版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
有理數(shù)知識課件目錄CONTENCT有理數(shù)基本概念與分類有理數(shù)運算規(guī)則有理數(shù)大小比較與絕對值有理數(shù)在數(shù)軸上表示與應(yīng)用有理數(shù)混合運算與實際應(yīng)用無理數(shù)簡介及與有理數(shù)關(guān)系01有理數(shù)基本概念與分類定義性質(zhì)有理數(shù)定義及性質(zhì)有理數(shù)是整數(shù)(正整數(shù)、0、負(fù)整數(shù))和分?jǐn)?shù)的統(tǒng)稱,可以表示為兩個整數(shù)之比(分子除以分母)。有理數(shù)具有可加性、可乘性、可除性(除數(shù)不為0)等運算性質(zhì),同時滿足結(jié)合律、交換律和分配律等基本數(shù)學(xué)定律。整數(shù)包括正整數(shù)、0和負(fù)整數(shù),可以看作是分母為1的分?jǐn)?shù)。分?jǐn)?shù)是有理數(shù)的一種表現(xiàn)形式,可以表示除整數(shù)外的其他有理數(shù)。整數(shù)和分?jǐn)?shù)在有理數(shù)范圍內(nèi)可以相互轉(zhuǎn)換,例如將整數(shù)表示為分?jǐn)?shù)形式,或?qū)⒎謹(jǐn)?shù)簡化為整數(shù)。整數(shù)與分?jǐn)?shù)關(guān)系正數(shù)負(fù)數(shù)零大于0的有理數(shù)稱為正數(shù),用“+”號表示(有時可省略)。小于0的有理數(shù)稱為負(fù)數(shù),用“-”號表示。0既不是正數(shù)也不是負(fù)數(shù),是特殊的數(shù),表示沒有量或量的平衡狀態(tài)。正數(shù)、負(fù)數(shù)及零概念80%80%100%有理數(shù)表示方法有理數(shù)可以用十進(jìn)制數(shù)表示,包括整數(shù)部分和小數(shù)部分(有限或無限循環(huán)小數(shù))。有理數(shù)可以用分子和分母兩個整數(shù)的比值來表示,如a/b(b≠0)。在某些特定情況下,有理數(shù)還可以用其他形式表示,如百分?jǐn)?shù)、科學(xué)記數(shù)法等。十進(jìn)制表示法分?jǐn)?shù)表示法其他表示法02有理數(shù)運算規(guī)則同號相加異號相加加法結(jié)合律和交換律加法運算規(guī)則及實例取絕對值較大的符號,并用較大的絕對值減去較小的絕對值。例如:(+3)+(-2)=+1,(-3)+(+2)=-1。加法運算滿足結(jié)合律和交換律,即a+b=b+a,(a+b)+c=a+(b+c)。取相同的符號,并把絕對值相加。例如:(+3)+(+2)=+5,(-3)+(-2)=-5。減去一個數(shù)等于加上這個數(shù)的相反數(shù)。例如5-3=5+(-3)=2。減法結(jié)合律和交換律減法運算不滿足結(jié)合律和交換律,但可以通過加法運算的交換律和結(jié)合律進(jìn)行簡化。減法去括號如果括號外的因數(shù)是正數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相同;如果括號外的因數(shù)是負(fù)數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相反。減法運算規(guī)則及實例正數(shù)乘正數(shù)得正數(shù),負(fù)數(shù)乘負(fù)數(shù)得正數(shù)。例如:(+3)x(+2)=+6,(-3)x(-2)=+6。同號相乘異號相乘乘法分配律正數(shù)乘負(fù)數(shù)得負(fù)數(shù),負(fù)數(shù)乘正數(shù)得負(fù)數(shù)。例如:(+3)x(-2)=-6,(-3)x(+2)=-6。乘法運算滿足分配律,即ax(b+c)=axb+axc。030201乘法運算規(guī)則及實例除法運算規(guī)則及實例除以一個數(shù)等于乘以這個數(shù)的倒數(shù)。例如5÷2=5x(1/2)=2.5。除以零任何數(shù)除以零都是無意義的。除法運算性質(zhì)除法運算不滿足交換律和結(jié)合律,但可以通過乘法運算的交換律和結(jié)合律進(jìn)行簡化。03有理數(shù)大小比較與絕對值在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大。數(shù)軸比較法求兩數(shù)的差,若差大于0,則被減數(shù)大于減數(shù);若差等于0,則兩數(shù)相等;若差小于0,則被減數(shù)小于減數(shù)。差值比較法求兩數(shù)的商,若商大于1,則被除數(shù)大于除數(shù);若商等于1,則兩數(shù)相等;若商小于1,則被除數(shù)小于除數(shù)(注意除數(shù)不為0)。商值比較法大小比較方法一個數(shù)在數(shù)軸上所對應(yīng)點到原點的距離叫做這個數(shù)的絕對值,用“||”來表示。絕對值定義|a|在數(shù)軸上表示數(shù)a的點與原點的距離。絕對值的代數(shù)意義正數(shù)的絕對值是它本身;負(fù)數(shù)的絕對值是它的相反數(shù);0的絕對值是0。絕對值的性質(zhì)絕對值概念及性質(zhì)同號兩數(shù)相加,取與加數(shù)相同的符號,并把絕對值相加。異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。一個數(shù)同0相加,仍得這個數(shù)。互為相反數(shù)的兩個數(shù)相加得0;a+(-a)=0。絕對值運算規(guī)則04有理數(shù)在數(shù)軸上表示與應(yīng)用010203數(shù)軸是一種特定幾何圖形,用直線上無數(shù)個點來表示實數(shù)。數(shù)軸規(guī)定了原點、正方向和單位長度,通常規(guī)定右邊為正方向。在數(shù)軸上,右邊上點表示的數(shù)總大于左邊上點表示的數(shù),正數(shù)大于零,零大于負(fù)數(shù)。數(shù)軸概念及性質(zhì)01020304有理數(shù)包括整數(shù)和分?jǐn)?shù),都可以在數(shù)軸上表示。有理數(shù)在數(shù)軸上表示方法有理數(shù)包括整數(shù)和分?jǐn)?shù),都可以在數(shù)軸上表示。有理數(shù)包括整數(shù)和分?jǐn)?shù),都可以在數(shù)軸上表示。有理數(shù)包括整數(shù)和分?jǐn)?shù),都可以在數(shù)軸上表示。利用數(shù)軸可以比較有理數(shù)的大小,確定它們的順序關(guān)系。通過數(shù)軸上的點可以表示實際問題中的數(shù)量關(guān)系和變化規(guī)律。利用數(shù)軸可以求解一些與有理數(shù)相關(guān)的問題,如距離、速度、時間等。在解決實際問題時,需要根據(jù)實際情況選擇合適的單位長度和原點位置。利用數(shù)軸解決實際問題05有理數(shù)混合運算與實際應(yīng)用
混合運算順序和法則先乘除后加減在同級運算中,應(yīng)先進(jìn)行乘法或除法運算,再進(jìn)行加法或減法運算。有括號先算括號里的數(shù)在運算過程中,如果遇到括號,應(yīng)先計算括號內(nèi)的數(shù)值。運算優(yōu)先級掌握運算的優(yōu)先級,即先乘除、后加減,有括號先算括號里的數(shù),同級運算從左到右依次計算。提取公因數(shù)在多項式中,如果各項含有公因數(shù),可以將其提取出來,使算式更加簡潔。合并同類項將具有相同分母或相同形式的項進(jìn)行合并,以簡化算式。分配律的應(yīng)用利用分配律將復(fù)雜的算式拆分為簡單的部分進(jìn)行計算。復(fù)雜算式簡化技巧01020304理解問題背景建立數(shù)學(xué)模型求解并檢驗結(jié)果反思與拓展實際應(yīng)用問題解決方法通過計算求解數(shù)學(xué)模型,得到問題的解,并對解進(jìn)行檢驗,確保其符合實際問題的要求。根據(jù)問題的描述,建立相應(yīng)的數(shù)學(xué)模型,如有理數(shù)方程、不等式等。在解決實際問題時,首先需要理解問題的背景和條件,明確已知量和未知量。在解決問題后,進(jìn)行反思和總結(jié),思考是否有其他方法可以解決該問題,并嘗試將解決方法拓展到其他類似的問題中。06無理數(shù)簡介及與有理數(shù)關(guān)系定義無理數(shù)是不能表示為兩個整數(shù)之比的數(shù),即不是有理數(shù)的實數(shù)。性質(zhì)無理數(shù)的小數(shù)部分是無限不循環(huán)的,無法用有限位數(shù)字精確表示。此外,無理數(shù)在數(shù)軸上是稠密的,即任意兩個不相等的有理數(shù)之間都存在無理數(shù)。無理數(shù)定義及性質(zhì)無理數(shù)在十進(jìn)制下表示為無限不循環(huán)小數(shù),如根號2、π等。十進(jìn)制表示無理數(shù)可以表示為無限連分?jǐn)?shù),即一種特殊的分?jǐn)?shù)形式,其中分子為整數(shù),分母為另一個連分?jǐn)?shù)。這種表示方法可以用于研究無理數(shù)的性質(zhì)和近似計算。連分?jǐn)?shù)表示無理數(shù)表示方法區(qū)別有理數(shù)和無理數(shù)是實數(shù)的兩大類別。有理數(shù)包括整數(shù)和分?jǐn)?shù),可以表示為兩個整數(shù)之比;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度租住服務(wù)合同:日常房屋租住過程中的服務(wù)承諾與管理規(guī)則
- 2024年借款協(xié)議:朋友資金借入確認(rèn)
- 2024年信息技術(shù)研發(fā)合作合同
- 2024年度物流倉儲與配送合同
- 2024室內(nèi)照明設(shè)計工程合同
- 2024年攀巖館租賃協(xié)議
- 2024年工業(yè)配件供貨協(xié)議
- DB4117T 230-2019 蔬菜有機(jī)質(zhì)穴盤育苗技術(shù)規(guī)程
- DB4115T 050-2018 信陽傳統(tǒng)風(fēng)味小吃烹飪技藝 勺子饃
- DB4114T 182-2023 動物防疫員免疫操作技術(shù)規(guī)程
- 廣鐵集團(tuán)校園招聘機(jī)考題庫
- 第一章、總體概述:施工組織總體設(shè)想、工程概述、方案針對性及施工標(biāo)段劃分
- 2024-2030年中國語言服務(wù)行業(yè)發(fā)展規(guī)劃與未來前景展望研究報告
- 2024-2030年白玉蝸牛養(yǎng)殖行業(yè)市場發(fā)展現(xiàn)狀及發(fā)展前景與投資機(jī)會研究報告
- HGT 2902-2024《模塑用聚四氟乙烯樹脂》
- 2024 年上海市普通高中學(xué)業(yè)水平等級性考試 物理 試卷
- 國家開放大學(xué)??啤斗ɡ韺W(xué)》(第三版教材)形成性考核試題及答案
- 計量基礎(chǔ)知識考核試題及參考答案
- 眼科學(xué)基礎(chǔ)病例分析
- 混合痔中醫(yī)護(hù)理 方案
- 美國刑法制度
評論
0/150
提交評論