福建省三明市縣2024屆中考數(shù)學(xué)仿真試卷含解析_第1頁(yè)
福建省三明市縣2024屆中考數(shù)學(xué)仿真試卷含解析_第2頁(yè)
福建省三明市縣2024屆中考數(shù)學(xué)仿真試卷含解析_第3頁(yè)
福建省三明市縣2024屆中考數(shù)學(xué)仿真試卷含解析_第4頁(yè)
福建省三明市縣2024屆中考數(shù)學(xué)仿真試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

福建省三明市縣2024屆中考數(shù)學(xué)仿真試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.小明解方程的過(guò)程如下,他的解答過(guò)程中從第()步開(kāi)始出現(xiàn)錯(cuò)誤.解:去分母,得1﹣(x﹣2)=1①去括號(hào),得1﹣x+2=1②合并同類(lèi)項(xiàng),得﹣x+3=1③移項(xiàng),得﹣x=﹣2④系數(shù)化為1,得x=2⑤A.① B.② C.③ D.④2.實(shí)數(shù)a,b在數(shù)軸上對(duì)應(yīng)的點(diǎn)的位置如圖所示,則正確的結(jié)論是()A.a(chǎn)+b<0 B.a(chǎn)>|﹣2| C.b>π D.3.如圖所示,在平面直角坐標(biāo)系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B繞點(diǎn)B順時(shí)針旋轉(zhuǎn)180°,得到△BP2C;把△BP2C繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°,得到△CP3D,依此類(lèi)推,則旋轉(zhuǎn)第2017次后,得到的等腰直角三角形的直角頂點(diǎn)P2018的坐標(biāo)為()A.(4030,1) B.(4029,﹣1)C.(4033,1) D.(4035,﹣1)4.計(jì)算﹣1﹣(﹣4)的結(jié)果為()A.﹣3 B.3 C.﹣5 D.55.如圖,四邊形ABCE內(nèi)接于⊙O,∠DCE=50°,則∠BOE=()A.100° B.50° C.70° D.130°6.的絕對(duì)值是()A.8 B.﹣8 C. D.﹣7.某春季田徑運(yùn)動(dòng)會(huì)上,參加男子跳高的15名運(yùn)動(dòng)員的成績(jī)?nèi)缦卤硭荆撼煽?jī)?nèi)藬?shù)這些運(yùn)動(dòng)員跳高成績(jī)的中位數(shù)是()A. B. C. D.8.下列各式正確的是()A.﹣(﹣2018)=2018 B.|﹣2018|=±2018 C.20180=0 D.2018﹣1=﹣20189.下列運(yùn)算正確的是()A.a(chǎn)6÷a3=a2 B.3a2?2a=6a3 C.(3a)2=3a2 D.2x2﹣x2=110.已知二次函數(shù)y=ax2+bx+c(a≠1)的圖象如圖所示,給出以下結(jié)論:①a+b+c<1;②a﹣b+c<1;③b+2a<1;④abc>1.其中所有正確結(jié)論的序號(hào)是()A.③④ B.②③ C.①④ D.①②③11.如圖,已知l1∥l2,∠A=40°,∠1=60°,則∠2的度數(shù)為()A.40° B.60° C.80° D.100°12.方程x2﹣3x=0的根是()A.x=0 B.x=3 C., D.,二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE.過(guò)點(diǎn)A作AE的垂線交DE于點(diǎn)P.若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點(diǎn)B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結(jié)論的序號(hào)是.14.計(jì)算(5ab3)2的結(jié)果等于_____.15.如圖,矩形中,,,將矩形沿折疊,點(diǎn)落在點(diǎn)處.則重疊部分的面積為_(kāi)_____.16.如圖,路燈距離地面6,身高1.5的小明站在距離燈的底部(點(diǎn))15的處,則小明的影子的長(zhǎng)為_(kāi)_______.17.在一個(gè)不透明的袋子中裝有除顏色外其他均相同的3個(gè)紅球和2個(gè)白球,從中任意摸出一個(gè)球,則摸出白球的概率是_____.18.如圖,DA⊥CE于點(diǎn)A,CD∥AB,∠1=30°,則∠D=_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖,點(diǎn)A(m,m+1),B(m+1,2m-3)都在反比例函數(shù)的圖象上.(1)求m,k的值;(2)如果M為x軸上一點(diǎn),N為y軸上一點(diǎn),以點(diǎn)A,B,M,N為頂點(diǎn)的四邊形是平行四邊形,試求直線MN的函數(shù)表達(dá)式.20.(6分)“知識(shí)改變命運(yùn),科技繁榮祖國(guó)”.在舉辦一屆全市科技運(yùn)動(dòng)會(huì)上.下圖為某校2017年參加科技運(yùn)動(dòng)會(huì)航模比賽(包括空模、海模、車(chē)模、建模四個(gè)類(lèi)別)的參賽人數(shù)統(tǒng)計(jì)圖:(1)該校參加航模比賽的總?cè)藬?shù)是人,空模所在扇形的圓心角的度數(shù)是;(2)并把條形統(tǒng)計(jì)圖補(bǔ)充完整;(3)從全市中小學(xué)參加航模比賽選手中隨機(jī)抽取80人,其中有32人獲獎(jiǎng).今年全市中小學(xué)參加航模比賽人數(shù)共有2500人,請(qǐng)你估算今年參加航模比賽的獲獎(jiǎng)人數(shù)約是多少人?21.(6分)如圖,邊長(zhǎng)為1的正方形ABCD的對(duì)角線AC、BD相交于點(diǎn)O.有直角∠MPN,使直角頂點(diǎn)P與點(diǎn)O重合,直角邊PM、PN分別與OA、OB重合,然后逆時(shí)針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點(diǎn),連接EF交OB于點(diǎn)G.(1)求四邊形OEBF的面積;(2)求證:OG?BD=EF2;(3)在旋轉(zhuǎn)過(guò)程中,當(dāng)△BEF與△COF的面積之和最大時(shí),求AE的長(zhǎng).22.(8分)在同一副撲克牌中取出6張撲克牌,分別是黑桃2、4、6,紅心6、7、8.將撲克牌背面朝上分別放在甲、乙兩張桌面上,先從甲桌面上任意摸出一張黑桃,再?gòu)囊易烂嫔先我饷鲆粡埣t心.表示出所有可能出現(xiàn)的結(jié)果;小黃和小石做游戲,制定了兩個(gè)游戲規(guī)則:規(guī)則1:若兩次摸出的撲克牌中,至少有一張是“6”,小黃贏;否則,小石贏.規(guī)則2:若摸出的紅心牌點(diǎn)數(shù)是黑桃牌點(diǎn)數(shù)的整數(shù)倍時(shí),小黃贏;否則,小石贏.小黃想要在游戲中獲勝,會(huì)選擇哪一條規(guī)則,并說(shuō)明理由.23.(8分)某水果基地計(jì)劃裝運(yùn)甲、乙、丙三種水果到外地銷(xiāo)售(每輛汽車(chē)規(guī)定滿(mǎn)載,并且只裝一種水果).如表為裝運(yùn)甲、乙、丙三種水果的重量及利潤(rùn).甲乙丙每輛汽車(chē)能裝的數(shù)量(噸)423每噸水果可獲利潤(rùn)(千元)574(1)用8輛汽車(chē)裝運(yùn)乙、丙兩種水果共22噸到A地銷(xiāo)售,問(wèn)裝運(yùn)乙、丙兩種水果的汽車(chē)各多少輛?(2)水果基地計(jì)劃用20輛汽車(chē)裝運(yùn)甲、乙、丙三種水果共72噸到B地銷(xiāo)售(每種水果不少于一車(chē)),假設(shè)裝運(yùn)甲水果的汽車(chē)為m輛,則裝運(yùn)乙、丙兩種水果的汽車(chē)各多少輛?(結(jié)果用m表示)(3)在(2)問(wèn)的基礎(chǔ)上,如何安排裝運(yùn)可使水果基地獲得最大利潤(rùn)?最大利潤(rùn)是多少?24.(10分)已知關(guān)于x的一元二次方程x2+(2m+3)x+m2=1有兩根α,β求m的取值范圍;若α+β+αβ=1.求m的值.25.(10分)如圖1,在平行四邊形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,經(jīng)過(guò)點(diǎn)O的直線與邊AB相交于點(diǎn)E,與邊CD相交于點(diǎn)F.(1)求證:OE=OF;(2)如圖2,連接DE,BF,當(dāng)DE⊥AB時(shí),在不添加其他輔助線的情況下,直接寫(xiě)出腰長(zhǎng)等于BD的所有的等腰三角形.26.(12分)先化簡(jiǎn)再求值:(a﹣)÷,其中a=1+,b=1﹣.27.(12分)如圖,在△ABC中,D、E分別是邊AB、AC上的點(diǎn),DE∥BC,點(diǎn)F在線段DE上,過(guò)點(diǎn)F作FG∥AB、FH∥AC分別交BC于點(diǎn)G、H,如果BG:GH:HC=2:4:1.求的值.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解析】

根據(jù)解分式方程的方法可以判斷哪一步是錯(cuò)誤的,從而可以解答本題.【詳解】=1,去分母,得1-(x-2)=x,故①錯(cuò)誤,故選A.【點(diǎn)睛】本題考查解分式方程,解答本題的關(guān)鍵是明確解分式方程的方法.2、D【解析】

根據(jù)數(shù)軸上點(diǎn)的位置,可得a,b,根據(jù)有理數(shù)的運(yùn)算,可得答案.【詳解】a=﹣2,2<b<1.A.a+b<0,故A不符合題意;B.a<|﹣2|,故B不符合題意;C.b<1<π,故C不符合題意;D.<0,故D符合題意;故選D.【點(diǎn)睛】本題考查了實(shí)數(shù)與數(shù)軸,利用有理數(shù)的運(yùn)算是解題關(guān)鍵.3、D【解析】

根據(jù)題意可以求得P1,點(diǎn)P2,點(diǎn)P3的坐標(biāo),從而可以發(fā)現(xiàn)其中的變化的規(guī)律,從而可以求得P2018的坐標(biāo),本題得以解決.【詳解】解:由題意可得,

點(diǎn)P1(1,1),點(diǎn)P2(3,-1),點(diǎn)P3(5,1),

∴P2018的橫坐標(biāo)為:2×2018-1=4035,縱坐標(biāo)為:-1,

即P2018的坐標(biāo)為(4035,-1),

故選:D.【點(diǎn)睛】本題考查了點(diǎn)的坐標(biāo)變化規(guī)律,解答本題的關(guān)鍵是發(fā)現(xiàn)各點(diǎn)的變化規(guī)律,求出相應(yīng)的點(diǎn)的坐標(biāo).4、B【解析】

原式利用減法法則變形,計(jì)算即可求出值.【詳解】,故選:B.【點(diǎn)睛】本題主要考查了有理數(shù)的加減,熟練掌握有理數(shù)加減的運(yùn)算法則是解決本題的關(guān)鍵.5、A【解析】

根據(jù)圓內(nèi)接四邊形的任意一個(gè)外角等于它的內(nèi)對(duì)角求出∠A,根據(jù)圓周角定理計(jì)算即可.【詳解】四邊形ABCE內(nèi)接于⊙O,,由圓周角定理可得,,故選:A.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是圓的內(nèi)接四邊形性質(zhì),解題關(guān)鍵是熟記圓內(nèi)接四邊形的任意一個(gè)外角等于它的內(nèi)對(duì)角(就是和它相鄰的內(nèi)角的對(duì)角).6、C【解析】

根據(jù)絕對(duì)值的計(jì)算法則解答.如果用字母a表示有理數(shù),則數(shù)a絕對(duì)值要由字母a本身的取值來(lái)確定:①當(dāng)a是正有理數(shù)時(shí),a的絕對(duì)值是它本身a;②當(dāng)a是負(fù)有理數(shù)時(shí),a的絕對(duì)值是它的相反數(shù)﹣a;③當(dāng)a是零時(shí),a的絕對(duì)值是零.【詳解】解:.故選【點(diǎn)睛】此題重點(diǎn)考查學(xué)生對(duì)絕對(duì)值的理解,熟練掌握絕對(duì)值的計(jì)算方法是解題的關(guān)鍵.7、C【解析】

根據(jù)中位數(shù)的定義解答即可.【詳解】解:在這15個(gè)數(shù)中,處于中間位置的第8個(gè)數(shù)是1.1,所以中位數(shù)是1.1.

所以這些運(yùn)動(dòng)員跳高成績(jī)的中位數(shù)是1.1.

故選:C.【點(diǎn)睛】本題考查了中位數(shù)的意義.中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個(gè)數(shù)(最中間兩個(gè)數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù).8、A【解析】

根據(jù)去括號(hào)法則、絕對(duì)值的性質(zhì)、零指數(shù)冪的計(jì)算法則及負(fù)整數(shù)指數(shù)冪的計(jì)算法則依次計(jì)算各項(xiàng)即可解答.【詳解】選項(xiàng)A,﹣(﹣2018)=2018,故選項(xiàng)A正確;選項(xiàng)B,|﹣2018|=2018,故選項(xiàng)B錯(cuò)誤;選項(xiàng)C,20180=1,故選項(xiàng)C錯(cuò)誤;選項(xiàng)D,2018﹣1=,故選項(xiàng)D錯(cuò)誤.故選A.【點(diǎn)睛】本題去括號(hào)法則、絕對(duì)值的性質(zhì)、零指數(shù)冪的計(jì)算法則及負(fù)整數(shù)指數(shù)冪的計(jì)算法則,熟知去括號(hào)法則、絕對(duì)值的性質(zhì)、零指數(shù)冪及負(fù)整數(shù)指數(shù)冪的計(jì)算法則是解決問(wèn)題的關(guān)鍵.9、B【解析】

A、根據(jù)同底數(shù)冪的除法法則計(jì)算;

B、根據(jù)同底數(shù)冪的乘法法則計(jì)算;

C、根據(jù)積的乘方法則進(jìn)行計(jì)算;

D、根據(jù)合并同類(lèi)項(xiàng)法則進(jìn)行計(jì)算.【詳解】解:A、a6÷a3=a3,故原題錯(cuò)誤;B、3a2?2a=6a3,故原題正確;C、(3a)2=9a2,故原題錯(cuò)誤;D、2x2﹣x2=x2,故原題錯(cuò)誤;故選B.【點(diǎn)睛】考查同底數(shù)冪的除法,合并同類(lèi)項(xiàng),同底數(shù)冪的乘法,積的乘方,熟記它們的運(yùn)算法則是解題的關(guān)鍵.10、C【解析】試題分析:由拋物線的開(kāi)口方向判斷a的符號(hào),由拋物線與y軸的交點(diǎn)判斷c的符號(hào),然后根據(jù)對(duì)稱(chēng)軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.解:①當(dāng)x=1時(shí),y=a+b+c=1,故本選項(xiàng)錯(cuò)誤;②當(dāng)x=﹣1時(shí),圖象與x軸交點(diǎn)負(fù)半軸明顯大于﹣1,∴y=a﹣b+c<1,故本選項(xiàng)正確;③由拋物線的開(kāi)口向下知a<1,∵對(duì)稱(chēng)軸為1>x=﹣>1,∴2a+b<1,故本選項(xiàng)正確;④對(duì)稱(chēng)軸為x=﹣>1,∴a、b異號(hào),即b>1,∴abc<1,故本選項(xiàng)錯(cuò)誤;∴正確結(jié)論的序號(hào)為②③.故選B.點(diǎn)評(píng):二次函數(shù)y=ax2+bx+c系數(shù)符號(hào)的確定:(1)a由拋物線開(kāi)口方向確定:開(kāi)口方向向上,則a>1;否則a<1;(2)b由對(duì)稱(chēng)軸和a的符號(hào)確定:由對(duì)稱(chēng)軸公式x=﹣b2a判斷符號(hào);(3)c由拋物線與y軸的交點(diǎn)確定:交點(diǎn)在y軸正半軸,則c>1;否則c<1;(4)當(dāng)x=1時(shí),可以確定y=a+b+C的值;當(dāng)x=﹣1時(shí),可以確定y=a﹣b+c的值.11、D【解析】

根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠3=∠1,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和列式計(jì)算即可得解.【詳解】解:∵l1∥l2,∴∠3=∠1=60°,∴∠2=∠A+∠3=40°+60°=100°.故選D.【點(diǎn)睛】本題考查了平行線的性質(zhì),三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),熟記性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.12、D【解析】

先將方程左邊提公因式x,解方程即可得答案.【詳解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故選:D.【點(diǎn)睛】本題考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接開(kāi)平方法、公式法、因式分解法等,熟練掌握并靈活運(yùn)用適當(dāng)?shù)姆椒ㄊ墙忸}關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、①③⑤【解析】

①利用同角的余角相等,易得∠EAB=∠PAD,再結(jié)合已知條件利用SAS可證兩三角形全等;

②過(guò)B作BF⊥AE,交AE的延長(zhǎng)線于F,利用③中的∠BEP=90°,利用勾股定理可求BE,結(jié)合△AEP是等腰直角三角形,可證△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;

③利用①中的全等,可得∠APD=∠AEB,結(jié)合三角形的外角的性質(zhì),易得∠BEP=90°,即可證;

④連接BD,求出△ABD的面積,然后減去△BDP的面積即可;

⑤在Rt△ABF中,利用勾股定理可求AB2,即是正方形的面積.【詳解】①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,

∴∠EAB=∠PAD,

又∵AE=AP,AB=AD,

∵在△APD和△AEB中,

,

∴△APD≌△AEB(SAS);

故此選項(xiàng)成立;

③∵△APD≌△AEB,

∴∠APD=∠AEB,

∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,

∴∠BEP=∠PAE=90°,

∴EB⊥ED;

故此選項(xiàng)成立;

②過(guò)B作BF⊥AE,交AE的延長(zhǎng)線于F,

∵AE=AP,∠EAP=90°,

∴∠AEP=∠APE=45°,

又∵③中EB⊥ED,BF⊥AF,

∴∠FEB=∠FBE=45°,

又∵BE=

=

=

,

∴BF=EF=

,

故此選項(xiàng)不正確;

④如圖,連接BD,在Rt△AEP中,

∵AE=AP=1,

∴EP=

又∵PB=

,

∴BE=

∵△APD≌△AEB,

∴PD=BE=

,

∴S

△ABP+S

△ADP=S

△ABD-S

△BDP=

S

正方形ABCD-

×DP×BE=

×(4+

)-

×

×

=

+

故此選項(xiàng)不正確.

⑤∵EF=BF=

,AE=1,

∴在Rt△ABF中,AB

2=(AE+EF)

2+BF

2=4+

,

∴S

正方形ABCD=AB

2=4+

,

故此選項(xiàng)正確.

故答案為①③⑤.【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì)的運(yùn)用、正方形的性質(zhì)的運(yùn)用、正方形和三角形的面積公式的運(yùn)用、勾股定理的運(yùn)用等知識(shí).14、25a2b1.【解析】

代數(shù)式內(nèi)每項(xiàng)因式均平方即可.【詳解】解:原式=25a2b1.【點(diǎn)睛】本題考查了代數(shù)式的乘方.15、10【解析】

根據(jù)翻折的特點(diǎn)得到,.設(shè),則.在中,,即,解出x,再根據(jù)三角形的面積進(jìn)行求解.【詳解】∵翻折,∴,,又∵,∴,∴.設(shè),則.在中,,即,解得,∴,∴.【點(diǎn)睛】此題主要考查勾股定理,解題的關(guān)鍵是熟知翻折的性質(zhì)及勾股定理的應(yīng)用.16、1.【解析】

易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影長(zhǎng).【詳解】解:根據(jù)題意,易得△MBA∽△MCO,

根據(jù)相似三角形的性質(zhì)可知,即,

解得AM=1m.則小明的影長(zhǎng)為1米.

故答案是:1.【點(diǎn)睛】本題只要是把實(shí)際問(wèn)題抽象到相似三角形中,利用相似三角形的相似比可得出小明的影長(zhǎng).17、【解析】

根據(jù)隨機(jī)事件概率大小的求法,找準(zhǔn)兩點(diǎn):①符合條件的情況數(shù)目;②全部情況的總數(shù).二者的比值就是其發(fā)生的概率的大?。驹斀狻拷猓骸咴谝粋€(gè)不透明的袋子中裝有除顏色外其他均相同的3個(gè)紅球和2個(gè)白球,∴從中任意摸出一個(gè)球,則摸出白球的概率是.故答案為:.【點(diǎn)睛】本題考查概率的求法與運(yùn)用,一般方法為:如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=18、60°【解析】

先根據(jù)垂直的定義,得出∠BAD=60°,再根據(jù)平行線的性質(zhì),即可得出∠D的度數(shù).【詳解】∵DA⊥CE,∴∠DAE=90°,∵∠1=30°,∴∠BAD=60°,又∵AB∥CD,∴∠D=∠BAD=60°,故答案為60°.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)以及垂線的定義,解題時(shí)注意:兩直線平行,內(nèi)錯(cuò)角相等.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)m=3,k=12;(2)或【解析】【分析】(1)把A(m,m+1),B(m+3,m-1)代入反比例函數(shù)y=,得k=m(m+1)=(m+3)(m-1),再求解;(2)用待定系數(shù)法求一次函數(shù)解析式;(3)過(guò)點(diǎn)A作AM⊥x軸于點(diǎn)M,過(guò)點(diǎn)B作BN⊥y軸于點(diǎn)N,兩線交于點(diǎn)P.根據(jù)平行四邊形判定和勾股定理可求出M,N的坐標(biāo).【詳解】解:(1)∵點(diǎn)A(m,m+1),B(m+3,m-1)都在反比例函數(shù)y=的圖像上,∴k=xy,∴k=m(m+1)=(m+3)(m-1),∴m2+m=m2+2m-3,解得m=3,∴k=3×(3+1)=12.(2)∵m=3,∴A(3,4),B(6,2).設(shè)直線AB的函數(shù)表達(dá)式為y=k′x+b(k′≠0),則解得∴直線AB的函數(shù)表達(dá)式為y=-x+6.(3)M(3,0),N(0,2)或M(-3,0),N(0,-2).解答過(guò)程如下:過(guò)點(diǎn)A作AM⊥x軸于點(diǎn)M,過(guò)點(diǎn)B作BN⊥y軸于點(diǎn)N,兩線交于點(diǎn)P.∵由(1)知:A(3,4),B(6,2),∴AP=PM=2,BP=PN=3,∴四邊形ANMB是平行四邊形,此時(shí)M(3,0),N(0,2).當(dāng)M′(-3,0),N′(0,-2)時(shí),根據(jù)勾股定理能求出AM′=BN′,AB=M′N(xiāo)′,即四邊形AM′N(xiāo)′B是平行四邊形.故M(3,0),N(0,2)或M(-3,0),N(0,-2).【點(diǎn)睛】本題考核知識(shí)點(diǎn):反比例函數(shù)綜合.解題關(guān)鍵點(diǎn):熟記反比例函數(shù)的性質(zhì).20、(1)24,120°;(2)見(jiàn)解析;(3)1000人【解析】

(1)由建模的人數(shù)除以占的百分比,求出調(diào)查的總?cè)藬?shù)即可,再算空模人數(shù),即可知道空模所占百分比,從而算出對(duì)應(yīng)的圓心角度數(shù);(2)根據(jù)空模人數(shù)然后補(bǔ)全條形統(tǒng)計(jì)圖;(3)根據(jù)隨機(jī)取出人數(shù)獲獎(jiǎng)的人數(shù)比,即可得到結(jié)果.【詳解】解:(1)該校參加航模比賽的總?cè)藬?shù)是6÷25%=24(人),則參加空模人數(shù)為24﹣(6+4+6)=8(人),∴空模所在扇形的圓心角的度數(shù)是360°×=120°,故答案為:24,120°;(2)補(bǔ)全條形統(tǒng)計(jì)圖如下:(3)估算今年參加航模比賽的獲獎(jiǎng)人數(shù)約是2500×=1000(人).【點(diǎn)睛】此題考查了條形統(tǒng)計(jì)圖,扇形統(tǒng)計(jì)圖,以及用樣本估計(jì)總體,弄清題意是解本題的關(guān)鍵.21、(1);(2)詳見(jiàn)解析;(3)AE=.【解析】

(1)由四邊形ABCD是正方形,直角∠MPN,易證得△BOE≌△COF(ASA),則可證得S四邊形OEBF=S△BOC=S正方形ABCD;(2)易證得△OEG∽△OBE,然后由相似三角形的對(duì)應(yīng)邊成比例,證得OG?OB=OE2,再利用OB與BD的關(guān)系,OE與EF的關(guān)系,即可證得結(jié)論;(3)首先設(shè)AE=x,則BE=CF=1﹣x,BF=x,繼而表示出△BEF與△COF的面積之和,然后利用二次函數(shù)的最值問(wèn)題,求得AE的長(zhǎng).【詳解】(1)∵四邊形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∴∠BOF+∠COF=90°,∵∠EOF=90°,∴∠BOF+∠COE=90°,∴∠BOE=∠COF,在△BOE和△COF中,∴△BOE≌△COF(ASA),∴S四邊形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD(2)證明:∵∠EOG=∠BOE,∠OEG=∠OBE=45°,∴△OEG∽△OBE,∴OE:OB=OG:OE,∴OG?OB=OE2,∵∴OG?BD=EF2;(3)如圖,過(guò)點(diǎn)O作OH⊥BC,∵BC=1,∴設(shè)AE=x,則BE=CF=1﹣x,BF=x,∴S△BEF+S△COF=BE?BF+CF?OH∵∴當(dāng)時(shí),S△BEF+S△COF最大;即在旋轉(zhuǎn)過(guò)程中,當(dāng)△BEF與△COF的面積之和最大時(shí),【點(diǎn)睛】本題屬于四邊形的綜合題,主要考查了正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理以及二次函數(shù)的最值問(wèn)題.注意掌握轉(zhuǎn)化思想的應(yīng)用是解此題的關(guān)鍵.22、(1):,,,,,,,,共9種;(2)小黃要在游戲中獲勝,小黃會(huì)選擇規(guī)則1,理由見(jiàn)解析【解析】

(1)利用列舉法,列舉所有的可能情況即可;

(2)分別求出至少有一張是“6”和摸出的紅心牌點(diǎn)數(shù)是黑桃牌點(diǎn)數(shù)的整數(shù)倍時(shí)的概率,進(jìn)行選擇即可.【詳解】(1)所有可能出現(xiàn)的結(jié)果如下:,,,,,,,,共9種;(1)摸牌的所有可能結(jié)果總數(shù)為9,至少有一張是6的有5種可能,∴在規(guī)劃1中,(小黃贏);紅心牌點(diǎn)數(shù)是黑桃牌點(diǎn)數(shù)的整倍數(shù)有4種可能,∴在規(guī)劃2中,(小黃贏).∵,∴小黃要在游戲中獲勝,小黃會(huì)選擇規(guī)則1.【點(diǎn)睛】考查列舉法以及概率的計(jì)算,明確概率的意義是解題的關(guān)鍵,概率等于所求情況數(shù)與總情況數(shù)的比.23、(1)乙種水果的車(chē)有2輛、丙種水果的汽車(chē)有6輛;(2)乙種水果的汽車(chē)是(m﹣12)輛,丙種水果的汽車(chē)是(32﹣2m)輛;(3)見(jiàn)解析.【解析】

(1)根據(jù)“8輛汽車(chē)裝運(yùn)乙、丙兩種水果共22噸到A地銷(xiāo)售”列出方程組,即可解答;(2)設(shè)裝運(yùn)乙、丙水果的車(chē)分別為a輛,b輛,列出方程組即可解答;(3)設(shè)總利潤(rùn)為w千元,表示出w=10m+1.列出不等式組確定m的取值范圍13≤m≤15.5,結(jié)合一次函數(shù)的性質(zhì),即可解答.【詳解】解:(1)設(shè)裝運(yùn)乙、丙水果的車(chē)分別為x輛,y輛,得:解得:答:裝運(yùn)乙種水果的車(chē)有2輛、丙種水果的汽車(chē)有6輛.(2)設(shè)裝運(yùn)乙、丙水果的車(chē)分別為a輛,b輛,得:,解得:答:裝運(yùn)乙種水果的汽車(chē)是(m﹣12)輛,丙種水果的汽車(chē)是(32﹣2m)輛.(3)設(shè)總利潤(rùn)為w千元,w=5×4m+7×2(m﹣12)+4×3(32﹣2m)=10m+1.∵∴13≤m≤15.5,∵m為正整數(shù),∴m=13,14,15,在w=10m+1中,w隨m的增大而增大,∴當(dāng)m=15時(shí),W最大=366(千元),答:當(dāng)運(yùn)甲水果的車(chē)15輛,運(yùn)乙水果的車(chē)3輛,運(yùn)丙水果的車(chē)2輛,利潤(rùn)最大,最大利潤(rùn)為366千元.【點(diǎn)睛】此題主要考查了一次函數(shù)的應(yīng)用,解決本題的關(guān)鍵是運(yùn)用函數(shù)性質(zhì)求最值,需確定自變量的取值范圍.24、(1)m≥﹣34;(2)m【解析】

(1)根據(jù)方程有兩個(gè)相等的實(shí)數(shù)根可知△>1,求出m

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論