析式.【詳解】拋物線y=x2的頂點坐標為(0,0),把點(0,0)向左平移1個單位,再向下平移2個單位長度所得對應點的坐標為(-2,-1),所以平移后的拋物線解析式為y=(x+2)2-1.
故選A.2、D【解析】
先解方程求出x,再根據解是負數得到關于a的不等式,解不等式即可得.【詳解】解方程3x+2a=x﹣5得x=,因為方程的解為負數,所以<0,解得:a>﹣.【點睛】本題考查了一元一次方程的解,以及一元一次不等式的解法,解一元一次不等式時,要注意的是:若在不等式左右兩邊同時乘以或除以同一個負數時,不等號方向要改變.3、A【解析】圓柱體的底面積為:π×()2,∴礦石的體積為:π×()2h=.故答案為.4、C【解析】
根據一元二次方程的定義結合根的判別式即可得出關于a的一元一次不等式組,解之即可得出結論.【詳解】解:∵關于x的一元二次方程有兩個不相等的實數根,∴,解得:k<1且k≠1.故選:C.【點睛】本題考查了一元二次方程的定義、根的判別式以及解一元一次不等式組,根據一元二次方程的定義結合根的判別式列出關于a的一元一次不等式組是解題的關鍵.5、B【解析】試題分析:根據∠AOD=20°可得:∠AOC=70°,根據題意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.考點:角度的計算6、A【解析】試題解析:A、x2?x2?x2=x6,故選項A符合題意;
B、x2+x2+x2=3x2,故選項B不符合題意;
C、x2?x3=x5,故選項C不符合題意;
D、x4+x2,無法計算,故選項D不符合題意.
故選A.7、B【解析】試題分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有兩個不相等的實數根.故答案選B.考點:一元二次方程根的判別式.8、B【解析】試題分析:根據軸對稱圖形和中心對稱圖形的定義:如果一個平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形;中心對稱圖形的定義:把一個圖形繞著某一個點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心,因此:A、不是軸對稱圖形,是中心對稱圖形,不符合題意;B、是軸對稱圖形,也是中心對稱圖形,符合題意;C、不是軸對稱圖形,也不是中心對稱圖形,不符合題意;D、是軸對稱圖形,不是中心對稱圖形,不符合題意.故選B.考點:軸對稱圖形和中心對稱圖形9、D【解析】
分別根據眾數、中位數、平均數、方差的定義進行求解后進行判斷即可得.【詳解】甲:數據7出現了2次,次數最多,所以眾數為7,排序后最中間的數是7,所以中位數是7,,=4.4,乙:數據8出現了2次,次數最多,所以眾數為8,排序后最中間的數是4,所以中位數是4,,=6.4,所以只有D選項正確,故選D.【點睛】本題考查了眾數、中位數、平均數、方差,熟練掌握相關定義及求解方法是解題的關鍵.10、C【解析】試題分析:根據根與系數的關系得到x1+x2=2,x1?x2=﹣3,再變形x12+x22得到(x1+x2)2﹣2x1?x2,然后利用代入計算即可.解:∵一元二次方程x2﹣2x﹣3=0的兩根是x1、x2,∴x1+x2=2,x1?x2=﹣3,∴x12+x22=(x1+x2)2﹣2x1?x2=22﹣2×(﹣3)=1.故選C.11、A【解析】兩邊都除以3,得x>﹣y,兩邊都加y,得:x+y>0,故選A.12、A【解析】
若比較M,N的大小關系,只需計算M-N的值即可.【詳解】解:∵M=9x2-4x+3,N=5x2+4x-2,∴M-N=(9x2-4x+3)-(5x2+4x-2)=4(x-1)2+1>0,∴M>N.故選A.【點睛】本題的主要考查了比較代數式的大小,可以讓兩者相減再分析情況.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】
根據從長方形對角線上任一點作兩條分別平行于兩鄰邊的直線,則所容兩長方形面積相等得SEBMF=SFGDN,得SFGDN.【詳解】∵SEBMF=SFGDN,SEBMF=1,∴SFGDN=1.【點睛】本題考查面積的求解,解題的關鍵是讀懂題意.14、﹣4≤m≤﹣1【解析】
先求出直線y=7與直線y=﹣2x﹣1的交點為(﹣4,7),再分類討論:當點B在點A的右側,則m≤﹣4≤3m﹣1,當點B在點A的左側,則3m﹣1≤﹣4≤m,然后分別解關于m的不等式組即可.【詳解】解:當y=7時,﹣2x﹣1=7,解得x=﹣4,所以直線y=7與直線y=﹣2x﹣1的交點為(﹣4,7),當點B在點A的右側,則m≤﹣4≤3m﹣1,無解;當點B在點A的左側,則3m﹣1≤﹣4≤m,解得﹣4≤m≤﹣1,所以m的取值范圍為﹣4≤m≤﹣1,故答案為﹣4≤m≤﹣1.【點睛】本題考查了一次函數圖象上點的坐標特征,根據直線y=﹣2x﹣1與線段AB有公共點找出關于m的一元一次不等式組是解題的關鍵.15、108°【解析】
先求出正五邊形各個內角的度數,再求出∠BCD和∠BDC的度數,求出∠CBD,即可求出答案.【詳解】如圖:∵圖中是兩個全等的正五邊形,∴BC=BD,∴∠BCD=∠BDC,∵圖中是兩個全等的正五邊形,∴正五邊形每個內角的度數是=108°,∴∠BCD=∠BDC=180°-108°=72°,∴∠CBD=180°-72°-72°=36°,∴∠α=360°-36°-108°-108°=108°,故答案為108°.【點睛】本題考查了正多邊形和多邊形的內角和外角,能求出各個角的度數是解此題的關鍵.16、1【解析】
因為是整數,且,則1n是完全平方數,滿足條件的最小正整數n為1.【詳解】∵,且是整數,
∴是整數,即1n是完全平方數;
∴n的最小正整數值為1.
故答案為:1.【點睛】主要考查了二次根式的定義,關鍵是根據乘除法法則和二次根式有意義的條件.二次根式有意義的條件是被開方數是非負數進行解答.17、2【解析】∵∠ACB=90°,FD⊥AB,∴∠ACB=∠FDB=90°。∵∠F=30°,∴∠A=∠F=30°(同角的余角相等)。又AB的垂直平分線DE交AC于E,∴∠EBA=∠A=30°?!郣t△DBE中,BE=2DE=2。18、20【解析】解:連接OB,∵⊙O的直徑CD垂直于AB,∴=,∴∠BOC=∠AOC=40°,∴∠BDC=∠AOC=×40°=20°三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)AB=2;相等;(2)a=±;(3),.【解析】
(1)①過點B作BN⊥x軸于N,由題意可知△AMB為等腰直角三角形,設出點B的坐標為(n,-n),根據二次函數得出n的值,然后得出AB的值,②因為拋物線y=x2+1與y=x2的形狀相同,所以拋物線y=x2+1與y=x2的“完美三角形”的斜邊長的數量關系是相等;(2)根據拋物線的性質相同得出拋物線的完美三角形全等,從而得出點B的坐標,得出a的值;根據最大值得出mn-4m-1=0,根據拋物線的完美三角形的斜邊長為n得出點B的坐標,然后代入拋物線求出m和n的值.(3)根據的最大值為-1,得到化簡得mn-4m-1=0,拋物線的“完美三角形”斜邊長為n,所以拋物線2的“完美三角形”斜邊長為n,得出B點坐標,代入可得mn關系式,即可求出m、n的值.【詳解】(1)①過點B作BN⊥x軸于N,由題意可知△AMB為等腰直角三角形,AB∥x軸,易證MN=BN,設B點坐標為(n,-n),代入拋物線,得,∴,(舍去),∴拋物線的“完美三角形”的斜邊②相等;(2)∵拋物線與拋物線的形狀相同,∴拋物線與拋物線的“完美三角形”全等,∵拋物線的“完美三角形”斜邊的長為4,∴拋物線的“完美三角形”斜邊的長為4,∴B點坐標為(2,2)或(2,-2),∴.(3)∵的最大值為-1,∴,∴,∵拋物線的“完美三角形”斜邊長為n,∴拋物線的“完美三角形”斜邊長為n,∴B點坐標為,∴代入拋物線,得,∴(不合題意舍去),∴,∴20、(1)50;(2)16;(3)56(4)見解析【解析】
(1)用A等級的頻數除以它所占的百分比即可得到樣本容量;
(2)用總人數分別減去A、B、D等級的人數得到C等級的人數,然后補全條形圖;(3)用700乘以D等級的百分比可估計該中學八年級學生中體能測試結果為D等級的學生數;
(4)畫樹狀圖展示12種等可能的結果數,再找出抽取的兩人恰好都是男生的結果數,然后根據概率公式求解.【詳解】(1)10÷20%=50(名)答:本次抽樣調查共抽取了50名學生.(2)50-10-20-4=16(名)答:測試結果為C等級的學生有16名.圖形統(tǒng)計圖補充完整如下圖所示:(3)700×=56(名)答:估計該中學八年級學生中體能測試結果為D等級的學生有56名.(4)畫樹狀圖為:
共有12種等可能的結果數,其中抽取的兩人恰好都是男生的結果數為2,
所以抽取的兩人恰好都是男生的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.也考查了統(tǒng)計圖.21、(1)當0≤x≤8時,y=10x+20;當8<x≤a時,y=;(2)40;(3)要在7:50~8:10時間段內接水.【解析】
(1)當0≤x≤8時,設y=k1x+b,將(0,20),(8,100)的坐標分別代入y=k1x+b,即可求得k1、b的值,從而得一次函數的解析式;當8<x≤a時,設y=,將(8,100)的坐標代入y=,求得k2的值,即可得反比例函數的解析式;(2)把y=20代入反比例函數的解析式,即可求得a值;(3)把y=40代入反比例函數的解析式,求得對應x的值,根據想喝到不低于40℃的開水,結合函數圖象求得x的取值范圍,從而求得李老師接水的時間范圍.【詳解】解:(1)當0≤x≤8時,設y=k1x+b,將(0,20),(8,100)的坐標分別代入y=k1x+b,可求得k1=10,b=20∴當0≤x≤8時,y=10x+20.當8<x≤a時,設y=,將(8,100)的坐標代入y=,得k2=800∴當8<x≤a時,y=.綜上,當0≤x≤8時,y=10x+20;當8<x≤a時,y=(2)將y=20代入y=,解得x=40,即a=40.(3)當y=40時,x==20∴要想喝到不低于40℃的開水,x需滿足8≤x≤20,即李老師要在7:38到7:50之間接水.【點睛】本題主要考查了一次函數及反比例函數的應用題,是一個分段函數問題,分段函數是在不同區(qū)間有不同對應方式的函數,要特別注意自變量取值范圍的劃分,既要科學合理,又要符合實際.22、(1)答案見解析(2)36°(3)4550名【解析】試題分析:(1)根據認為無所謂的家長是80人,占20%,據此即可求得總人數;(2)利用360乘以對應的比例即可求解;(3)利用總人數6500乘以對應的比例即可求解.(1)這次調查的家長人數為80÷20%=400人,反對人數是:400-40-80=280人,;(2)360×=36°;(3)反對中學生帶手機的大約有6500×=4550(名).考點:1.條形統(tǒng)計圖;2.用樣本估計總體;3.扇形統(tǒng)計圖.23、(1)見解析;(2)見解析;(3)1.【解析】
(1)如圖2,延長AB交CD于E,可知∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,即可解答(2)如圖3,延長AB交CD于G,可知∠ABC=∠BGC+∠C,即可解答(3)如圖4,延長A2A3交A5A4于C,延長A3A2交A1An于B,可知∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,再找出規(guī)律即可解答【詳解】(1)如圖2,延長AB交CD于E,則∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,∴∠ABC=∠A+∠C+∠D;(2)如圖3,延長AB交CD于G,則∠ABC=∠BGC+∠C,∵∠BGC=180°﹣∠BGC,∠BGD=3×180°﹣(∠A+∠D+∠E+∠F),∴∠ABC=∠A+∠C+∠D+∠E+∠F﹣310°;(3)如圖4,延長A2A3交A5A4于C,延長A3A2交A1An于B,則∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,∵∠1+∠3=(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An),而∠2+∠4=310°﹣(∠1+∠3)=310°﹣[(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An)],∴∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A1……+∠An﹣(n﹣1)×180°.故答案為1.【點睛】此題考查多邊形的內角和外角,,解題的關鍵是熟練掌握三角形的外角的性質,屬于中考??碱}型24、(1)1;(2);(3)x時,y有最大值,最大值.【解析】
(1)只要證明△OBC是等邊三角形即可;(2)求出△AOC的面積,利用三角形的面積公式計算即可;(3)分三種情形討論求解即可解決問題:①當0<x時,M在OC上運動,N在OB上運動,此時過點N作NE⊥OC且交OC于點E.②當x≤4時,M在BC上運動,N在OB上運動.③當4<x≤4.8時,M、N都在BC上運動,作OG⊥BC于G.【詳解】(1)由旋轉性質可知:OB=OC,∠BOC=1°,∴△OBC是等邊三角形,∴∠OBC=1°.故答案為1.(2)如圖1中.∵OB=4,∠ABO=30°,∴OAOB=2,ABOA=2,∴S△AOC?OA?AB2×2.∵△BOC是等邊三角形,∴∠OBC=1°,∠ABC=∠ABO+∠OBC=90°,∴AC,∴OP.(3)①當0<x時,M在OC上運動,N在OB上運動,此時過點N作NE⊥OC且交OC于點E.則NE=ON?sin1°x,∴S△OMN?OM?NE1.5xx,∴yx2,∴x時,y有最大值,最大值.②當x≤4時,M在BC上運動,N在OB上運動.作MH⊥OB于H.則BM=8﹣1.5x,MH=BM?sin1°(8﹣1.5x),∴yON×MHx2+2x.當x時,y取最大值,y,③當4<x≤4.8時,M、N都在BC上運動,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y?MN?OG=12x,當x=4時,y有最大值,最大值=2.綜上所述:y有最大值,最大值為.【點睛】本題考查幾何變換綜合題、30度的直角三角形的性質、等邊三角形的判定和性質、三角形的面積等知識,解題的關鍵是學會用分類討論的思想思考問題.25、(1);(2);(3).【解析】
(1)求出BE,BD即可解決問題.(2)利用勾股定理,面積法求高CD即可.(3)根據CD=3DE,構建方程即可解決問題.【詳解】解:(1)在Rt△ABC中,∵∠ACB=91°,a=3,b=4,∴.∵CD,CE是斜邊AB上的高,中線,∴∠BDC=91°,.∴在Rt△BCD中,(2)在Rt△ABC中,∵∠ACB=91°,BC=a,AC=b,故答案為:.(3)在Rt△BCD中,,∴,又,∴CD=3DE,即.∵b=3,∴2a=9﹣a2,即a2+2a﹣9=1.由求根公式得(負值舍去),即所求a的值是.【點睛】本題考查解直角三角形的應用,直角三角形斜邊中線的性質,勾股定理等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.26、(1)60
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 考研《美術學(050403)》名??荚囌骖}試題庫(含答案)
- 2025年陜西職教高考《職業(yè)適應性測試》考前沖刺模擬試題庫(附答案)
- 2025年河南工業(yè)和信息化職業(yè)學院高職單招語文2018-2024歷年參考題庫頻考點含答案解析
- 專題07 浮力(講練)
- 幼兒園自理能力活動策劃方案五篇
- 鎳鐵購銷合同
- 幼兒園制作蛋糕活動策劃方案四篇
- 家具安裝合同范文
- 人工智能產業(yè)基金投資合同
- 農場果品購銷合同模板范本
- 2024年公安機關理論考試題庫附答案【考試直接用】
- 課題申報參考:共同富裕進程中基本生活保障的內涵及標準研究
- 2025中國聯通北京市分公司春季校園招聘高頻重點提升(共500題)附帶答案詳解
- 康復醫(yī)學科患者隱私保護制度
- 環(huán)保工程信息化施工方案
- 紅色中國風2025蛇年介紹
- 2024年安徽省高考地理試卷真題(含答案逐題解析)
- 提高檢驗標本合格率品管圈PDCA成果匯報
- 世界古代史-對接選擇性必修(真題再現) 高考歷史一輪復習
- 植物的類群及演化
- 普通生物學考試大綱
評論
0/150
提交評論