版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆湖南省株洲市中考數學最后一模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.對于反比例函數,下列說法不正確的是()A.點(﹣2,﹣1)在它的圖象上 B.它的圖象在第一、三象限C.當x>0時,y隨x的增大而增大 D.當x<0時,y隨x的增大而減小2.在△ABC中,∠C=90°,,那么∠B的度數為()A.60° B.45° C.30° D.30°或60°3.如圖,點A,B,C在⊙O上,∠ACB=30°,⊙O的半徑為6,則的長等于()A.π B.2π C.3π D.4π4.在△ABC中,點D、E分別在邊AB、AC上,如果AD=1,BD=3,那么由下列條件能夠判斷DE∥BC的是()A. B. C. D.5.的相反數是()A. B.﹣ C.﹣ D.6.如圖,將△ABC繞點B順時針旋轉60°得△DBE,點C的對應點E給好落在AB的延長線上,連接AD,下列結論不一定正確的是()A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE7.已知一個布袋里裝有2個紅球,3個白球和a個黃球,這些球除顏色外其余都相同.若從該布袋里任意摸出1個球,是紅球的概率為,則a等于()A. B. C. D.8.tan45°的值等于()A. B. C. D.19.如圖,A,B是半徑為1的⊙O上兩點,且OA⊥OB.點P從A出發(fā),在⊙O上以每秒一個單位長度的速度勻速運動,回到點A運動結束.設運動時間為x,弦BP的長度為y,那么下面圖象中可能表示y與x的函數關系的是A.① B.④ C.②或④ D.①或③10.有m輛客車及n個人,若每輛客車乘40人,則還有10人不能上車,若每輛客車乘43人,則只有1人不能上車,有下列四個等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正確的是()A.①② B.②④ C.②③ D.③④11.如圖直線y=mx與雙曲線y=交于點A、B,過A作AM⊥x軸于M點,連接BM,若S△AMB=2,則k的值是()A.1 B.2 C.3 D.412.如圖,數軸A、B上兩點分別對應實數a、b,則下列結論正確的是()A.a+b>0 B.ab>0 C.1a+二、填空題:(本大題共6個小題,每小題4分,共24分.)13.一個圓錐的母線長15CM.高為9CM.則側面展開圖的圓心角________。14.25位同學10秒鐘跳繩的成績匯總如下表:人數1234510次么跳繩次數的中位數是_____________.15.觀察下列的“蜂窩圖”按照它呈現的規(guī)律第n個圖案中的“”的個數是_____(用含n的代數式表示)16.拋物線y=﹣x2+bx+c的部分圖象如圖所示,則關于x的一元二次方程﹣x2+bx+c=0的解為_____.17.已知一組數據-3,x,-2,3,1,6的眾數為3,則這組數據的中位數為______.18.如果一個三角形兩邊為3cm,7cm,且第三邊為奇數,則三角形的周長是_________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知點B、E、C、F在一條直線上,AB=DF,AC=DE,∠A=∠D求證:AC∥DE;若BF=13,EC=5,求BC的長.20.(6分)如圖,己知AB是⊙C的直徑,C為圓上一點,D是BC的中點,CH⊥AB于H,垂足為H,連OD交弦BC于E,交CH于F,聯結EH.(1)求證:△BHE∽△BCO.(2)若OC=4,BH=1,求21.(6分)如圖(1),已知點G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點E,GF⊥CD,垂足為點F.(1)證明與推斷:①求證:四邊形CEGF是正方形;②推斷:的值為:(2)探究與證明:將正方形CEGF繞點C順時針方向旋轉α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數量關系,并說明理由:(3)拓展與運用:正方形CEGF在旋轉過程中,當B,E,F三點在一條直線上時,如圖(3)所示,延長CG交AD于點H.若AG=6,GH=2,則BC=.22.(8分)如圖拋物線y=ax2+bx,過點A(4,0)和點B(6,2),四邊形OCBA是平行四邊形,點M(t,0)為x軸正半軸上的點,點N為射線AB上的點,且AN=OM,點D為拋物線的頂點.(1)求拋物線的解析式,并直接寫出點D的坐標;(2)當△AMN的周長最小時,求t的值;(3)如圖②,過點M作ME⊥x軸,交拋物線y=ax2+bx于點E,連接EM,AE,當△AME與△DOC相似時.請直接寫出所有符合條件的點M坐標.23.(8分)(1)計算:﹣2sin45°+(2﹣π)0﹣()﹣1;(2)先化簡,再求值?(a2﹣b2),其中a=,b=﹣2.24.(10分)全民學習、終身學習是學習型社會的核心內容,努力建設學習型家庭也是一個重要組成部分.為了解“學習型家庭”情況,對部分家庭五月份的平均每天看書學習時間進行了一次抽樣調查,并根據收集的數據繪制了下面兩幅不完整的統(tǒng)計圖,請根據圖中提供的信息,解答下列問題:本次抽樣調查了個家庭;將圖①中的條形圖補充完整;學習時間在2~2.5小時的部分對應的扇形圓心角的度數是度;若該社區(qū)有家庭有3000個,請你估計該社區(qū)學習時間不少于1小時的約有多少個家庭?25.(10分)先化簡代數式,再從范圍內選取一個合適的整數作為的值代入求值。26.(12分)如圖,在由邊長為1個單位長度的小正方形組成的10×10網格中,已知點O,A,B均為網格線的交點.在給定的網格中,以點O為位似中心,將線段AB放大為原來的2倍,得到線段(點A,B的對應點分別為).畫出線段;將線段繞點逆時針旋轉90°得到線段.畫出線段;以為頂點的四邊形的面積是個平方單位.27.(12分)如圖,在矩形ABCD中,點F在邊BC上,且AF=AD,過點D作DE⊥AF,垂足為點E.求證:DE=AB;以D為圓心,DE為半徑作圓弧交AD于點G,若BF=FC=1,試求EG的長.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
由題意分析可知,一個點在函數圖像上則代入該點必定滿足該函數解析式,點(-2,-1)代入可得,x=-2時,y=-1,所以該點在函數圖象上,A正確;因為2大于0所以該函數圖象在第一,三象限,所以B正確;C中,因為2大于0,所以該函數在x>0時,y隨x的增大而減小,所以C錯誤;D中,當x<0時,y隨x的增大而減小,正確,故選C.考點:反比例函數【點睛】本題屬于對反比例函數的基本性質以及反比例函數的在各個象限單調性的變化2、C【解析】
根據特殊角的三角函數值可知∠A=60°,再根據直角三角形中兩銳角互余求出∠B的值即可.【詳解】解:∵,∴∠A=60°.∵∠C=90°,∴∠B=90°-60°=30°.點睛:本題考查了特殊角的三角函數值和直角三角形中兩銳角互余的性質,熟記特殊角的三角函數值是解答本題的突破點.3、B【解析】
根據圓周角得出∠AOB=60°,進而利用弧長公式解答即可.【詳解】解:∵∠ACB=30°,∴∠AOB=60°,∴的長==2π,故選B.【點睛】此題考查弧長的計算,關鍵是根據圓周角得出∠AOB=60°.4、D【解析】
如圖,∵AD=1,BD=3,∴,當時,,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,而根據選項A、B、C的條件都不能推出DE∥BC,故選D.5、B【解析】
一個數的相反數就是在這個數前面添上“﹣”號,由此即可求解.【詳解】解:的相反數是﹣.故選:B.【點睛】本題考查了相反數的意義,一個數的相反數就是在這個數前面添上“﹣”號:一個正數的相反數是負數,一個負數的相反數是正數,1的相反數是1.6、C【解析】
利用旋轉的性質得BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,再通過判斷△ABD為等邊三角形得到AD=AB,∠BAD=60°,則根據平行線的性質可判斷AD∥BC,從而得到∠DAC=∠C,于是可判斷∠DAC=∠E,接著利用AD=AB,BE=BC可判斷AD+BC=AE,利用∠CBE=60°,由于∠E的度數不確定,所以不能判定BC⊥DE.【詳解】∵△ABC繞點B順時針旋轉60°得△DBE,點C的對應點E恰好落在AB的延長線上,∴BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,∴△ABD為等邊三角形,∴AD=AB,∠BAD=60°,∵∠BAD=∠EBC,∴AD∥BC,∴∠DAC=∠C,∴∠DAC=∠E,∵AE=AB+BE,而AD=AB,BE=BC,∴AD+BC=AE,∵∠CBE=60°,∴只有當∠E=30°時,BC⊥DE.故選C.【點睛】本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.也考查了等邊三角形的性質.7、A【解析】
此題考查了概率公式的應用.注意用到的知識點為:概率=所求情況數與總情況數之比.根據題意得:,解得:a=1,經檢驗,a=1是原分式方程的解,故本題選A.8、D【解析】
根據特殊角三角函數值,可得答案.【詳解】解:tan45°=1,故選D.【點睛】本題考查了特殊角三角函數值,熟記特殊角三角函數值是解題關鍵.9、D【解析】
分兩種情形討論當點P順時針旋轉時,圖象是③,當點P逆時針旋轉時,圖象是①,由此即可解決問題.【詳解】解:當點P順時針旋轉時,圖象是③,當點P逆時針旋轉時,圖象是①.故選D.10、D【解析】試題分析:首先要理解清楚題意,知道總的客車數量及總的人數不變,然后采用排除法進行分析從而得到正確答案.解:根據總人數列方程,應是40m+10=43m+1,①錯誤,④正確;根據客車數列方程,應該為,②錯誤,③正確;所以正確的是③④.故選D.考點:由實際問題抽象出一元一次方程.11、B【解析】
此題可根據反比例函數圖象的對稱性得到A、B兩點關于原點對稱,再由S△ABM=1S△AOM并結合反比例函數系數k的幾何意義得到k的值.【詳解】根據雙曲線的對稱性可得:OA=OB,則S△ABM=1S△AOM=1,S△AOM=|k|=1,則k=±1.又由于反比例函數圖象位于一三象限,k>0,所以k=1.故選B.【點睛】本題主要考查了反比例函數y=中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經??疾榈囊粋€知識點.12、C【解析】
本題要先觀察a,b在數軸上的位置,得b<-1<0<a<1,然后對四個選項逐一分析.【詳解】A、因為b<-1<0<a<1,所以|b|>|a|,所以a+b<0,故選項A錯誤;B、因為b<0<a,所以ab<0,故選項B錯誤;C、因為b<-1<0<a<1,所以1a+1D、因為b<-1<0<a<1,所以1a-1故選C.【點睛】本題考查了實數與數軸的對應關系,數軸上右邊的數總是大于左邊的數.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、288°【解析】
母線長為15cm,高為9cm,由勾股定理可得圓錐的底面半徑;由底面周長與扇形的弧長相等求得圓心角.【詳解】解:如圖所示,在Rt△SOA中,SO=9,SA=15;則:設側面屬開圖扇形的國心角度數為n,則由得n=288°故答案為:288°.【點睛】本題利用了勾股定理,弧長公式,圓的周長公式和扇形面積公式求解.14、20【解析】分析:根據中位數的定義進行計算即可得到這組數據的中位數.詳解:由中位數的定義可知,這次跳繩次數的中位數是將這25位同學的跳繩次數按從小到大排列后的第12個和13個數據的平均數,∵由表格中的數據分析可知,這組數據按從小到大排列后的第12個和第13個數據都是20,∴這組跳繩次數的中位數是20.故答案為:20.點睛:本題考查的是怎樣確定一組數據的中位數,解題的關鍵是弄清“中位數”的定義:“把一組數據按從小到大的順序排列后,若數據組中共有奇數個數據,則最中間一個數據是該組數據的中位數;若數據組中數據的個數為偶數個,則最中間兩個數據的平均數是這組數據的中位數”.15、3n+1【解析】
根據題意可知:第1個圖有4個圖案,第2個共有7個圖案,第3個共有10個圖案,第4個共有13個圖案,由此可得出規(guī)律.【詳解】解:由題意可知:每1個都比前一個多出了3個“”,∴第n個圖案中共有“”為:4+3(n﹣1)=3n+1故答案為:3n+1.【點睛】本題考查學生的觀察能力,解題的關鍵是熟練正確找出圖中的規(guī)律,本題屬于基礎題型.16、x1=1,x2=﹣1.【解析】
直接觀察圖象,拋物線與x軸交于1,對稱軸是x=﹣1,所以根據拋物線的對稱性可以求得拋物線與x軸的另一交點坐標,從而求得關于x的一元二次方程﹣x2+bx+c=0的解.【詳解】解:觀察圖象可知,拋物線y=﹣x2+bx+c與x軸的一個交點為(1,0),對稱軸為x=﹣1,∴拋物線與x軸的另一交點坐標為(﹣1,0),∴一元二次方程﹣x2+bx+c=0的解為x1=1,x2=﹣1.故本題答案為:x1=1,x2=﹣1.【點睛】本題考查了二次函數與一元二次方程的關系.一元二次方程-x2+bx+c=0的解實質上是拋物線y=-x2+bx+c與x軸交點的橫坐標的值.17、【解析】分析:找中位數要把數據按從小到大的順序排列,位于最中間的一個數(或兩個數的平均數)為中位數;眾數是一組數據中出現次數最多的數據,注意眾數可以不只一個.
詳解:∵-3,x,-1,3,1,6的眾數是3,
∴x=3,
先對這組數據按從小到大的順序重新排序-3、-1、1、3、3、6位于最中間的數是1,3,
∴這組數的中位數是=1.
故答案為:1.點睛:本題屬于基礎題,考查了確定一組數據的中位數和眾數的能力.一些學生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項,注意找中位數的時候一定要先排好順序,然后再根據奇數和偶數個來確定中位數,如果數據有奇數個,則正中間的數字即為所求,如果是偶數個則找中間兩位數的平均數.18、15cm、17cm、19cm.【解析】試題解析:設三角形的第三邊長為xcm,由題意得:7-3<x<7+3,即4<x<10,則x=5,7,9,三角形的周長:3+7+5=15(cm),3+7+7=17(cm),3+7+9=19(cm).考點:三角形三邊關系.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)4.【解析】
(1)首先證明△ABC≌△DFE可得∠ACE=∠DEF,進而可得AC∥DE;(2)根據△ABC≌△DFE可得BC=EF,利用等式的性質可得EB=CF,再由BF=13,EC=5進而可得EB的長,然后可得答案.【詳解】解:(1)在△ABC和△DFE中,∴△ABC≌△DFE(SAS),∴∠ACE=∠DEF,∴AC∥DE;(2)∵△ABC≌△DFE,∴BC=EF,∴CB﹣EC=EF﹣EC,∴EB=CF,∵BF=13,EC=5,∴EB=4,∴CB=4+5=1.【點睛】考點:全等三角形的判定與性質.20、(1)證明見解析;(2)EH=【解析】
(1)由題意推出∠EHB=∠OCB,(2)結合△BHE~△BCO,推出BHBC【詳解】(1)證明:∵OD為圓的半徑,D是的中點,∴OD⊥BC,BE=CE=1∵CH⊥AB,∴∠CHB=90∴HE=1∴∠B=∠EHB,∵OB=OC,∴∠B=∠OCB,∴∠EHB=∠OCB,又∵∠B=∠B,∴ΔBHE∽ΔBCO.(2)∵ΔBHE∽ΔBCO,∴BHBC∵OC=4,BH=1,∴OB=4得12解得BE=2∴EH=BE=2【點睛】本題考查的知識點是圓與相似三角形,解題的關鍵是熟練的掌握圓與相似三角形.21、(1)①四邊形CEGF是正方形;②;(2)線段AG與BE之間的數量關系為AG=BE;(3)3【解析】
(1)①由、結合可得四邊形CEGF是矩形,再由即可得證;②由正方形性質知、,據此可得、,利用平行線分線段成比例定理可得;(2)連接CG,只需證∽即可得;(3)證∽得,設,知,由得、、,由可得a的值.【詳解】(1)①∵四邊形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四邊形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四邊形CEGF是正方形;②由①知四邊形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴,GE∥AB,∴,故答案為;(2)連接CG,由旋轉性質知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=、=,∴=,∴△ACG∽△BCE,∴,∴線段AG與BE之間的數量關系為AG=BE;(3)∵∠CEF=45°,點B、E、F三點共線,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴,設BC=CD=AD=a,則AC=a,則由得,∴AH=a,則DH=AD﹣AH=a,CH==a,∴由得,解得:a=3,即BC=3,故答案為3.【點睛】本題考查了正方形的性質與判定,相似三角形的判定與性質等,綜合性較強,有一定的難度,正確添加輔助線,熟練掌握正方形的判定與性質、相似三角形的判定與性質是解題的關鍵.22、(1)y=x2﹣x,點D的坐標為(2,﹣);(2)t=2;(3)M點的坐標為(2,0)或(6,0).【解析】
(1)利用待定系數法求拋物線解析式;利用配方法把一般式化為頂點式得到點D的坐標;(2)連接AC,如圖①,先計算出AB=4,則判斷平行四邊形OCBA為菱形,再證明△AOC和△ACB都是等邊三角形,接著證明△OCM≌△ACN得到CM=CN,∠OCM=∠ACN,則判斷△CMN為等邊三角形得到MN=CM,于是△AMN的周長=OA+CM,由于CM⊥OA時,CM的值最小,△AMN的周長最小,從而得到t的值;(3)先利用勾股定理的逆定理證明△OCD為直角三角形,∠COD=90°,設M(t,0),則E(t,t2-t),根據相似三角形的判定方法,當時,△AME∽△COD,即|t-4|:4=|t2-t|:,當時,△AME∽△DOC,即|t-4|:=|t2-t|:4,然后分別解絕對值方程可得到對應的M點的坐標.【詳解】解:(1)把A(4,0)和B(6,2)代入y=ax2+bx得,解得,∴拋物線解析式為y=x2-x;∵y=x2-x=-2)2-;∴點D的坐標為(2,-);(2)連接AC,如圖①,AB==4,而OA=4,∴平行四邊形OCBA為菱形,∴OC=BC=4,∴C(2,2),∴AC==4,∴OC=OA=AC=AB=BC,∴△AOC和△ACB都是等邊三角形,∴∠AOC=∠COB=∠OCA=60°,而OC=AC,OM=AN,∴△OCM≌△ACN,∴CM=CN,∠OCM=∠ACN,∵∠OCM+∠ACM=60°,∴∠ACN+∠ACM=60°,∴△CMN為等邊三角形,∴MN=CM,∴△AMN的周長=AM+AN+MN=OM+AM+MN=OA+CM=4+CM,當CM⊥OA時,CM的值最小,△AMN的周長最小,此時OM=2,∴t=2;(3)∵C(2,2),D(2,-),∴CD=,∵OD=,OC=4,∴OD2+OC2=CD2,∴△OCD為直角三角形,∠COD=90°,設M(t,0),則E(t,t2-t),∵∠AME=∠COD,∴當時,△AME∽△COD,即|t-4|:4=|t2-t|:,整理得|t2-t|=|t-4|,解方程t2-t=(t-4)得t1=4(舍去),t2=2,此時M點坐標為(2,0);解方程t2-t=-(t-4)得t1=4(舍去),t2=-2(舍去);當時,△AME∽△DOC,即|t-4|:=|t2-t|:4,整理得|t2-t|=|t-4|,解方程t2-t=t-4得t1=4(舍去),t2=6,此時M點坐標為(6,0);解方程t2-t=-(t-4)得t1=4(舍去),t2=-6(舍去);綜上所述,M點的坐標為(2,0)或(6,0).【點睛】本題考查了二次函數的綜合題:熟練掌握二次函數圖象上點的坐標特征、二次函數的性質、平行四邊形的性質和菱形的判定與性質;會利用待定系數法求函數解析式;理解坐標與圖形性質;熟練掌握相似三角形的判定方法;會運用分類討論的思想解決數學問題.23、(1)-2(2)-【解析】試題分析:(1)將原式第一項被開方數8變?yōu)?×2,利用二次根式的性質化簡第二項利用特殊角的三角函數值化簡,第三項利用零指數公式化簡,最后一項利用負指數公式化簡,把所得的結果合并即可得到最后結果;(2)先把和a2﹣b2分解因式約分化簡,然后將a和b的值代入化簡后的式子中計算,即可得到原式的值.解:(1)﹣2sin45°+(2﹣π)0﹣()﹣1=2﹣2×+1﹣3=2﹣+1﹣3=﹣2;(2)?(a2﹣b2)=?(a+b)(a﹣b)=a+b,當a=,b=﹣2時,原式=+(﹣2)=﹣.24、(1)200;(2)見解析;(3)36;(4)該社區(qū)學習時間不少于1小時的家庭約有2100個.【解析】
(1)根據1.5~2小時的圓心角度數求出1.5~2小時所占的百分比,再用1.5~2小時的人數除以所占的百分比,即可得出本次抽樣調查的總家庭數;(2)用抽查的總人數乘以學習0.5-1小時的家庭所占的百分比求出學習0.5-1小時的家庭數,再用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)保密協議書編寫技巧
- 物業(yè)租賃代理費用基金合同
- 股權代持入股合作協議書
- 2024購銷合同協議精要
- 二手電動自行車轉讓合同
- 2024版企業(yè)技術成果保護協議
- 影視作品制片權許可合同
- 土地使用權轉讓協議書示例
- 2024年設立股份公司資金注入協議
- 七年級地理上冊-5.1-世界的人口教案-商務星球版(1)(2021學年)
- 《嬰幼兒行為觀察、記錄與評價》習題庫 (項目三) 0 ~ 3 歲嬰幼兒語言發(fā)展觀察、記錄與評價
- 英語漫談膠東海洋文化知到章節(jié)答案智慧樹2023年威海海洋職業(yè)學院
- 環(huán)保產品管理規(guī)范
- 幼兒園:我中獎了(實驗版)
- 趙學慧-老年社會工作理論與實務-教案
- 《世界主要海峽》
- 住院醫(yī)師規(guī)范化培訓師資培訓
- 中央企業(yè)商業(yè)秘密安全保護技術指引2015版
- 螺旋果蔬榨汁機的設計
- 《脊柱整脊方法》
- 會計與財務管理專業(yè)英語智慧樹知到答案章節(jié)測試2023年哈爾濱商業(yè)大學
評論
0/150
提交評論