2024屆湖北省黃石市中考二模數(shù)學(xué)試題含解析_第1頁(yè)
2024屆湖北省黃石市中考二模數(shù)學(xué)試題含解析_第2頁(yè)
2024屆湖北省黃石市中考二模數(shù)學(xué)試題含解析_第3頁(yè)
2024屆湖北省黃石市中考二模數(shù)學(xué)試題含解析_第4頁(yè)
2024屆湖北省黃石市中考二模數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆湖北省黃石市中考二模數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿(mǎn)、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線(xiàn)條、符號(hào)等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.氣象臺(tái)預(yù)報(bào)“本市明天下雨的概率是85%”,對(duì)此信息,下列說(shuō)法正確的是()A.本市明天將有的地區(qū)下雨 B.本市明天將有的時(shí)間下雨C.本市明天下雨的可能性比較大 D.本市明天肯定下雨2.如圖,在△ABC中,∠C=90°,將△ABC沿直線(xiàn)MN翻折后,頂點(diǎn)C恰好落在AB邊上的點(diǎn)D處,已知MN∥AB,MC=6,NC=,則四邊形MABN的面積是()A. B. C. D.3.在平面直角坐標(biāo)系中,點(diǎn)P(m﹣3,2﹣m)不可能在()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限4.不等式組的解集在數(shù)軸上表示正確的是()A. B. C. D.5.二次函數(shù)y=ax2+c的圖象如圖所示,正比例函數(shù)y=ax與反比例函數(shù)y=在同一坐標(biāo)系中的圖象可能是()A. B. C. D.6.在一次男子馬拉松長(zhǎng)跑比賽中,隨機(jī)抽取了10名選手,記錄他們的成績(jī)(所用的時(shí)間)如下:選手12345678910時(shí)間(min)129136140145146148154158165175由此所得的以下推斷不正確的是()A.這組樣本數(shù)據(jù)的平均數(shù)超過(guò)130B.這組樣本數(shù)據(jù)的中位數(shù)是147C.在這次比賽中,估計(jì)成績(jī)?yōu)?30min的選手的成績(jī)會(huì)比平均成績(jī)差D.在這次比賽中,估計(jì)成績(jī)?yōu)?42min的選手,會(huì)比一半以上的選手成績(jī)要好7.下列關(guān)于x的方程中一定沒(méi)有實(shí)數(shù)根的是()A. B. C. D.8.如圖,△ABC中,AB=2,AC=3,1<BC<5,分別以AB、BC、AC為邊向外作正方形ABIH、BCDE和正方形ACFG,則圖中陰影部分的最大面積為()A.6 B.9 C.11 D.無(wú)法計(jì)算9.李老師為了了解學(xué)生暑期在家的閱讀情況,隨機(jī)調(diào)查了20名學(xué)生某一天的閱讀小時(shí)數(shù),具體情況統(tǒng)計(jì)如下:閱讀時(shí)間(小時(shí))22.533.54學(xué)生人數(shù)(名)12863則關(guān)于這20名學(xué)生閱讀小時(shí)數(shù)的說(shuō)法正確的是()A.眾數(shù)是8 B.中位數(shù)是3C.平均數(shù)是3 D.方差是0.3410.空氣的密度為0.00129g/cm3,0.00129這個(gè)數(shù)用科學(xué)記數(shù)法可表示為()A.0.129×10﹣2 B.1.29×10﹣2 C.1.29×10﹣3 D.12.9×10﹣1二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.的相反數(shù)是_____.12.計(jì)算(5ab3)2的結(jié)果等于_____.13.若二次函數(shù)y=-x2-4x+k的最大值是9,則k=______.14.如圖,已知AB∥CD,=____________15.如圖,10塊相同的小長(zhǎng)方形墻磚拼成一個(gè)大長(zhǎng)方形,設(shè)小長(zhǎng)方形墻磚的長(zhǎng)和寬分別為x厘米和y厘米,則列出的方程組為_(kāi)____.16.如圖,在平面直角坐標(biāo)系中,經(jīng)過(guò)點(diǎn)A的雙曲線(xiàn)y=(x>0)同時(shí)經(jīng)過(guò)點(diǎn)B,且點(diǎn)A在點(diǎn)B的左側(cè),點(diǎn)A的橫坐標(biāo)為1,∠AOB=∠OBA=45°,則k的值為_(kāi)______.三、解答題(共8題,共72分)17.(8分)解方程:1+18.(8分)已知AB是⊙O的直徑,弦CD⊥AB于H,過(guò)CD延長(zhǎng)線(xiàn)上一點(diǎn)E作⊙O的切線(xiàn)交AB的延長(zhǎng)線(xiàn)于F,切點(diǎn)為G,連接AG交CD于K.(1)如圖1,求證:KE=GE;(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;(3)如圖3,在(2)的條件下,連接CG交AB于點(diǎn)N,若sinE=,AK=,求CN的長(zhǎng).19.(8分)已知一次函數(shù)y=x+1與拋物線(xiàn)y=x2+bx+c交A(m,9),B(0,1)兩點(diǎn),點(diǎn)C在拋物線(xiàn)上且橫坐標(biāo)為1.(1)寫(xiě)出拋物線(xiàn)的函數(shù)表達(dá)式;(2)判斷△ABC的形狀,并證明你的結(jié)論;(3)平面內(nèi)是否存在點(diǎn)Q在直線(xiàn)AB、BC、AC距離相等,如果存在,請(qǐng)直接寫(xiě)出所有符合條件的Q的坐標(biāo),如果不存在,說(shuō)說(shuō)你的理由.20.(8分)如圖,已知△ABC為等邊三角形,點(diǎn)D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點(diǎn)F.求證:△ABE≌△CAD;求∠BFD的度數(shù).21.(8分)如圖,在平面直角坐標(biāo)系中,四邊形的頂點(diǎn)是坐標(biāo)原點(diǎn),點(diǎn)在第一象限,點(diǎn)在第四象限,點(diǎn)在軸的正半軸上,且.(1)求點(diǎn)和點(diǎn)的坐標(biāo);(2)點(diǎn)是線(xiàn)段上的一個(gè)動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)重合),以每秒個(gè)單位的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng),過(guò)點(diǎn)的直線(xiàn)與軸平行,直線(xiàn)交邊或邊于點(diǎn),交邊或邊于點(diǎn),設(shè)點(diǎn).運(yùn)動(dòng)時(shí)間為,線(xiàn)段的長(zhǎng)度為,已知時(shí),直線(xiàn)恰好過(guò)點(diǎn).①當(dāng)時(shí),求關(guān)于的函數(shù)關(guān)系式;②點(diǎn)出發(fā)時(shí)點(diǎn)也從點(diǎn)出發(fā),以每秒個(gè)單位的速度向點(diǎn)運(yùn)動(dòng),點(diǎn)停止時(shí)點(diǎn)也停止.設(shè)的面積為,求與的函數(shù)關(guān)系式;③直接寫(xiě)出②中的最大值是.22.(10分)“校園安全”受到全社會(huì)的廣泛關(guān)注,某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:(1)接受問(wèn)卷調(diào)查的學(xué)生共有人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為度;(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;(3)若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù).23.(12分)如圖,點(diǎn)A(m,m+1),B(m+1,2m-3)都在反比例函數(shù)的圖象上.(1)求m,k的值;(2)如果M為x軸上一點(diǎn),N為y軸上一點(diǎn),以點(diǎn)A,B,M,N為頂點(diǎn)的四邊形是平行四邊形,試求直線(xiàn)MN的函數(shù)表達(dá)式.24.如圖,在方格紙中.(1)請(qǐng)?jiān)诜礁窦埳辖⑵矫嬷苯亲鴺?biāo)系,使,,并求出點(diǎn)坐標(biāo);(2)以原點(diǎn)為位似中心,相似比為2,在第一象限內(nèi)將放大,畫(huà)出放大后的圖形;(3)計(jì)算的面積.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題解析:根據(jù)概率表示某事情發(fā)生的可能性的大小,分析可得:A、明天降水的可能性為85%,并不是有85%的地區(qū)降水,錯(cuò)誤;B、本市明天將有85%的時(shí)間降水,錯(cuò)誤;C、明天降水的可能性為90%,說(shuō)明明天降水的可能性比較大,正確;D、明天肯定下雨,錯(cuò)誤.故選C.考點(diǎn):概率的意義.2、C【解析】連接CD,交MN于E,∵將△ABC沿直線(xiàn)MN翻折后,頂點(diǎn)C恰好落在AB邊上的點(diǎn)D處,∴MN⊥CD,且CE=DE.∴CD=2CE.∵M(jìn)N∥AB,∴CD⊥AB.∴△CMN∽△CAB.∴.∵在△CMN中,∠C=90°,MC=6,NC=,∴∴.∴.故選C.3、A【解析】

分點(diǎn)P的橫坐標(biāo)是正數(shù)和負(fù)數(shù)兩種情況討論求解.【詳解】①m-3>0,即m>3時(shí),2-m<0,所以,點(diǎn)P(m-3,2-m)在第四象限;②m-3<0,即m<3時(shí),2-m有可能大于0,也有可能小于0,點(diǎn)P(m-3,2-m)可以在第二或三象限,綜上所述,點(diǎn)P不可能在第一象限.故選A.【點(diǎn)睛】本題考查了各象限內(nèi)點(diǎn)的坐標(biāo)的符號(hào)特征,記住各象限內(nèi)點(diǎn)的坐標(biāo)的符號(hào)是解決的關(guān)鍵,四個(gè)象限的符號(hào)特點(diǎn)分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4、A【解析】分析:分別求出各不等式的解集,再求出其公共解集并在數(shù)軸上表示出來(lái),選出符合條件的選項(xiàng)即可.詳解:由①得,x≤1,由②得,x>-1,故此不等式組的解集為:-1<x≤1.在數(shù)軸上表示為:故選A.點(diǎn)睛:本題考查的是在數(shù)軸上表示一元一此不等式組的解集,把每個(gè)不等式的解集在數(shù)軸上表示出來(lái)(>,≥向右畫(huà);<,≤向左畫(huà)),數(shù)軸上的點(diǎn)把數(shù)軸分成若干段,如果數(shù)軸的某一段上面表示解集的線(xiàn)的條數(shù)與不等式的個(gè)數(shù)一樣,那么這段就是不等式組的解集.有幾個(gè)就要幾個(gè).在表示解集時(shí)“≥”,“≤”要用實(shí)心圓點(diǎn)表示;“<”,“>”要用空心圓點(diǎn)表示.5、C【解析】

根據(jù)二次函數(shù)圖像位置確定a0,c0,即可確定正比例函數(shù)和反比例函數(shù)圖像位置.【詳解】解:由二次函數(shù)的圖像可知a0,c0,∴正比例函數(shù)過(guò)二四象限,反比例函數(shù)過(guò)一三象限.故選C.【點(diǎn)睛】本題考查了函數(shù)圖像的性質(zhì),屬于簡(jiǎn)單題,熟悉系數(shù)與函數(shù)圖像的關(guān)系是解題關(guān)鍵.6、C【解析】分析:要求平均數(shù)只要求出數(shù)據(jù)之和再除以總個(gè)數(shù)即可;對(duì)于中位數(shù),因圖中是按從小到大的順序排列的,所以只要找出最中間的一個(gè)數(shù)(或最中間的兩個(gè)數(shù))即可求解.詳解:平均數(shù)=(129+136+140+145+146+148+154+158+165+175)÷10=149.6(min),故這組樣本數(shù)據(jù)的平均數(shù)超過(guò)130,A正確,C錯(cuò)誤;因?yàn)楸碇惺前磸男〉酱蟮捻樞蚺帕械?,一?0名選手,中位數(shù)為第五位和第六位的平均數(shù),故中位數(shù)是(146+148)÷2=147(min),故B正確,D正確.故選C.點(diǎn)睛:本題考查的是平均數(shù)和中位數(shù)的定義.要注意,當(dāng)所給數(shù)據(jù)有單位時(shí),所求得的平均數(shù)和中位數(shù)與原數(shù)據(jù)的單位相同,不要漏單位.7、B【解析】

根據(jù)根的判別式的概念,求出△的正負(fù)即可解題.【詳解】解:A.x2-x-1=0,△=1+4=50,∴原方程有兩個(gè)不相等的實(shí)數(shù)根,B.,△=36-144=-1080,∴原方程沒(méi)有實(shí)數(shù)根,C.,,△=10,∴原方程有兩個(gè)不相等的實(shí)數(shù)根,D.,△=m2+80,∴原方程有兩個(gè)不相等的實(shí)數(shù)根,故選B.【點(diǎn)睛】本題考查了根的判別式,屬于簡(jiǎn)單題,熟悉根的判別式的概念是解題關(guān)鍵.8、B【解析】

有旋轉(zhuǎn)的性質(zhì)得到CB=BE=BH′,推出C、B、H'在一直線(xiàn)上,且AB為△ACH'的中線(xiàn),得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當(dāng)∠BAC=90°時(shí),S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到陰影部分面積之和為S△ABC的3倍,于是得到結(jié)論.【詳解】把△IBE繞B順時(shí)針旋轉(zhuǎn)90°,使BI與AB重合,E旋轉(zhuǎn)到H'的位置,∵四邊形BCDE為正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直線(xiàn)上,且AB為△ACH'的中線(xiàn),∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當(dāng)∠BAC=90°時(shí),S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以陰影部分面積之和為S△ABC的3倍,又∵AB=2,AC=3,∴圖中陰影部分的最大面積為3××2×3=9,故選B.【點(diǎn)睛】本題考查了勾股定理,利用了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后圖形全等得出圖中陰影部分的最大面積是S△ABC的3倍是解題的關(guān)鍵.9、B【解析】

A、根據(jù)眾數(shù)的定義找出出現(xiàn)次數(shù)最多的數(shù);B、根據(jù)中位數(shù)的定義將這組數(shù)據(jù)從小到大重新排列,求出最中間的2個(gè)數(shù)的平均數(shù),即可得出中位數(shù);C、根據(jù)加權(quán)平均數(shù)公式代入計(jì)算可得;D、根據(jù)方差公式計(jì)算即可.【詳解】解:A、由統(tǒng)計(jì)表得:眾數(shù)為3,不是8,所以此選項(xiàng)不正確;B、隨機(jī)調(diào)查了20名學(xué)生,所以中位數(shù)是第10個(gè)和第11個(gè)學(xué)生的閱讀小時(shí)數(shù),都是3,故中位數(shù)是3,所以此選項(xiàng)正確;C、平均數(shù)=,所以此選項(xiàng)不正確;D、S2=×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]==0.2825,所以此選項(xiàng)不正確;故選B.【點(diǎn)睛】本題考查方差;加權(quán)平均數(shù);中位數(shù);眾數(shù).10、C【解析】試題分析:0.00129這個(gè)數(shù)用科學(xué)記數(shù)法可表示為1.29×10﹣1.故選C.考點(diǎn):科學(xué)記數(shù)法—表示較小的數(shù).二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】

根據(jù)只有符號(hào)不同的兩個(gè)數(shù)互為相反數(shù),可得答案.【詳解】的相反數(shù)是?.故答案為?.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是相反數(shù),解題的關(guān)鍵是熟練的掌握相反數(shù).12、25a2b1.【解析】

代數(shù)式內(nèi)每項(xiàng)因式均平方即可.【詳解】解:原式=25a2b1.【點(diǎn)睛】本題考查了代數(shù)式的乘方.13、5【解析】y=?(x?2)2+4+k,∵二次函數(shù)y=?x2?4x+k的最大值是9,∴4+k=9,解得:k=5,故答案為:5.14、85°.【解析】如圖,過(guò)F作EF∥AB,而AB∥CD,∴AB∥CD∥EF,∴∠ABF+∠BFE=180°,∠EFC=∠C,∴∠α=180°?∠ABF+∠C=180°?120°+25°=85°故答案為85°.15、【解析】

根據(jù)圖示可得:長(zhǎng)方形的長(zhǎng)可以表示為x+2y,長(zhǎng)又是75厘米,故x+2y=75,長(zhǎng)方形的寬可以表示為2x,或x+3y,故2x=3y+x,整理得x=3y,聯(lián)立兩個(gè)方程即可.【詳解】根據(jù)圖示可得,故答案是:.【點(diǎn)睛】此題主要考查了由實(shí)際問(wèn)題抽象出二元一次方程組,關(guān)鍵是看懂圖示,分別表示出長(zhǎng)方形的長(zhǎng)和寬.16、【解析】

分析:過(guò)A作AM⊥y軸于M,過(guò)B作BD選擇x軸于D,直線(xiàn)BD與AM交于點(diǎn)N,則OD=MN,DN=OM,∠AMO=∠BNA=90°,由等腰三角形的判定與性質(zhì)得出OA=BA,∠OAB=90°,證出∠AOM=∠BAN,由AAS證明△AOM≌△BAN,得出AM=BN=1,OM=AN=k,求出B(1+k,k﹣1),得出方程(1+k)?(k﹣1)=k,解方程即可.詳解:如圖所示,過(guò)A作AM⊥y軸于M,過(guò)B作BD選擇x軸于D,直線(xiàn)BD與AM交于點(diǎn)N,則OD=MN,DN=OM,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠OBA=45°,∴OA=BA,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN,∴△AOM≌△BAN,∴AM=BN=1,OM=AN=k,∴OD=1+k,BD=OM﹣BN=k﹣1∴B(1+k,k﹣1),∵雙曲線(xiàn)y=(x>0)經(jīng)過(guò)點(diǎn)B,∴(1+k)?(k﹣1)=k,整理得:k2﹣k﹣1=0,解得:k=(負(fù)值已舍去),故答案為.點(diǎn)睛:本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,坐標(biāo)與圖形的性質(zhì),全等三角形的判定與性質(zhì),等腰三角形的判定與性質(zhì)等知識(shí).解決問(wèn)題的關(guān)鍵是作輔助線(xiàn)構(gòu)造全等三角形.【詳解】請(qǐng)?jiān)诖溯斎朐斀?!三、解答題(共8題,共72分)17、無(wú)解.【解析】

兩邊都乘以x(x-3),去分母,化為整式方程求解即可.【詳解】解:去分母得:x2﹣3x﹣x2=3x﹣18,解得:x=3,經(jīng)檢驗(yàn)x=3是增根,分式方程無(wú)解.【點(diǎn)睛】題考查了分式方程的解法,其基本思路是把方程的兩邊都乘以各分母的最簡(jiǎn)公分母,化為整式方程求解,求出x的值后不要忘記檢驗(yàn).18、(1)證明見(jiàn)解析;(2)△EAD是等腰三角形.證明見(jiàn)解析;(3).【解析】試題分析:(1)連接OG,則由已知易得∠OGE=∠AHK=90°,由OG=OA可得∠AGO=∠OAG,從而可得∠KGE=∠AKH=∠EKG,這樣即可得到KE=GE;(2)設(shè)∠FGB=α,由AB是直徑可得∠AGB=90°,從而可得∠KGE=90°-α,結(jié)合GE=KE可得∠EKG=90°-α,這樣在△GKE中可得∠E=2α,由∠FGB=∠ACH可得∠ACH=2α,這樣可得∠E=∠ACH,由此即可得到CA∥EF;(3)如下圖2,作NP⊥AC于P,由(2)可知∠ACH=∠E,由此可得sinE=sin∠ACH=,設(shè)AH=3a,可得AC=5a,CH=4a,則tan∠CAH=,由(2)中結(jié)論易得∠CAK=∠EGK=∠EKG=∠AKC,從而可得CK=AC=5a,由此可得HK=a,tan∠AKH=,AK=a,結(jié)合AK=可得a=1,則AC=5;在四邊形BGKH中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,結(jié)合∠AKH+∠GKG=180°,∠ACG=∠ABG可得∠ACG=∠AKH,在Rt△APN中,由tan∠CAH=,可設(shè)PN=12b,AP=9b,由tan∠ACG=tan∠AKH=3可得CP=4b,由此可得AC=AP+CP==5,則可得b=,由此即可在Rt△CPN中由勾股定理解出CN的長(zhǎng).試題解析:(1)如圖1,連接OG.∵EF切⊙O于G,∴OG⊥EF,∴∠AGO+∠AGE=90°,∵CD⊥AB于H,∴∠AHD=90°,∴∠OAG=∠AKH=90°,∵OA=OG,∴∠AGO=∠OAG,∴∠AGE=∠AKH,∵∠EKG=∠AKH,∴∠EKG=∠AGE,∴KE=GE.(2)設(shè)∠FGB=α,∵AB是直徑,∴∠AGB=90°,∴∠AGE=∠EKG=90°﹣α,∴∠E=180°﹣∠AGE﹣∠EKG=2α,∵∠FGB=∠ACH,∴∠ACH=2α,∴∠ACH=∠E,∴CA∥FE.(3)作NP⊥AC于P.∵∠ACH=∠E,∴sin∠E=sin∠ACH=,設(shè)AH=3a,AC=5a,則CH=,tan∠CAH=,∵CA∥FE,∴∠CAK=∠AGE,∵∠AGE=∠AKH,∴∠CAK=∠AKH,∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH==3,AK=,∵AK=,∴,∴a=1.AC=5,∵∠BHD=∠AGB=90°,∴∠BHD+∠AGB=180°,在四邊形BGKH中,∠BHD+∠HKG+∠AGB+∠ABG=360°,∴∠ABG+∠HKG=180°,∵∠AKH+∠HKG=180°,∴∠AKH=∠ABG,∵∠ACN=∠ABG,∴∠AKH=∠ACN,∴tan∠AKH=tan∠ACN=3,∵NP⊥AC于P,∴∠APN=∠CPN=90°,在Rt△APN中,tan∠CAH=,設(shè)PN=12b,則AP=9b,在Rt△CPN中,tan∠ACN==3,∴CP=4b,∴AC=AP+CP=13b,∵AC=5,∴13b=5,∴b=,∴CN===.19、(1)y=x2﹣7x+1;(2)△ABC為直角三角形.理由見(jiàn)解析;(3)符合條件的Q的坐標(biāo)為(4,1),(24,1),(0,﹣7),(0,13).【解析】

(1)先利用一次函數(shù)解析式得到A(8,9),然后利用待定系數(shù)法求拋物線(xiàn)解析式;(2)先利用拋物線(xiàn)解析式確定C(1,﹣5),作AM⊥y軸于M,CN⊥y軸于N,如圖,證明△ABM和△BNC都是等腰直角三角形得到∠MBA=45°,∠NBC=45°,AB=8,BN=1,從而得到∠ABC=90°,所以△ABC為直角三角形;(3)利用勾股定理計(jì)算出AC=10,根據(jù)直角三角形內(nèi)切圓半徑的計(jì)算公式得到Rt△ABC的內(nèi)切圓的半徑=2,設(shè)△ABC的內(nèi)心為I,過(guò)A作AI的垂線(xiàn)交直線(xiàn)BI于P,交y軸于Q,AI交y軸于G,如圖,則AI、BI為角平分線(xiàn),BI⊥y軸,PQ為△ABC的外角平分線(xiàn),易得y軸為△ABC的外角平分線(xiàn),根據(jù)角平分線(xiàn)的性質(zhì)可判斷點(diǎn)P、I、Q、G到直線(xiàn)AB、BC、AC距離相等,由于BI=×2=4,則I(4,1),接著利用待定系數(shù)法求出直線(xiàn)AI的解析式為y=2x﹣7,直線(xiàn)AP的解析式為y=﹣x+13,然后分別求出P、Q、G的坐標(biāo)即可.【詳解】解:(1)把A(m,9)代入y=x+1得m+1=9,解得m=8,則A(8,9),把A(8,9),B(0,1)代入y=x2+bx+c得,解得,∴拋物線(xiàn)解析式為y=x2﹣7x+1;故答案為y=x2﹣7x+1;(2)△ABC為直角三角形.理由如下:當(dāng)x=1時(shí),y=x2﹣7x+1=31﹣42+1=﹣5,則C(1,﹣5),作AM⊥y軸于M,CN⊥y軸于N,如圖,∵B(0,1),A(8,9),C(1,﹣5),∴BM=AM=8,BN=CN=1,∴△ABM和△BNC都是等腰直角三角形,∴∠MBA=45°,∠NBC=45°,AB=8,BN=1,∴∠ABC=90°,∴△ABC為直角三角形;(3)∵AB=8,BN=1,∴AC=10,∴Rt△ABC的內(nèi)切圓的半徑=,設(shè)△ABC的內(nèi)心為I,過(guò)A作AI的垂線(xiàn)交直線(xiàn)BI于P,交y軸于Q,AI交y軸于G,如圖,∵I為△ABC的內(nèi)心,∴AI、BI為角平分線(xiàn),∴BI⊥y軸,而AI⊥PQ,∴PQ為△ABC的外角平分線(xiàn),易得y軸為△ABC的外角平分線(xiàn),∴點(diǎn)I、P、Q、G為△ABC的內(nèi)角平分線(xiàn)或外角平分線(xiàn)的交點(diǎn),它們到直線(xiàn)AB、BC、AC距離相等,BI=×2=4,而B(niǎo)I⊥y軸,∴I(4,1),設(shè)直線(xiàn)AI的解析式為y=kx+n,則,解得,∴直線(xiàn)AI的解析式為y=2x﹣7,當(dāng)x=0時(shí),y=2x﹣7=﹣7,則G(0,﹣7);設(shè)直線(xiàn)AP的解析式為y=﹣x+p,把A(8,9)代入得﹣4+n=9,解得n=13,∴直線(xiàn)AP的解析式為y=﹣x+13,當(dāng)y=1時(shí),﹣x+13=1,則P(24,1)當(dāng)x=0時(shí),y=﹣x+13=13,則Q(0,13),綜上所述,符合條件的Q的坐標(biāo)為(4,1),(24,1),(0,﹣7),(0,13).【點(diǎn)睛】本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、角平分線(xiàn)的性質(zhì)和三角形內(nèi)心的性質(zhì);會(huì)利用待定系數(shù)法求函數(shù)解析式;理解坐標(biāo)與圖形性質(zhì)是解題的關(guān)鍵.20、(1)證明見(jiàn)解析;(2).【解析】試題分析:(1)根據(jù)等邊三角形的性質(zhì)根據(jù)SAS即可證明△ABE≌△CAD;(2)由三角形全等可以得出∠ABE=∠CAD,由外角與內(nèi)角的關(guān)系就可以得出結(jié)論.試題解析:(1)∵△ABC為等邊三角形,∴AB=BC=AC,∠ABC=∠ACB=∠BAC=60°.在△ABE和△CAD中,AB=CA,∠BAC=∠C,AE=CD,∴△ABE≌△CAD(SAS),(2)∵△ABE≌△CAD,∴∠ABE=∠CAD,∵∠BAD+∠CAD=60°,∴∠BAD+∠EBA=60°,∵∠BFD=∠ABE+∠BAD,∴∠BFD=60°.21、(1);(2)①;②當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;③.【解析】

(1)根據(jù)等腰直角三角形的性質(zhì)即可解決問(wèn)題;(2)首先求出直線(xiàn)OA、AB、OC、BC的解析式.①求出R、Q的坐標(biāo),利用兩點(diǎn)間距離公式即可解決問(wèn)題;②分三種情形分別求解即可解決問(wèn)題;③利用②中的函數(shù),利用配方法求出最值即可;【詳解】解:(1)由題意是等腰直角三角形,(2),線(xiàn)直的解析式為,直線(xiàn)的解析式時(shí),直線(xiàn)恰好過(guò)點(diǎn).,直線(xiàn)的解析式為,直線(xiàn)的解析式為①當(dāng)時(shí),,②當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),③當(dāng)時(shí),,時(shí),的最大值為.當(dāng)時(shí),.時(shí),的值最大,最大值為.當(dāng)時(shí),,時(shí),的最大值為,綜上所述,最大值為故答案為.【點(diǎn)睛】本題考查四邊形綜合題、一次函數(shù)的應(yīng)用、二次函數(shù)的應(yīng)用、等腰直角三角形的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)構(gòu)建一次函數(shù)或二次函數(shù)解決實(shí)際問(wèn)題,屬于中考?jí)狠S題.22、(1)60,90;(2)見(jiàn)解析;(3)300人【解析】

(1)由了解很少的有30人,占50%,可求得接受問(wèn)卷調(diào)查的學(xué)生數(shù),繼而求得扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角;(2)由(1)可求得了解的人數(shù),繼而補(bǔ)全條形統(tǒng)計(jì)圖;(3)利用樣本估計(jì)總體的方法,即可求得答案.【詳解】解:(1)∵了解很少的有30人,占50%,∴接受問(wèn)卷調(diào)查的學(xué)生共有:30÷50%=60(人);∴扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論