




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
SensorNetworks
金仲達(dá)教授清華大學(xué)資訊系統(tǒng)與應(yīng)用研究所九十三學(xué)年度第一學(xué)期0Sources“Comm’nSense:ResearchChallengesinEmbeddedNetworkedSensing,〞D.Estrin,
“ASurveyonSensorNetwork,〞
I.F.Akyildiz,W.Su,Y.Sankarasubramaniam,E.Cayirci,GeorgiaInstituteofTechnology
IEEECommunicationsMagazine,Aug.2002PervasiveComputing1IntroductionMarkWeiserenvisionedaworldinwhichcomputingispervasiveWhatweneedistoinstrumentthephysicalworldwithpervasivenetworksofsensor-rich,embeddedcomputationSuchsystemsfulfilltwoofWeiser’sobjectives:Ubiquity:byinjectcomputationintothephysicalworldwithhighspatialdensityInvisibility:byhavingthenodesandcollectiveofnodesoperateautonomouslyPervasiveComputing2IntroductionWhatisrequiredistheabilitytoeasilydeployflexiblesensing,computation,andactuationcapabilitiesintoourphysicalenvironmentssuchthatthedevicesthemselvesaregeneral-purposeandcanorganizeandadapttosupportseveralapplicationtypesPervasiveComputing3Embednumerousdistributeddevicestomonitor/interactwithphysicalworldExploitspatiallyandtemporallydense,
insitu,sensingandactuationNetworkthesedevicessothattheycancoordinatetoperformhigher-leveltasks.Requiresrobustdistributedsystemsofhundredsorthousandsofdevices.VisionPervasiveComputing4SensorNodesandNetworksSensornodes=sensing,dataprocessing,andcommunicatingcapacitySensornetwork:alargenumberofsensornodesthataredenselydeployedeitherinsidethephenomenonorveryclosetoitSensornodepositionnotengineeredorpredecided
protocolsoralgorithmsmustbeself-organizingCooperativeeffortofsensornodeswithinnetworkprocessingPervasiveComputing5ApplicationsScientific:eco-physiology,biocomplexitymappingInfrastructure:ContaminantflowmonitoringEngineering:adaptivestructuresPervasiveComputing6OtherApplications(I)EnvironmentalForestfiredetection,biocomplexitymappingoftheenvironment,flooddetection,precisionagricultureHealthyTelemonitoringofhumanphysiologicaldata,trackingandmonitoringdoctorsandpatientsinsideahospital,drugadministrationinhospitalsMilitary:Monitoringfriendlyforces,equipmentandammunition;battlefieldsurveillance;reconnaissanceofopposingforcesandterrain;targeting;battledamageassessment;nuclear,biologicalandchemicalattackdetectionandreconnaissancePervasiveComputing7OtherApplications(II)HomeHomeautomationSmartenvironmentCommercialEnvironmentalcontrolinofficebuildingsInteractivemuseumsDetectingandmonitoringcartheftsManaginginventorycontrolVehicletrackinganddetectionMonitoringproductqualityMonitoringdisasterareas….PervasiveComputing8ChallengesTightcouplingtothephysicalworldandembeddedinunattended“controlsystems〞DifferentfromtraditionalInternet,PDA,mobilityapplicationsthatinterfaceprimarilyanddirectlywithhumanusersUntethered,smallform-factor,nodespresentstringentenergyconstraintsLivingwithsmall,finite,energysourceisdifferentfromfixedbutreusableresourcessuchasBW,CPU,storageCommunicationsisprimaryconsumerofenergySendingabitover10or100metersconsumesasmuchenergyasthousands/millionsofoperationsPervasiveComputing9NewDesignThemesLong-livedsystemsthatcanbeuntetheredandunattended
Low-dutycycleoperationwithboundedlatencyExploitredundancyTieredarchitectures(mixofform/energyfactors)Self-configuringsystemsthatcanbedeployedadhocMeasureandadapttounpredictableenvironmentExploitspatialdiversityanddensityofsensor/actuatornodesPervasiveComputing10ApproachLeveragedataprocessinginsidethenetworkExploitcomputationneardatatoreducecommunicationAchievedesiredglobalbehaviorwithadaptivelocalizedalgorithms(i.e.,donotrelyonglobalinteractionorinformation)Dynamic,messy(hardtomodel),environmentsprecludepre-configuredbehaviorCan’taffordtoextractdynamicstateinformationneededforcentralizedcontrolorevenInternet-styledistributedcontrolPervasiveComputing11Whycan’twesimplyadaptInternetprotocolsand“endtoend〞architecture?InternetroutesdatausingIPaddressesinPacketsandLookuptablesinroutersHumansgetdataby“namingdata〞toasearchengineManylevelsofindirectionbetweennameandIPaddressWorkswellfortheInternet,andforsupportofPerson-to-PersoncommunicationEmbedded,energy-constrained(un-tethered,small-form-factor),unattendedsystemscan’ttoleratecommunicationoverheadofindirectionPervasiveComputing12vs.AdHocNetworksLargenumberofsensornodes(severalordersofmagnitudehigher)DenselydeployedPronetofailuresNetworktopologychangesveryfrequentlyMainlyuseabroadcastparadigmvs.point-to-pointinadhocnetworksLimitedinpower,computationalcapacities,andmemoryMaynothaveglobalidentification(ID)PervasiveComputing13CommunicationArchitectureFactorsofdesignconsiderationTransmissionmediaProductioncostsPowerconsumptionFaulttoleranceNWtopologyHWconstraintsEnvironmentScalabilityPervasiveComputing14FaultToleranceTheabilitytosustainsensornetworkfunctionalitieswithoutanyinterruptionduetosensornodefailuresThereliabilityRk(t)orfaulttoleranceofasensornodecanbemodeledwiththePoissondistributiontocapturetheprobabilityofnothavingafailurewithinthetimeinterval(0,t)Rk(t)=exp(-λkt),fornodekPervasiveComputing15ScalabilityThenumberofsensornodes10->100->1000->10000->….DependingontheapplicationNewschemesmustbeabletoutilizethehighdensityThedensityμ(R)=(N.πR2)/AA:regionareaR:radiotransmissionrangeN:thenumberofscatteredsensornodesPervasiveComputing16ProductionCostsThecostofasinglenodeisveryimportanttojustifytheoverallcostofthenetworkThecostofasensornodeshouldbemuchlessthanUS$1Thestate-of-arttechnologyallowsaBluetoothradiosystemtobelessthanUS$1010timesmoreexpensivethethetargetedpricePervasiveComputing17Hardware4basicunits:sensingunit,processingunit,transceiverunit,powerunitSensing:sensors,Analog-to-digitalconverters(ADCs)Additionalapplication-dependentunitsLocationfindingsystem,powergenerator,mobilizer….PervasiveComputing18HardwareConstraintsConstraintsSizePowerOperateinveryhighdensitiesLowcostDispensableAutonomousAdaptivetoenvironmentPervasiveComputing19SensorNetworkTopologyTopologymaintenanceandchangein3phasesPredeploymentanddeploymentphaseBethrowninasamassorplacedonebyonePost-deploymentphaseChangeinsensornodes’position,reachability,availableenergy,malfunctioning,andtaskdetailsRedeploymentofadditionalnodesphaseAdditionalsensornodescanberedeployedPervasiveComputing20EnvironmentNodesaredenselydeployedeitherverycloseordirectlyinsidethephenomenontobeobservedUsuallyworkunattendedinremotegeographicareasintheinterioroflargemachineryatthebottomofanoceaninabiologicallyorchemicallycontaminatedfieldinabattlefieldbeyondtheenemylinesinahomeorlargebuilding….PervasiveComputing21TransmissionMediaOftenbywirelessmediumRadio:UsedbymostsensorsμAMPSsensorusesaBluetooth-compatible2.4GHztransceiverwithanintegratedfrequencysynthesizerInfrared:License-free,robusttointerferencefromelectricaldevicescheaperandeasiertobuildOptical:SmartDustmoteBothinfraredandopticalrequirelineofsightPervasiveComputing22PowerConsumptionInsomeapplicationscenarios,replenishmentofpowerresourcesmightbeimpossibleBatterylifetimeInamultihopadhocsensornetwork,eachnodeplaysdualroleofdataoriginatoranddataroutercausesignificanttopologicalchangesrequirereroutingofpacketsandreorganizationofthenetworkPowerconsumptionsensing,communication,anddataprocessingPervasiveComputing23DesignIssuesAccordingtoProtocolStackPhysicallayer:Simple,robustmodulation,transmission,receivingMACprotocolpower-aware;minimizecollisionwithneighbors’broadcastsNetworklayerroutingdatasuppliedbytransportlayerTransportlayermaintainflowofdataPervasiveComputing24ThreeManagementPlanesThepowermanagementplane,e.g.TurnoffitsreceiverafterreceivingamessageBroadcastslowinpowerandcannotparticipateinroutingmessagesThemobilitymanagementplaneDetectsandregistersmovementofsensornodesmaintainroutebacktotheuser,keeptrackoftheirneighborThetaskmanagementplanebalancesandschedulessensingtasksforaspecificregionTheyareneededforsensornodestoworkpower-efficiently,routedatainamobilenetwork,shareresourcesbetweensensornodesPervasiveComputing25PhysicalLayerResponsibilityFrequencyselection,carrierfrequencygeneration,signaldetection,modulation,anddataencryption.915MHzindustrial,scientific,andmedical(ISM)bandhasbeenwidelyusedLongdistancewirelesscommunicationcanbeexpensiveintermsofpowerAgoodmodulationiscriticalforreliablecomm.BinaryandM-arymodulationschemesUltrawideband(UWB)orimpulseradio(IR)arepromisingPervasiveComputing26PhysicalLayerOpenIssuesModulationschemesSimpleandlow-powermodulationschemesStrategiestoovercomesignalpropagationeffectsHardwaredesignTiny,low-power,low-costtransceiver,sensing,andprocessingunitsPower-efficienthardwaremanagementstrategiesPervasiveComputing27DataLinkLayerResponsibilityMultiplexingofdatastreams,dataframedetection,mediumaccessanderrorcontrolReliablepoint-to-pointandpoint-to-multipointMediumAccessControlprotocolcreationofthenetworkinfrastructurefairlyandefficientlysharecommunicationresourcesExistingMACprotocolscannotbeusedCellularsystem:infrastructure-basedBluetoothandmobileadhocnetwork(MANET)muchlargernumber,powerandradiorange,frequenttopologychange,powerconservationneededPervasiveComputing28SomeProposedMACProtocolsPervasiveComputing29ExampleMACProtocolsSelf-OrganizingMediumAccessControlforSensorNetworks(SMACS)andtheEavesdrop-And-Register(EAR)AlgorithmNodestodiscovertheirneighborsandestablishcommunicationwithouttheneedforanylocalorglobalmasternodesNonecessityfornetworkwidesynchronizationusingarandomwake-upscheduleduringconnectionphaseandturningtheradiooffduringidletimeslotsEARattemptstooffercontinuousservicetothemobilenodesPervasiveComputing30DataLinkOpenIssuesMACformobilesensornetworksmoreextensivemobilityinthesensornodesandtargetsDeterminationoflowerboundsontheenergyrequiredforsensornetworkself-organizationErrorcontrolcodingschemesPower-savingmodesofoperationPervasiveComputing31NetworkLayerDesignprinciplesPowerefficiencySensornetworksaremostlydata-centricDataaggregationisusefulonlywhenitdoesnothinderthecollaborativeeffortofthesensornodes.Anidealsensornetworkhasattribute-basedaddressingandlocationawarenessAlsoprovidinginternetworkingwithexternalnetworksPervasiveComputing32Energy-EfficientRouteAvailablepower:PAEnergyrequired(α)MaximumminimumPAnoderouteMinPAislargerthan
theminPAsMaximumPArouteMinimumenergyrouteMinimumhoproutePervasiveComputing33DataCentricRouteUseinterestdisseminationSinksbroadcasttheinterest,orSensornodesbroadcastanadvertisementandwaitforarequestOftenrequireattribute-basednamingQuerybyusingattributesofphenomenonDataaggregationSolvetheimplosionandoverlapproblemsPervasiveComputing34ProposedSchemesFloodingImplosion(duplicatedmessage),overlap(bothsensorsdetectthesameevent),resourceblindness(notconsideringresourceconstraints)GossipingRelaypacketstorandomlyselectedneighborNegotiation(SPIN)PervasiveComputing35MoreSchemesSmallminimumenergycommunicationnetworkSequentialassignmentroutingLow-energyadaptiveclusteringhierarchyDirecteddiffusionPervasiveComputing36ProtocolSummaryPervasiveComputing37ApplicationLayerProtocolsSensormanagementnodesdonothaveglobalidentificationsandareinfrastructurelessProvidingadministrativetasksIntroducingtherulesrelatedtodataaggregation,attribute-basednaming,andclusteringtothesensornodesExchangingdatarelatedtothelocationfindingalgorithmsTimesynchronizationofthesensornodesMovingsensornodesTurningsensornodesonandoffQueryingthesensornetworkconfigurationandthestatusofnodes,andreconfiguringthesensornetworkAuthentication,keydistribution,andsecurityindatacommunicationsPervasiveComputing38ApplicationLayerProtocolsTaskassignmentanddataadvertisementinterestdisseminationAdvertisementofavailabledataSensorqueryanddatadisseminationissuequeries,respondtoqueriesandcollectincomingrepliesSensorqueryandtaskinglanguage(SQTL)supports3typesofeventsReceivedefineseventsgeneratedbyasensornodewhenthesensornodereceivesamessageeverydefineseventsoccurringperiodicallyduetotimertimeoutexpiredefineseventsoccurringwhenatimerisexpiredDifferenttypesofSQDDPcanbedevelopedforvariousapplications.TheuseofSQDDPsmaybeuniquetoeachapplicationPervasiveComputing39PervasiveComputing40ResearchAreasConstructsfor“innetwork〞distributedprocessingsystemorganizedaroundnamingdata,notnodes“programming〞largecollectionsofdistributedelementsLocalizedalgorithmsthatachievesystem-widepropertiesTimeandlocationsynchronizationenergy-efficienttechniquesforassociatingtimeandspacewithdatatosupportcollaborativeprocessingExperimentalinfrastructurePervasiveComputing41ConstructsforinNWProcessingNodespull,push,storenameddata(usingtuplespace)tocreateeffic.processingpointsinNWe.g.duplicatesuppression,aggregation,correlationNestedqueriesreduceoverheadrelativeto“edgeprocessing〞Complexqueriessupport
collaborativesignalproc.propagatefunction
describingdesired
locations/nodes/data
(e.g.ellipsefortracking)PervasiveComputing42Self-organizationwithLocalizedAlg.Self-configurationandreconfigurationessentialtolifetimeofunattendedsystemsindynamic,constrainedenergy,environmentEfficient,multi-hoptopologyformation:nodemeasuresneighborhoodtodetermineparticipation,dutycycle,and/orpowerlevelBeaconplacement:candidatebeaconmeasurespotentialreductioninlocalizationerrorRequireslargesolutionspace;notseekinguniqueoptimalInvestigatingapplicability,convergence,roleofselectiveglobalinformationPervasiveComputing43TimeandLocationSynchronizationCommontimecoordinateforinsituprocessing,correlationofeventsDevelopingmethodsthatbalancecommunication(energy)costwithothervariables(e.g.,precision,scope,lifetime,cost,formfactor)PostfactopulsesynchronizationCommonspatialcoordinatefor3-spacerelatedtasksandnetworkoperation(e.g.,geo-routing)MethodsnotrelyonGPSorRFRSSI(duetoenvir.)Multi-modallocalizationusingacoustictimeofflightmeasurements,RFsynchronization,andimagingtoidentifybaddatasources(NLOS)PervasiveComputing44ExperimentalInfrastructurePC-104+
(off-the-shelf)UCBMote
(Pister/Culler)SoftwareDirectedDiffusion
TinyOS(UCB/Culler)Measurement,SimulationPervasiveComputing45BerkeleyMotes&TinyOS孫文宏46BerkeleyMotes1stgeneration2ndgenerationPervasiveComputing47SystemofMICAMotesPervasiveComputing48MICAMotesProcessorandradioboard- MPR300Sensorboard– MTS310Basestation/interfaceboard- MIB300PervasiveComputing49MICAMotesPervasiveComputing50MICAMotesPervasiveComputing51SensorBoard2.25in1.25inMicrophoneAccelerometerLightSensorTemperatureSensorSounderMagnetometerPervasiveComputing52Processor/RadioBoardPervasiveComputing53Processor/RadioBoardPervasiveComputing54TinyOSTinyOS=application/binaryimage,executableonanATmegaprocessorevent-driven,2-levelscheduling,single-sharedstacknokernel,noprocessmanagement,nomemorymanagement,
novirtualmemorysimpleFIFO
scheduler,part
ofthemainCommunicationActuatingSensingCommunicationApplication(UserComponents)Main(includesScheduler)Hardware
AbstractionsPervasiveComputing55TinyOSf:\avrgcc\cygwin\tinyos-1.x\apps{cnt_to_leds,cnt_to_rfm,sense,…} \docs{connector.pdf,tossim.pdf,…}\tools{toscheck,inject,verify,…}\tos{shared/systemcomponents,…}
…………… ………..PervasiveComputing56ProgrammingModelApplicationComponent2types:modulesandconfigurations.ModuleConfigurationAconfigurationisacomponentthat"wires"othercomponentstogether.EveryNesCapplicationhasasingletop-levelconfiguration.InterfacePervasiveComputing57ProgrammingModelapplication:configurationcomp1:modulecomp3comp4comp2:configurationPervasiveComputing58ReferenceCrossbow
MICAMotes
TinyOS
TinyOSsupport
TinyOStutorial
PADSFTP/TinyOSPervasiveComputing59DirectedDiffusion:
AScalableandRobustCommunicationParadigmforSensorNetworksChalermekIntanagonwiwat(USC/ISI)RameshGovindan(USC/ISI)DeborahEstrin(USC/ISIandUCLA)60TheGoalEmbednumerousdevicestomonitorandinteractwithphysicalworldNetworkthesedevicessothattheycancoordinatetoperformhigher-leveltasksRequiresrobustdistributedsystemsoftensofthousandsofdevicesPervasiveComputing61TheChallenge:Dynamics!ThephysicalworldisdynamicDynamicoperatingconditionsDynamicavailabilityofresources…particularlyenergy!DevicesmustadaptautomaticallytotheenvironmentToomanydevicesformanualconfigurationEnvironmentalconditionsareunpredictableUnattendedandun-tetheredoperationiskeytomanyapplicationsPervasiveComputing62EnergyIstheBottleneckResourceCommunicationVSComputationCostE
R4
10m:5000ops/transmittedbit100m:50,000,000ops/transmittedbitShortdistancecommunication=>multi-hopCannotassumeglobalknowledge,cannotpre-configurenetworksGetdesiredglobalbehaviorthrulocalizedinteractionsEmpiricallyadapttoobservedenvironmentCanleveragedataprocessing/aggregationinsidethenetworkPervasiveComputing63ResearchThemeWhatcommunicationprimitivescanbeemployedinsuchunattendedsensornetworks?Assumenostructuredsensorfields,buttask-specificAuserofthenetworkcontactoneofthesensorsinthefieldandposequeries(interrogation):e.g.,“GivemeperiodicreportsaboutanimallocationinregionAeverytseconds〞InterrogationpropagatedtosensornodesinregionASensornodesinregionAaretaskedtocollectdataDataaresentbacktotheuserseverytsecondsDisseminationmechanismsfortasksandevents?PervasiveComputing64IssuestoBeAddressedScalabletothousandsofsensornodesSensornodesmayfail,losebatterypower,betemporarilyunabletocommunication,…
=>communicationmechanismsmustberobustMinimizeenergyusage=>adatadisseminationmechanismforsensors
DirectedDiffusionPervasiveComputing65DirectedDiffusionIn-networkdataprocessing(aggregation,caching)DistributedalgorithmwithlocalizedinteractionApplication-awarecommunicationprimitivesexpressedintermsofnameddata(notintermsofthenodesgeneratingorrequestingdata)
=>data-centricDatageneratedbysensorsnamedbyattribute-valueSensornodesneednothavegloballyuniqueaddress,butneedtodistinguishbetweenneighborsPervasiveComputing66BasicIdeasAnoderequestsdatabysendinginterestsfornameddata(diffusion)GradientsaresetupinnetworktodraweventsDatamatchingtheinterestisdrawntowardsthatnodealongmultiplereversepathsThenetworkreinforcesoneormorepathsIntermediatenodescancache,transform,oraggregatedata,andmaydirectinterestsbasedonpreviouslycacheddataInterest/datapropagation,aggregationdecidedbylocalizedinteractions(withlocalnaming)PervasiveComputing67NamingTaskdescriptionsarenamedbyalistofattribute-valuepairsThisspecifiesaninterestfordatamatchingtheattributesPervasiveComputing68BasicDirectedDiffusionSettingupgradients(flooding)SourceSinkInterest=InterrogationGradient=WhoisinterestedBroadcastperiodicallyDatarate=1msPervasiveComputing69BasicDirectedDiffusionSourceSinkSendingdataandreinforcingthebestpathLowrateeventReinforcement=Increasedintereste.g.1stneighborsendingtheeventPervasiveComputing70MultipleSourcesandSinksPervasiveComputing71DirectedDiffusionandDynamicsRecoveringfromnodefailureSourceSinkLowrateevent
HighrateeventReinforcementPervasiveComputing72DirectedDiffusionandDynamicsSourceSinkStablepathLowrateevent
HighrateeventPervasiveComputing73LocalBehaviorChoicesForpropagatinginterestsInourexample,floodMoresophisticatedbehaviorspossible:e.g.basedoncachedinformation,GPSFordatatransmissionMulti-pathdeliverywithselectivequalityalongdifferentpathsprobabilisticforwardingsingle-pathdelivery,etc.Forsettingupgradientsdata-rategradientsaresetuptowardsneighborswhosendaninterest.Otherspossible:probabilisticgradients,energygradients,etc.Forreinforcementreinforcepaths,orpartsthereof,basedonobserveddelays,losses,variancesetc.othervariants:inhibitcertainpathsbecauseresourcelevelsarelowPervasiveComputing74SimulationStudyofDiffusionKeymetricAverageDissipatedEnergypereventdeliveredindicatesenergyefficiencyandnetworklifetimeComparediffusiontofloodingcentrallycomputedtree(omniscientmulticast)PervasiveComputing75DiffusionSimulationDetailsSimulator:ns-2NetworkSize:50-250NodesTransmissionRange:40mConstantDensity:1.95x10-3nodes/
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度旅游紀(jì)念品銷售折扣及文化推廣合同
- 二零二五專利代理人委托協(xié)議:生物識(shí)別技術(shù)專利申請代理服務(wù)協(xié)議
- 二零二五年度股權(quán)贈(zèng)與及企業(yè)可持續(xù)發(fā)展協(xié)議
- 2025年度水利工程變更及優(yōu)化合同
- 二零二五年度航空貨運(yùn)司機(jī)勞務(wù)合作協(xié)議
- 二零二五年度主播與經(jīng)紀(jì)公司解約及內(nèi)容輸出合同
- 2025年南平延平區(qū)區(qū)屬國有企業(yè)公開招聘筆試參考題庫附帶答案詳解
- 2025至2030年中國硬質(zhì)合金異型刀具數(shù)據(jù)監(jiān)測研究報(bào)告
- 疾病的流行規(guī)律及防控建議
- 運(yùn)營總監(jiān)應(yīng)聘合同范本
- 安徽工程大學(xué)《回歸分析》2023-2024學(xué)年第一學(xué)期期末試卷
- 人教版物理八年級(jí)下冊 專項(xiàng)訓(xùn)練卷 (一)力、運(yùn)動(dòng)和力(含答案)
- T-YACX 002-2024 梔子花茶團(tuán)體標(biāo)準(zhǔn)
- 安全評估報(bào)告范文(共10篇)
- 《商業(yè)空間設(shè)計(jì)》教案課程
- 2024-2025學(xué)年初中勞動(dòng)七年級(jí)下冊人教版教學(xué)設(shè)計(jì)合集
- 口腔科放射防護(hù)制度
- 2024年公開招聘事業(yè)單位工作人員報(bào)名登記表
- 微觀經(jīng)濟(jì)學(xué):緒論
- 2024年全國高考數(shù)學(xué)試題及解析答案(新課標(biāo)Ⅱ卷)
- 2024年中考語文滿分作文6篇(含題目)
評論
0/150
提交評論