江蘇省灌云縣西片重點(diǎn)名校2024屆中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第1頁(yè)
江蘇省灌云縣西片重點(diǎn)名校2024屆中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第2頁(yè)
江蘇省灌云縣西片重點(diǎn)名校2024屆中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第3頁(yè)
江蘇省灌云縣西片重點(diǎn)名校2024屆中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第4頁(yè)
江蘇省灌云縣西片重點(diǎn)名校2024屆中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江蘇省灌云縣西片重點(diǎn)名校2024屆中考押題數(shù)學(xué)預(yù)測(cè)卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題(共10小題,每小題3分,共30分)1.“鳳鳴”文學(xué)社在學(xué)校舉行的圖書(shū)共享儀式上互贈(zèng)圖書(shū),每個(gè)同學(xué)都把自己的圖書(shū)向本組其他成員贈(zèng)送一本,某組共互贈(zèng)了210本圖書(shū),如果設(shè)該組共有x名同學(xué),那么依題意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.x(x﹣1)=2102.將一把直尺和一塊含30°和60°角的三角板ABC按如圖所示的位置放置,如果∠CDE=40°,那么∠BAF的大小為()A.10° B.15° C.20° D.25°3.從,0,π,,6這5個(gè)數(shù)中隨機(jī)抽取一個(gè)數(shù),抽到有理數(shù)的概率是()A. B. C. D.4.如圖,△ABC內(nèi)接于半徑為5的⊙O,圓心O到弦BC的距離等于3,則∠A的正切值等于()A.B.C.D.5.若分式有意義,則的取值范圍是()A.; B.; C.; D..6.一個(gè)不透明的布袋里裝有5個(gè)只有顏色不同的球,其中2個(gè)紅球、3個(gè)白球.從布袋中一次性摸出兩個(gè)球,則摸出的兩個(gè)球中至少有一個(gè)紅球的概率是()A. B. C. D.7.已知數(shù)a、b、c在數(shù)軸上的位置如圖所示,化簡(jiǎn)|a+b|﹣|c﹣b|的結(jié)果是()A.a(chǎn)+b B.﹣a﹣c C.a(chǎn)+c D.a(chǎn)+2b﹣c8.一個(gè)幾何體的三視圖如圖所示,這個(gè)幾何體是()A.棱柱B.正方形C.圓柱D.圓錐9.若A(﹣4,y1),B(﹣3,y2),C(1,y3)為二次函數(shù)y=x2﹣4x+m的圖象上的三點(diǎn),則y1,y2,y3的大小關(guān)系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y1<y3<y210.為了增強(qiáng)學(xué)生體質(zhì),學(xué)校發(fā)起評(píng)選“健步達(dá)人”活動(dòng),小明用計(jì)步器記錄自己一個(gè)月(30天)每天走的步數(shù),并繪制成如下統(tǒng)計(jì)表:步數(shù)(萬(wàn)步)1.01.21.11.41.3天數(shù)335712在每天所走的步數(shù)這組數(shù)據(jù)中,眾數(shù)和中位數(shù)分別是()A.1.3,1.1 B.1.3,1.3 C.1.4,1.4 D.1.3,1.4二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,sin∠C,長(zhǎng)度為2的線段ED在射線CF上滑動(dòng),點(diǎn)B在射線CA上,且BC=5,則△BDE周長(zhǎng)的最小值為_(kāi)_____.12.圖1是我國(guó)古代建筑中的一種窗格,其中冰裂紋圖案象征著堅(jiān)冰出現(xiàn)裂紋并開(kāi)始消溶,形狀無(wú)一定規(guī)則,代表一種自然和諧美.圖2是從圖1冰裂紋窗格圖案中提取的由五條線段組成的圖形,則∠1+∠2+∠3+∠4+∠5=度.13.如圖,圓錐的表面展開(kāi)圖由一扇形和一個(gè)圓組成,已知圓的面積為100π,扇形的圓心角為120°,這個(gè)扇形的面積為.14.分式有意義時(shí),x的取值范圍是_____.15.用一直徑為10cm的玻璃球和一個(gè)圓錐形的牛皮紙紙帽可以制成一個(gè)不倒翁玩具,不倒翁的軸剖面圖如圖所示,圓錐的母線AB與⊙O相切于點(diǎn)B,不倒翁的頂點(diǎn)A到桌面L的最大距離是18cm.若將圓錐形紙帽的表面全涂上顏色,則需要涂色部分的面積約為cm2(精確到1cm2).16.如圖,AG∥BC,如果AF:FB=3:5,BC:CD=3:2,那么AE:EC=_____.三、解答題(共8題,共72分)17.(8分)已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點(diǎn)B落在CD邊上的P點(diǎn)處,如圖1,已知折痕與邊BC交于點(diǎn)O,連接AP、OP、OA.若△OCP與△PDA的面積比為1:4,求邊CD的長(zhǎng).如圖2,在(Ⅰ)的條件下,擦去折痕AO、線段OP,連接BP.動(dòng)點(diǎn)M在線段AP上(點(diǎn)M與點(diǎn)P、A不重合),動(dòng)點(diǎn)N在線段AB的延長(zhǎng)線上,且BN=PM,連接MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E.試問(wèn)當(dāng)動(dòng)點(diǎn)M、N在移動(dòng)的過(guò)程中,線段EF的長(zhǎng)度是否發(fā)生變化?若變化,說(shuō)明變化規(guī)律.若不變,求出線段EF的長(zhǎng)度.18.(8分)有一水果店,從批發(fā)市場(chǎng)按4元/千克的價(jià)格購(gòu)進(jìn)10噸蘋(píng)果,為了保鮮放在冷藏室里,但每天仍有一些蘋(píng)果變質(zhì),平均每天有50千克變質(zhì)丟棄,且每存放一天需要各種費(fèi)用300元,據(jù)預(yù)測(cè),每天每千克價(jià)格上漲0.1元.設(shè)x天后每千克蘋(píng)果的價(jià)格為p元,寫(xiě)出p與x的函數(shù)關(guān)系式;若存放x天后將蘋(píng)果一次性售出,設(shè)銷(xiāo)售總金額為y元,求出y與x的函數(shù)關(guān)系式;該水果店將這批水果存放多少天后一次性售出,可以獲得最大利潤(rùn),最大利潤(rùn)為多少?19.(8分)化簡(jiǎn):(x-1-)÷.20.(8分)我們把兩條中線互相垂直的三角形稱(chēng)為“中垂三角形”.例如圖1,圖2,圖1中,AF,BE是△ABC的中線,AF⊥BE,垂足為P,像△ABC這樣的三角形均為“中垂三角形”.設(shè)BC=a,AC=b,AB=c.特例探索(1)如圖1,當(dāng)∠ABE=45°,c=時(shí),a=,b=;如圖2,當(dāng)∠ABE=10°,c=4時(shí),a=,b=;歸納證明(2)請(qǐng)你觀察(1)中的計(jì)算結(jié)果,猜想a2,b2,c2三者之間的關(guān)系,用等式表示出來(lái),請(qǐng)利用圖1證明你發(fā)現(xiàn)的關(guān)系式;拓展應(yīng)用(1)如圖4,在□ABCD中,點(diǎn)E,F(xiàn),G分別是AD,BC,CD的中點(diǎn),BE⊥EG,AD=,AB=1.求AF的長(zhǎng).21.(8分)已知拋物線y=﹣2x2+4x+c.(1)若拋物線與x軸有兩個(gè)交點(diǎn),求c的取值范圍;(2)若拋物線經(jīng)過(guò)點(diǎn)(﹣1,0),求方程﹣2x2+4x+c=0的根.22.(10分)如圖,在直角坐標(biāo)系中△ABC的A、B、C三點(diǎn)坐標(biāo)A(7,1)、B(8,2)、C(9,0).(1)請(qǐng)?jiān)趫D中畫(huà)出△ABC的一個(gè)以點(diǎn)P(12,0)為位似中心,相似比為3的位似圖形△A′B′C′(要求與△ABC同在P點(diǎn)一側(cè)),畫(huà)出△A′B′C′關(guān)于y軸對(duì)稱(chēng)的△A′'B′'C′';(2)寫(xiě)出點(diǎn)A'的坐標(biāo).23.(12分)如圖,在正方形ABCD的外側(cè),作兩個(gè)等邊三角形ABE和ADF,連結(jié)ED與FC交于點(diǎn)M,則圖中≌,可知,求得______.如圖,在矩形的外側(cè),作兩個(gè)等邊三角形ABE和ADF,連結(jié)ED與FC交于點(diǎn)M.求證:.若,求的度數(shù).24.如圖,AB、AC分別是⊙O的直徑和弦,OD⊥AC于點(diǎn)D.過(guò)點(diǎn)A作⊙O的切線與OD的延長(zhǎng)線交于點(diǎn)P,PC、AB的延長(zhǎng)線交于點(diǎn)F.(1)求證:PC是⊙O的切線;(2)若∠ABC=60°,AB=10,求線段CF的長(zhǎng).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

設(shè)全組共有x名同學(xué),那么每名同學(xué)送出的圖書(shū)是(x?1)本;則總共送出的圖書(shū)為x(x?1);又知實(shí)際互贈(zèng)了210本圖書(shū),則x(x?1)=210.故選:B.2、A【解析】

先根據(jù)∠CDE=40°,得出∠CED=50°,再根據(jù)DE∥AF,即可得到∠CAF=50°,最后根據(jù)∠BAC=60°,即可得出∠BAF的大?。驹斀狻坑蓤D可得,∠CDE=40°,∠C=90°,∴∠CED=50°,又∵DE∥AF,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°?50°=10°,故選A.【點(diǎn)睛】本題考查了平行線的性質(zhì),熟練掌握這一點(diǎn)是解題的關(guān)鍵.3、C【解析】

根據(jù)有理數(shù)的定義可找出在從,0,π,,6這5個(gè)數(shù)中只有0、、6為有理數(shù),再根據(jù)概率公式即可求出抽到有理數(shù)的概率.【詳解】∵在,0,π,,6這5個(gè)數(shù)中有理數(shù)只有0、、6這3個(gè)數(shù),∴抽到有理數(shù)的概率是,故選C.【點(diǎn)睛】本題考查了概率公式以及有理數(shù),根據(jù)有理數(shù)的定義找出五個(gè)數(shù)中的有理數(shù)的個(gè)數(shù)是解題的關(guān)鍵.4、C.【解析】試題分析:如答圖,過(guò)點(diǎn)O作OD⊥BC,垂足為D,連接OB,OC,∵OB=5,OD=3,∴根據(jù)勾股定理得BD=4.∵∠A=∠BOC,∴∠A=∠BOD.∴tanA=tan∠BOD=.故選D.考點(diǎn):1.垂徑定理;2.圓周角定理;3.勾股定理;4.銳角三角函數(shù)定義.5、B【解析】

分式的分母不為零,即x-2≠1.【詳解】∵分式有意義,∴x-2≠1,∴.故選:B.【點(diǎn)睛】考查了分式有意義的條件,(1)分式無(wú)意義?分母為零;(2)分式有意義?分母不為零;(3)分式值為零?分子為零且分母不為零.6、D【解析】

畫(huà)出樹(shù)狀圖得出所有等可能的情況數(shù),找出恰好是兩個(gè)紅球的情況數(shù),即可求出所求的概率.【詳解】畫(huà)樹(shù)狀圖如下:一共有20種情況,其中兩個(gè)球中至少有一個(gè)紅球的有14種情況,因此兩個(gè)球中至少有一個(gè)紅球的概率是:.故選:D.【點(diǎn)睛】此題考查了列表法與樹(shù)狀圖法,用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.7、C【解析】

首先根據(jù)數(shù)軸可以得到a、b、c的取值范圍,然后利用絕對(duì)值的定義去掉絕對(duì)值符號(hào)后化簡(jiǎn)即可.【詳解】解:通過(guò)數(shù)軸得到a<0,c<0,b>0,|a|<|b|<|c|,∴a+b>0,c﹣b<0∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,故答案為a+c.故選A.8、C【解析】試題解析:根據(jù)主視圖和左視圖為矩形可判斷出該幾何體是柱體,根據(jù)俯視圖是圓可判斷出該幾何體為圓柱.故選C.9、B【解析】

根據(jù)函數(shù)解析式的特點(diǎn),其對(duì)稱(chēng)軸為x=2,A(﹣4,y1),B(﹣3,y2),C(1,y3)在對(duì)稱(chēng)軸左側(cè),圖象開(kāi)口向上,利用y隨x的增大而減小,可判斷y3<y2<y1.【詳解】拋物線y=x2﹣4x+m的對(duì)稱(chēng)軸為x=2,當(dāng)x<2時(shí),y隨著x的增大而減小,因?yàn)?4<-3<1<2,所以y3<y2<y1,故選B.【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,熟練掌握二次函數(shù)的增減性是解題的關(guān)鍵.10、B【解析】

在這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的是1.1,得到這組數(shù)據(jù)的眾數(shù);把這組數(shù)據(jù)按照從小到大的順序排列,第15、16個(gè)數(shù)的平均數(shù)是中位數(shù).【詳解】在這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的是1.1,即眾數(shù)是1.1.要求一組數(shù)據(jù)的中位數(shù),把這組數(shù)據(jù)按照從小到大的順序排列,第15、16個(gè)兩個(gè)數(shù)都是1.1,所以中位數(shù)是1.1.故選B.【點(diǎn)睛】本題考查一組數(shù)據(jù)的中位數(shù)和眾數(shù),在求中位數(shù)時(shí),首先要把這列數(shù)字按照從小到大或從的大到小排列,找出中間一個(gè)數(shù)字或中間兩個(gè)數(shù)字的平均數(shù)即為所求.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、.【解析】

作BK∥CF,使得BK=DE=2,作K關(guān)于直線CF的對(duì)稱(chēng)點(diǎn)G交CF于點(diǎn)M,連接BG交CF于D',則,此時(shí)△BD'E'的周長(zhǎng)最小,作交CF于點(diǎn)F,可知四邊形為平行四邊形及四邊形為矩形,在中,解直角三角形可知BH長(zhǎng),易得GK長(zhǎng),在Rt△BGK中,可得BG長(zhǎng),表示出△BD'E'的周長(zhǎng)等量代換可得其值.【詳解】解:如圖,作BK∥CF,使得BK=DE=2,作K關(guān)于直線CF的對(duì)稱(chēng)點(diǎn)G交CF于點(diǎn)M,連接BG交CF于D',則,此時(shí)△BD'E'的周長(zhǎng)最小,作交CF于點(diǎn)F.由作圖知,四邊形為平行四邊形,由對(duì)稱(chēng)可知,即四邊形為矩形在中,在Rt△BGK中,BK=2,GK=6,∴BG2,∴△BDE周長(zhǎng)的最小值為BE'+D'E'+BD'=KD'+D'E'+BD'=D'E'+BD'+GD'=D'E'+BG=2+2.故答案為:2+2.【點(diǎn)睛】本題考查了最短距離問(wèn)題,涉及了軸對(duì)稱(chēng)、矩形及平行四邊形的性質(zhì)、解直角三角形、勾股定理,難度系數(shù)較大,利用兩點(diǎn)之間線段最短及軸對(duì)稱(chēng)添加輔助線是解題的關(guān)鍵.12、360°.【解析】

根據(jù)多邊形的外角和等于360°解答即可.【詳解】由多邊形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案為360°.【點(diǎn)睛】本題考查的是多邊形的內(nèi)角和外角,掌握多邊形的外角和等于360°是解題的關(guān)鍵.13、300π【解析】試題分析:首先根據(jù)底面圓的面積求得底面的半徑,然后結(jié)合弧長(zhǎng)公式求得扇形的半徑,然后利用扇形的面積公式求得側(cè)面積即可.∵底面圓的面積為100π,∴底面圓的半徑為10,∴扇形的弧長(zhǎng)等于圓的周長(zhǎng)為20π,設(shè)扇形的母線長(zhǎng)為r,則=20π,解得:母線長(zhǎng)為30,∴扇形的面積為πrl=π×10×30=300π考點(diǎn):(1)、圓錐的計(jì)算;(2)、扇形面積的計(jì)算14、x<1【解析】

要使代數(shù)式有意義時(shí),必有1﹣x>2,可解得x的范圍.【詳解】根據(jù)題意得:1﹣x>2,解得:x<1.故答案為x<1.【點(diǎn)睛】考查了分式和二次根式有意義的條件.二次根式有意義,被開(kāi)方數(shù)為非負(fù)數(shù),分式有意義,分母不為2.15、174cm1.【解析】直徑為10cm的玻璃球,玻璃球半徑OB=5,所以AO=18?5=13,由勾股定理得,AB=11,∵BD×AO=AB×BO,BD=,圓錐底面半徑=BD=,圓錐底面周長(zhǎng)=1×π,側(cè)面面積=×1×π×11=.點(diǎn)睛:利用勾股定理可求得圓錐的母線長(zhǎng),進(jìn)而過(guò)B作出垂線,得到圓錐的底面半徑,那么圓錐的側(cè)面積=底面周長(zhǎng)×母線長(zhǎng)÷1.本題是一道綜合題,考查的知識(shí)點(diǎn)較多,利用了勾股定理,圓的周長(zhǎng)公式、圓的面積公式和扇形的面積公式求解.把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題求解是本題的解題關(guān)鍵.16、3:2;【解析】

由AG//BC可得△AFG與△BFD相似,△AEG與△CED相似,根據(jù)相似比求解.【詳解】假設(shè):AF=3x,BF=5x,∵△AFG與△BFD相似∴AG=3y,BD=5y

由題意BC:CD=3:2則CD=2y

∵△AEG與△CED相似∴AE:EC=AG:DC=3:2.【點(diǎn)睛】本題考查的是相似三角形,熟練掌握相似三角形的性質(zhì)是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)10;(2).【解析】

(1)先證出∠C=∠D=90°,再根據(jù)∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可證出△OCP∽△PDA;根據(jù)△OCP與△PDA的面積比為1:4,得出CP=AD=4,設(shè)OP=x,則CO=8﹣x,由勾股定理得x2=(8﹣x)2+42,求出x,最后根據(jù)AB=2OP即可求出邊AB的長(zhǎng);(2)作MQ∥AN,交PB于點(diǎn)Q,求出MP=MQ,BN=QM,得出MP=MQ,根據(jù)ME⊥PQ,得出EQ=PQ,根據(jù)∠QMF=∠BNF,證出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,由(1)中的結(jié)論求出PB=,最后代入EF=PB即可得出線段EF的長(zhǎng)度不變【詳解】(1)如圖1,∵四邊形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折疊可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP與△PDA的面積比為1:4,∴,∴CP=AD=4設(shè)OP=x,則CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得x2=(8﹣x)2+42,解得:x=5,∴AB=AP=2OP=10,∴邊CD的長(zhǎng)為10;(2)作MQ∥AN,交PB于點(diǎn)Q,如圖2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP.∴MP=MQ,∵BN=PM,∴BN=QM.∵M(jìn)P=MQ,ME⊥PQ,∴EQ=PQ.∵M(jìn)Q∥AN,∴∠QMF=∠BNF,∴△MFQ≌△NFB.∴QF=FB,∴EF=EQ+QF=(PQ+QB)=PB,由(1)中的結(jié)論可得:PC=4,BC=8,∠C=90°,∴PB=,∴EF=PB=2,∴在(1)的條件下,當(dāng)點(diǎn)M、N在移動(dòng)過(guò)程中,線段EF的長(zhǎng)度不變,它的長(zhǎng)度為2.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理、等腰三角形的性質(zhì),關(guān)鍵是做出輔助線,找出全等和相似的三角形18、;(3)該水果店將這批水果存放50天后一次性售出,可以獲得最大利潤(rùn),最大利潤(rùn)為12500元.【解析】

(1)根據(jù)按每千克元的市場(chǎng)價(jià)收購(gòu)了這種蘋(píng)果千克,此后每天每千克蘋(píng)果價(jià)格會(huì)上漲元,進(jìn)而得出天后每千克蘋(píng)果的價(jià)格為元與的函數(shù)關(guān)系;(2)根據(jù)每千克售價(jià)乘以銷(xiāo)量等于銷(xiāo)售總金額,求出即可;(3)利用總售價(jià)-成本-費(fèi)用=利潤(rùn),進(jìn)而求出即可.【詳解】根據(jù)題意知,;.當(dāng)時(shí),最大利潤(rùn)12500元,答:該水果店將這批水果存放50天后一次性售出,可以獲得最大利潤(rùn),最大利潤(rùn)為12500元.【點(diǎn)睛】此題主要考查了二次函數(shù)的應(yīng)用以及二次函數(shù)最值求法,得出與的函數(shù)關(guān)系是解題關(guān)鍵.19、【解析】

根據(jù)分式的混合運(yùn)算先計(jì)算括號(hào)里的再進(jìn)行乘除.【詳解】(x-1-)÷=·=·=【點(diǎn)睛】此題主要考查分式的計(jì)算,解題的關(guān)鍵是先進(jìn)行通分,再進(jìn)行加減乘除運(yùn)算.20、(1)2,2;2,2;(2)+=5;(1)AF=2.【解析】試題分析:(1)∵AF⊥BE,∠ABE=25°,∴AP=BP=AB=2,∵AF,BE是△ABC的中線,∴EF∥AB,EF=AB=,∴∠PFE=∠PEF=25°,∴PE=PF=1,在Rt△FPB和Rt△PEA中,AE=BF==,∴AC=BC=2,∴a=b=2,如圖2,連接EF,同理可得:EF=×2=2,∵EF∥AB,∴△PEF~△ABP,∴,在Rt△ABP中,AB=2,∠ABP=10°,∴AP=2,PB=2,∴PF=1,PE=,在Rt△APE和Rt△BPF中,AE=,BF=,∴a=2,b=2,故答案為2,2,2,2;(2)猜想:a2+b2=5c2,如圖1,連接EF,設(shè)∠ABP=α,∴AP=csinα,PB=ccosα,由(1)同理可得,PF=PA=,PE==,AE2=AP2+PE2=c2sin2α+,BF2=PB2+PF2=+c2cos2α,∴=c2sin2α+,=+c2cos2α,∴+=+c2cos2α+c2sin2α+,∴a2+b2=5c2;(1)如圖2,連接AC,EF交于H,AC與BE交于點(diǎn)Q,設(shè)BE與AF的交點(diǎn)為P,∵點(diǎn)E、G分別是AD,CD的中點(diǎn),∴EG∥AC,∵BE⊥EG,∴BE⊥AC,∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC=2,∴∠EAH=∠FCH,∵E,F(xiàn)分別是AD,BC的中點(diǎn),∴AE=AD,BF=BC,∴AE=BF=CF=AD=,∵AE∥BF,∴四邊形ABFE是平行四邊形,∴EF=AB=1,AP=PF,在△AEH和△CFH中,,∴△AEH≌△CFH,∴EH=FH,∴EQ,AH分別是△AFE的中線,由(2)的結(jié)論得:AF2+EF2=5AE2,∴AF2=5﹣EF2=16,∴AF=2.考點(diǎn):相似形綜合題.21、(1)c>﹣2;(2)x1=﹣1,x2=1.【解析】

(1)根據(jù)拋物線與x軸有兩個(gè)交點(diǎn),b2-4ac>0列不等式求解即可;

(2)先求出拋物線的對(duì)稱(chēng)軸,再根據(jù)拋物線的對(duì)稱(chēng)性求出拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo),然后根據(jù)二次函數(shù)與一元二次方程的關(guān)系解答.【詳解】(1)解:∵拋物線與x軸有兩個(gè)交點(diǎn),∴b2﹣4ac>0,即16+8c>0,解得c>﹣2;(2)解:由y=﹣2x2+4x+c得拋

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論