2023-2024學年湖北省襄陽老河口市重點達標名校中考聯(lián)考數(shù)學試卷含解析_第1頁
2023-2024學年湖北省襄陽老河口市重點達標名校中考聯(lián)考數(shù)學試卷含解析_第2頁
2023-2024學年湖北省襄陽老河口市重點達標名校中考聯(lián)考數(shù)學試卷含解析_第3頁
2023-2024學年湖北省襄陽老河口市重點達標名校中考聯(lián)考數(shù)學試卷含解析_第4頁
2023-2024學年湖北省襄陽老河口市重點達標名校中考聯(lián)考數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年湖北省襄陽老河口市重點達標名校中考聯(lián)考數(shù)學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如果兩圓只有兩條公切線,那么這兩圓的位置關系是()A.內(nèi)切 B.外切 C.相交 D.外離2.如圖,四邊形ABCD是菱形,對角線AC,BD交于點O,,,于點H,且DH與AC交于G,則OG長度為A. B. C. D.3.計算x﹣2y﹣(2x+y)的結果為()A.3x﹣y B.3x﹣3y C.﹣x﹣3y D.﹣x﹣y4.如圖圖形中是中心對稱圖形的是()A. B.C. D.5.如圖,下列四個圖形是由已知的四個立體圖形展開得到的,則對應的標號是A. B. C. D.6.如圖,△ABC中,AB=4,BC=6,∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點A′逆時針旋轉(zhuǎn)一定角度后,點B′恰好與點C重合,則平移的距離和旋轉(zhuǎn)角的度數(shù)分別為()A.4,30° B.2,60° C.1,30° D.3,60°7.從,0,π,,6這5個數(shù)中隨機抽取一個數(shù),抽到有理數(shù)的概率是()A. B. C. D.8.已知等腰三角形的周長是10,底邊長y是腰長x的函數(shù),則下列圖象中,能正確反映y與x之間函數(shù)關系的圖象是()A. B. C.D9.已知地球上海洋面積約為361000000km2,361000000這個數(shù)用科學記數(shù)法可表示為()A.3.61×106 B.3.61×107 C.3.61×108 D.3.61×10910.如圖,在△ABC中,EF∥BC,AB=3AE,若S四邊形BCFE=16,則S△ABC=()A.16 B.18 C.20 D.2411.如圖,電線桿CD的高度為h,兩根拉線AC與BC互相垂直(A、D、B在同一條直線上),設∠CAB=α,那么拉線BC的長度為()A. B. C. D.12.如圖,△ABC的面積為8cm2,AP垂直∠B的平分線BP于P,則△PBC的面積為(

)A.2cm2

B.3cm2

C.4cm2

D.5cm2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.甲、乙兩點在邊長為100m的正方形ABCD上按順時針方向運動,甲的速度為5m/秒,乙的速度為10m/秒,甲從A點出發(fā),乙從CD邊的中點出發(fā),則經(jīng)過__秒,甲乙兩點第一次在同一邊上.14.如圖,已知O為△ABC內(nèi)一點,點D、E分別在邊AB和AC上,且,DE∥BC,設、,那么______(用、表示).15.如圖,在梯形中,,E、F分別是邊的中點,設,那么等于__________(結果用的線性組合表示).16.如圖,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分線MN交AC于點D,則∠A的度數(shù)是.17.如圖,將一塊含有30°角的直角三角板的兩個頂點疊放在長方形的兩條對邊上,如果∠1=27°,那么∠2=______°18.如圖,中,∠,,的面積為,為邊上一動點(不與,重合),將和分別沿直線,翻折得到和,那么△的面積的最小值為____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)計算:.20.(6分)解不等式,并把解集在數(shù)軸上表示出來.21.(6分)如圖,將矩形紙片ABCD沿對角線BD折疊,使點A落在平面上的F點處,DF交BC于點E.(1)求證:△DCE≌△BFE;(2)若AB=4,tan∠ADB=,求折疊后重疊部分的面積.22.(8分)如圖,在平面直角坐標系中,圓M經(jīng)過原點O,直線與x軸、y軸分別相交于A,B兩點.(1)求出A,B兩點的坐標;(2)若有一拋物線的對稱軸平行于y軸且經(jīng)過點M,頂點C在圓M上,開口向下,且經(jīng)過點B,求此拋物線的函數(shù)解析式;(3)設(2)中的拋物線交軸于D、E兩點,在拋物線上是否存在點P,使得S△PDE=S△ABC?若存在,請求出點P的坐標;若不存在,請說明理由.23.(8分)為了掌握我市中考模擬數(shù)學試題的命題質(zhì)量與難度系數(shù),命題教師赴我市某地選取一個水平相當?shù)某跞昙夁M行調(diào)研,命題教師將隨機抽取的部分學生成績(得分為整數(shù),滿分為160分)分為5組:第一組85~100;第二組100~115;第三組115~130;第四組130~145;第五組145~160,統(tǒng)計后得到如圖1和如圖2所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計圖,觀察圖形的信息,回答下列問題:(1)本次調(diào)查共隨機抽取了該年級多少名學生?并將頻數(shù)分布直方圖補充完整;(2)若將得分轉(zhuǎn)化為等級,規(guī)定:得分低于100分評為“D”,100~130分評為“C”,130~145分評為“B”,145~160分評為“A”,那么該年級1600名學生中,考試成績評為“B”的學生大約有多少名?(3)如果第一組有兩名女生和兩名男生,第五組只有一名是男生,針對考試成績情況,命題教師決定從第一組、第五組分別隨機選出一名同學談談做題的感想,請你用列表或畫樹狀圖的方法求出所選兩名學生剛好是一名女生和一名男生的概率.24.(10分)網(wǎng)癮低齡化問題已經(jīng)引起社會各界的高度關注,有關部門在全國范圍內(nèi)對12﹣35歲的網(wǎng)癮人群進行了簡單的隨機抽樣調(diào)查,繪制出以下兩幅統(tǒng)計圖.請根據(jù)圖中的信息,回答下列問題:(1)這次抽樣調(diào)查中共調(diào)查了人;(2)請補全條形統(tǒng)計圖;(3)扇形統(tǒng)計圖中18﹣23歲部分的圓心角的度數(shù)是;(4)據(jù)報道,目前我國12﹣35歲網(wǎng)癮人數(shù)約為2000萬,請估計其中12﹣23歲的人數(shù)25.(10分)石獅泰禾某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進價為80元,銷售價為120元時,每天可售出20件,為了迎接“十一”國慶節(jié),商店決定采取適當?shù)慕祪r措施,以擴大銷售量,增加利潤,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件童裝降價1元,那么平均可多售出2件.設每件童裝降價x元時,每天可銷售______件,每件盈利______元;(用x的代數(shù)式表示)每件童裝降價多少元時,平均每天贏利1200元.要想平均每天贏利2000元,可能嗎?請說明理由.26.(12分)目前“微信”、“支付寶”、“共享單車”和“網(wǎng)購”給我們的生活帶來了很多便利,初二數(shù)學小組在校內(nèi)對“你最認可的四大新生事物”進行調(diào)查,隨機調(diào)查了人(每名學生必選一種且只能從這四種中選擇一種)并將調(diào)查結果繪制成如下不完整的統(tǒng)計圖.根據(jù)圖中信息求出,;請你幫助他們將這兩個統(tǒng)計圖補全;根據(jù)抽樣調(diào)查的結果,請估算全校2000名學生中,大約有多少人最認可“微信”這一新生事物?27.(12分)(1)問題發(fā)現(xiàn)如圖1,在Rt△ABC中,∠A=90°,=1,點P是邊BC上一動點(不與點B重合),∠PAD=90°,∠APD=∠B,連接CD.(1)①求的值;②求∠ACD的度數(shù).(2)拓展探究如圖2,在Rt△ABC中,∠A=90°,=k.點P是邊BC上一動點(不與點B重合),∠PAD=90°,∠APD=∠B,連接CD,請判斷∠ACD與∠B的數(shù)量關系以及PB與CD之間的數(shù)量關系,并說明理由.(3)解決問題如圖3,在△ABC中,∠B=45°,AB=4,BC=12,P是邊BC上一動點(不與點B重合),∠PAD=∠BAC,∠APD=∠B,連接CD.若PA=5,請直接寫出CD的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

兩圓內(nèi)含時,無公切線;兩圓內(nèi)切時,只有一條公切線;兩圓外離時,有4條公切線;兩圓外切時,有3條公切線;兩圓相交時,有2條公切線.【詳解】根據(jù)兩圓相交時才有2條公切線.故選C.【點睛】本題考查了圓與圓的位置關系.熟悉兩圓的不同位置關系中的外公切線和內(nèi)公切線的條數(shù).2、B【解析】試題解析:在菱形中,,,所以,,在中,,因為,所以,則,在中,由勾股定理得,,由可得,,即,所以.故選B.3、C【解析】

原式去括號合并同類項即可得到結果.【詳解】原式,故選:C.【點睛】本題主要考查了整式的加減運算,熟練掌握去括號及合并同類項是解決本題的關鍵.4、B【解析】

把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形.【詳解】解:根據(jù)中心對稱圖形的定義可知只有B選項是中心對稱圖形,故選擇B.【點睛】本題考察了中心對稱圖形的含義.5、B【解析】

根據(jù)常見幾何體的展開圖即可得.【詳解】由展開圖可知第一個圖形是②正方體的展開圖,第2個圖形是①圓柱體的展開圖,第3個圖形是③三棱柱的展開圖,第4個圖形是④四棱錐的展開圖,故選B【點睛】本題考查的是幾何體,熟練掌握幾何體的展開面是解題的關鍵.6、B【解析】試題分析:∵∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點A′逆時針旋轉(zhuǎn)一定角度后,點B′恰好與點C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等邊三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距離和旋轉(zhuǎn)角的度數(shù)分別為:2,60°故選B.考點:1、平移的性質(zhì);2、旋轉(zhuǎn)的性質(zhì);3、等邊三角形的判定7、C【解析】

根據(jù)有理數(shù)的定義可找出在從,0,π,,6這5個數(shù)中只有0、、6為有理數(shù),再根據(jù)概率公式即可求出抽到有理數(shù)的概率.【詳解】∵在,0,π,,6這5個數(shù)中有理數(shù)只有0、、6這3個數(shù),∴抽到有理數(shù)的概率是,故選C.【點睛】本題考查了概率公式以及有理數(shù),根據(jù)有理數(shù)的定義找出五個數(shù)中的有理數(shù)的個數(shù)是解題的關鍵.8、D【解析】

先根據(jù)三角形的周長公式求出函數(shù)關系式,再根據(jù)三角形的任意兩邊之和大于第三邊,三角形的任意兩邊之差小于第三邊求出x的取值范圍,然后選擇即可.【詳解】由題意得,2x+y=10,所以,y=-2x+10,由三角形的三邊關系得,,解不等式①得,x>2.5,解不等式②的,x<5,所以,不等式組的解集是2.5<x<5,正確反映y與x之間函數(shù)關系的圖象是D選項圖象.故選:D.9、C【解析】分析:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值大于1時,n是正數(shù);當原數(shù)的絕對值小于1時,n是負數(shù).解答:解:將361000000用科學記數(shù)法表示為3.61×1.故選C.10、B【解析】【分析】由EF∥BC,可證明△AEF∽△ABC,利用相似三角形的性質(zhì)即可求出S△ABC的值.【詳解】∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF:S△ABC=1:9,設S△AEF=x,∵S四邊形BCFE=16,∴,解得:x=2,∴S△ABC=18,故選B.【點睛】本題考查了相似三角形的判定與性質(zhì),熟練掌握相似三角形的面積比等于相似比的平方是解本題的關鍵.11、B【解析】根據(jù)垂直的定義和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中cos∠BCD=,可得BC=.故選B.點睛:本題主要考查解直角三角形的應用,熟練掌握同角的余角相等和三角函數(shù)的定義是解題的關鍵.12、C【解析】

延長AP交BC于E,根據(jù)AP垂直∠B的平分線BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以證明兩三角形面積相等,即可求得△PBC的面積.【詳解】延長AP交BC于E.∵AP垂直∠B的平分線BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.在△APB和△EPB中,∵∠APB=∠EPBBP=BP∠ABP=∠EBP,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE=12S△ABC故選C.【點睛】本題考查了三角形面積和全等三角形的性質(zhì)和判定的應用,關鍵是求出S△PBC=S△PBE+S△PCE=12S△二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】試題分析:設x秒時,甲乙兩點相遇.根據(jù)題意得:10x-5x=250,解得:x=50,相遇時甲走了250m,乙走了500米,則根據(jù)題意推得第一次在同一邊上時可以為1.14、【解析】

根據(jù),DE∥BC,結合平行線分線段成比例來求.【詳解】∵,DE∥BC,∴,∴==.∵,∴∴.故答案為:.【點睛】本題考查的知識點是平面向量,解題的關鍵是熟練的掌握平面向量.15、.【解析】

作AH∥EF交BC于H,首先證明四邊形EFHA是平行四邊形,再利用三角形法則計算即可.【詳解】作AH∥EF交BC于H.∵AE∥FH,∴四邊形EFHA是平行四邊形,∴AE=HF,AH=EF.∵AE=ED=HF,∴.∵BC=2AD,∴2.∵BF=FC,∴,∴.∵.故答案為:.【點睛】本題考查了平面向量,解題的關鍵是熟練掌握三角形法則,屬于中考常考題型.16、50°.【解析】

根據(jù)線段垂直平分線上的點到兩端點的距離相等可得AD=BD,根據(jù)等邊對等角可得∠A=∠ABD,然后表示出∠ABC,再根據(jù)等腰三角形兩底角相等可得∠C=∠ABC,然后根據(jù)三角形的內(nèi)角和定理列出方程求解即可:【詳解】∵MN是AB的垂直平分線,∴AD="BD."∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案為50°.17、57°.【解析】

根據(jù)平行線的性質(zhì)和三角形外角的性質(zhì)即可求解.【詳解】由平行線性質(zhì)及外角定理,可得∠2=∠1+30°=27°+30°=57°.【點睛】本題考查平行線的性質(zhì)及三角形外角的性質(zhì).18、4.【解析】

過E作EG⊥AF,交FA的延長線于G,由折疊可得∠EAG=30°,而當AD⊥BC時,AD最短,依據(jù)BC=7,△ABC的面積為14,即可得到當AD⊥BC時,AD=4=AE=AF,進而得到△AEF的面積最小值為:AF×EG=×4×2=4.【詳解】解:如圖,過E作EG⊥AF,交FA的延長線于G,

由折疊可得,AF=AE=AD,∠BAE=∠BAD,∠DAC=∠FAC,

∵∠BAC=75°,

∴∠EAF=150°,

∴∠EAG=30°,

∴EG=AE=AD,

當AD⊥BC時,AD最短,

∵BC=7,△ABC的面積為14,

∴當AD⊥BC時,,即:,∴.

∴△AEF的面積最小值為:

AF×EG=×4×2=4,故答案為:4.【點睛】本題主要考查了折疊問題,解題的關鍵是利用對應邊和對應角相等.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、10【解析】【分析】先分別進行0次冪的計算、負指數(shù)冪的計算、二次根式以及絕對值的化簡、特殊角的三角函數(shù)值,然后再按運算順序進行計算即可.【詳解】原式=1+9-+4=10-+=10.【點睛】本題考查了實數(shù)的混合運算,涉及到0指數(shù)冪、負指數(shù)冪、特殊角的三角函數(shù)值等,熟練掌握各運算的運算法則是解題的關鍵.20、見解析【解析】

根據(jù)解一元一次不等式基本步驟:去分母、去括號、移項、合并同類項、系數(shù)化為1可得解集.在數(shù)軸上表示出來即可.【詳解】解:去分母,得3x+1-6>4x-2,移項,得:3x-4x>-2+5,合并同類項,得-x>3,系數(shù)化為1,得x<-3,不等式的解集在數(shù)軸上表示如下:【點睛】此題考查解一元一次不等式,在數(shù)軸上表示不等式的解集,解題關鍵在于掌握運算順序.21、(1)見解析;(2)1【解析】

(1)由矩形的性質(zhì)可知∠A=∠C=90°,由翻折的性質(zhì)可知∠A=∠F=90°,從而得到∠F=∠C,依據(jù)AAS證明△DCE≌△BFE即可;(2)由△DCE≌△BFE可知:EB=DE,依據(jù)AB=4,tan∠ADB=,即可得到DC,BC的長,然后再Rt△EDC中利用勾股定理列方程,可求得BE的長,從而可求得重疊部分的面積.【詳解】解:(1)∵四邊形ABCD是矩形,∴∠A=∠C=90°,AB=CD,由折疊可得,∠F=∠A,BF=AB,∴BF=DC,∠F=∠C=90°,又∵∠BEF=∠DEC,∴△DCE≌△BFE;(2)∵AB=4,tan∠ADB=,∴AD=8=BC,CD=4,∵△DCE≌△BFE,∴BE=DE,設BE=DE=x,則CE=8﹣x,在Rt△CDE中,CE2+CD2=DE2,∴(8﹣x)2+42=x2,解得x=5,∴BE=5,∴S△BDE=BE×CD=×5×4=1.【點睛】本題考查了折疊的性質(zhì)、全等三角形的判定和性質(zhì)以及勾股定理的綜合運用,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.22、(1)A(﹣8,0),B(0,﹣6);(2);(3)存在.P點坐標為(﹣4+,-1)或(﹣4﹣,-1)或(﹣4+,1)或(﹣4﹣,1)時,使得.【解析】分析:(1)令已知的直線的解析式中x=0,可求出B點坐標,令y=0,可求出A點坐標;(2)根據(jù)A、B的坐標易得到M點坐標,若拋物線的頂點C在⊙M上,那么C點必為拋物線對稱軸與⊙O的交點;根據(jù)A、B的坐標可求出AB的長,進而可得到⊙M的半徑及C點的坐標,再用待定系數(shù)法求解即可;(3)在(2)中已經(jīng)求得了C點坐標,即可得到AC、BC的長;由圓周角定理:∠ACB=90°,所以此題可根據(jù)兩直角三角形的對應直角邊的不同來求出不同的P點坐標.本題解析:(1)對于直線,當時,;當時,所以A(﹣8,0),B(0,﹣6);(2)在Rt△AOB中,AB==10,∵∠AOB=90°,∴AB為⊙M的直徑,∴點M為AB的中點,M(﹣4,﹣3),∵MC∥y軸,MC=5,∴C(﹣4,2),設拋物線的解析式為y=a(x+4)2+2,把B(0,﹣6)代入得16a+2=﹣6,解得a=,∴拋物線的解析式為,即;(3)存在.當y=0時,,解得x,=﹣2,x,=﹣6,∴D(﹣6,0),E(﹣2,0),,設P(t,-6),∵∴=20,即||=1,當=-1,解得,,此時P點坐標為(﹣4+,-1)或(﹣4﹣,-1);當時,解得=﹣4+,=﹣4﹣;此時P點坐標為(﹣4+,1)或(﹣4﹣,1).綜上所述,P點坐標為(﹣4+,-1)或(﹣4﹣,-1)或(﹣4+,1)或(﹣4﹣,1)時,使得.點睛:本題考查了二次函數(shù)的綜合應用及頂點式求二次函數(shù)的解析式和一元二次方程的解法,本題的綜合性較強,注意分類討論的思想應用.23、(1)50(2)420(3)P=【解析】試題分析:(1)首先根據(jù)題意得:本次調(diào)查共隨機抽取了該年級學生數(shù)為:20÷40%=50(名);則可求得第五組人數(shù)為:50﹣4﹣8﹣20﹣14=4(名);即可補全統(tǒng)計圖;(2)由題意可求得130~145分所占比例,進而求出答案;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與所選兩名學生剛好是一名女生和一名男生的情況,再利用概率公式求解即可求得答案.試題解析:(1)根據(jù)題意得:本次調(diào)查共隨機抽取了該年級學生數(shù)為:20÷40%=50(名);則第五組人數(shù)為:50﹣4﹣8﹣20﹣14=4(名);如圖:(2)根據(jù)題意得:考試成績評為“B”的學生大約有×1600=448(名),答:考試成績評為“B”的學生大約有448名;(3)畫樹狀圖得:∵共有16種等可能的結果,所選兩名學生剛好是一名女生和一名男生的有8種情況,∴所選兩名學生剛好是一名女生和一名男生的概率為:=.考點:1、樹狀圖法與列表法求概率的知識,2、直方圖與扇形統(tǒng)計圖的知識視頻24、(1)1500;(2)見解析;(3)108°;(3)12~23歲的人數(shù)為400萬【解析】試題分析:(1)根據(jù)30-35歲的人數(shù)和所占的百分比求調(diào)查的人數(shù);(2)從調(diào)查的總人數(shù)中減去已知的三組的人數(shù),即可得到12-17歲的人數(shù),據(jù)此補全條形統(tǒng)計圖;(3)先計算18-23歲的人數(shù)占調(diào)查總人數(shù)的百分比,再計算這一組所對應的圓心角的度數(shù);(4)先計算調(diào)查中12﹣23歲的人數(shù)所占的百分比,再求網(wǎng)癮人數(shù)約為2000萬中的12﹣23歲的人數(shù).試題解析:解:(1)結合條形統(tǒng)計圖和扇形統(tǒng)計圖可知,30-35歲的人數(shù)為330人,所占的百分比為22%,所以調(diào)查的總人數(shù)為330÷22%=1500人.故答案為1500;(2)1500-450-420-330=300人.補全的條形統(tǒng)計圖如圖:(3)18-23歲這一組所對應的圓心角的度數(shù)為360×=108°.故答案為108°;(4)(300+450)÷1500=50%,.考點:條形統(tǒng)計圖;扇形統(tǒng)計圖.25、(1)(20+2x),(40﹣x);(2)每件童裝降價20元或10元,平均每天贏利1200元;(3)不可能做到平均每天盈利2000元.【解析】

(1)、根據(jù)銷售量=原銷售量+因價格下降而增加的數(shù)量;每件利潤=原售價-進價-降價,列式即可;(2)、根據(jù)總利潤=單件利潤×數(shù)量,列出方程即可;(3)、根據(jù)(2)中的相關關系方程,判斷方程是否有實數(shù)根即可.【詳解】(1)、設每件童裝降價x元時,每天可銷售20+2x件,每件盈利40-x元,

故答案為(20+2x),(40-x);(2)、根據(jù)題意可得:(20+2x)(40-x)=1200,解得:即每件童裝降價10元或20元時,平均每天盈利1200元;(3)、(20+2x)(40-x)=2000,,∵此方程無解,∴不可能盈利2000元.【點睛】本題主要考查的是一元二次方程的實際應用問題,屬于中等難度題型.解決這個問題的關鍵就是要根據(jù)題意列出方程.26、(1)100,35;(2)補全圖形,如圖;(3)800人【解析】

(1)由共享單車人數(shù)及其百分比求得總人數(shù)m,用支付寶人數(shù)除以總人數(shù)可得百分比n的值;(2)總人數(shù)乘以網(wǎng)購人數(shù)的百分比可得其人數(shù),用微信人數(shù)除以總人數(shù)求得百分比即可補全兩個圖形;(3)總人數(shù)乘以樣本中微信人數(shù)所占的百分比可得答案.【詳解】解:(1)∵被調(diào)查總人數(shù)為m=10÷10%=100人,∴用支付

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論