版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
福建省沙縣重點達(dá)標(biāo)名校2024年中考數(shù)學(xué)全真模擬試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F(xiàn)分別為AB,AC,AD的中點,若BC=2,則EF的長度為()A.12B.1C.322.如圖,淇淇一家駕車從A地出發(fā),沿著北偏東60°的方向行駛,到達(dá)B地后沿著南偏東50°的方向行駛來到C地,C地恰好位于A地正東方向上,則()①B地在C地的北偏西50°方向上;②A地在B地的北偏西30°方向上;③cos∠BAC=;④∠ACB=50°.其中錯誤的是()A.①② B.②④ C.①③ D.③④3.下列計算正確的是()A.x2+x2=x4 B.x8÷x2=x4 C.x2?x3=x6 D.(-x)2-x2=04.下列計算,正確的是()A.a(chǎn)2?a2=2a2 B.a(chǎn)2+a2=a4 C.(﹣a2)2=a4 D.(a+1)2=a2+15.如圖,在直角坐標(biāo)系中,直線與坐標(biāo)軸交于A、B兩點,與雙曲線()交于點C,過點C作CD⊥x軸,垂足為D,且OA=AD,則以下結(jié)論:①;②當(dāng)0<x<3時,;③如圖,當(dāng)x=3時,EF=;④當(dāng)x>0時,隨x的增大而增大,隨x的增大而減?。渲姓_結(jié)論的個數(shù)是()A.1 B.2 C.3 D.46.已知:a、b是不等于0的實數(shù),2a=3b,那么下列等式中正確的是()A.a(chǎn)b=23 B.a(chǎn)7.若數(shù)a,b在數(shù)軸上的位置如圖示,則()A.a(chǎn)+b>0 B.a(chǎn)b>0 C.a(chǎn)﹣b>0 D.﹣a﹣b>08.下列函數(shù)中,二次函數(shù)是()A.y=﹣4x+5 B.y=x(2x﹣3)C.y=(x+4)2﹣x2 D.y=9.如圖1,在△ABC中,D、E分別是AB、AC的中點,將△ADE沿線段DE向下折疊,得到圖1.下列關(guān)于圖1的四個結(jié)論中,不一定成立的是()A.點A落在BC邊的中點 B.∠B+∠1+∠C=180°C.△DBA是等腰三角形 D.DE∥BC10.在下列函數(shù)中,其圖象與x軸沒有交點的是()A.y=2x B.y=﹣3x+1 C.y=x2 D.y=11.已知一個多邊形的每一個外角都相等,一個內(nèi)角與一個外角的度數(shù)之比是3:1,這個多邊形的邊數(shù)是A.8 B.9 C.10 D.1212.若反比例函數(shù)的圖像經(jīng)過點,則一次函數(shù)與在同一平面直角坐標(biāo)系中的大致圖像是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,則∠BCE=_____°.14.如圖,在矩形ABCD中,AB=2,AD=6,E.F分別是線段AD,BC上的點,連接EF,使四邊形ABFE為正方形,若點G是AD上的動點,連接FG,將矩形沿FG折疊使得點C落在正方形ABFE的對角線所在的直線上,對應(yīng)點為P,則線段AP的長為______.15.方程3x2﹣5x+2=0的一個根是a,則6a2﹣10a+2=_____.16.如圖,點A在反比例函數(shù)y=(x>0)上,以O(shè)A為邊作正方形OABC,邊AB交y軸于點P,若PA:PB=1:2,則正方形OABC的面積=_____.17.計算:|﹣5|﹣=_____.18.若分式的值為正,則實數(shù)的取值范圍是__________________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)和點B,與y軸交于C(0,3),直線y=+m經(jīng)過點C,與拋物線的另一交點為點D,點P是直線CD上方拋物線上的一個動點,過點P作PF⊥x軸于點F,交直線CD于點E,設(shè)點P的橫坐標(biāo)為m.(1)求拋物線解析式并求出點D的坐標(biāo);(2)連接PD,△CDP的面積是否存在最大值?若存在,請求出面積的最大值;若不存在,請說明理由;(3)當(dāng)△CPE是等腰三角形時,請直接寫出m的值.20.(6分)如圖,拋物線y=ax2﹣2ax+c(a≠0)與y軸交于點C(0,4),與x軸交于點A、B,點A坐標(biāo)為(4,0).(1)求該拋物線的解析式;(2)拋物線的頂點為N,在x軸上找一點K,使CK+KN最小,并求出點K的坐標(biāo);(3)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當(dāng)△CQE的面積最大時,求點Q的坐標(biāo);(4)若平行于x軸的動直線l與該拋物線交于點P,與直線AC交于點F,點D的坐標(biāo)為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.21.(6分)如圖,若要在寬AD為20米的城南大道兩邊安裝路燈,路燈的燈臂BC長2米,且與燈柱AB成120°角,路燈采用圓錐形燈罩,燈罩的軸線CO與燈臂BC垂直,當(dāng)燈罩的軸線CO通過公路路面的中心線時照明效果最好.此時,路燈的燈柱AB的高應(yīng)該設(shè)計為多少米.(結(jié)果保留根號)22.(8分)某公司生產(chǎn)的某種產(chǎn)品每件成本為40元,經(jīng)市場調(diào)查整理出如下信息:①該產(chǎn)品90天售量(n件)與時間(第x天)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:時間(第x天)12310…日銷售量(n件)198196194?…②該產(chǎn)品90天內(nèi)每天的銷售價格與時間(第x天)的關(guān)系如下表:時間(第x天)1≤x<5050≤x≤90銷售價格(元/件)x+60100(1)求出第10天日銷售量;(2)設(shè)銷售該產(chǎn)品每天利潤為y元,請寫出y關(guān)于x的函數(shù)表達(dá)式,并求出在90天內(nèi)該產(chǎn)品的銷售利潤最大?最大利潤是多少?(提示:每天銷售利潤=日銷售量×(每件銷售價格-每件成本))(3)在該產(chǎn)品銷售的過程中,共有多少天銷售利潤不低于5400元,請直接寫出結(jié)果.23.(8分)學(xué)校實施新課程改革以來,學(xué)生的學(xué)習(xí)能力有了很大提高.王老師為進(jìn)一步了解本班學(xué)生自主學(xué)習(xí)、合作交流的現(xiàn)狀,對該班部分學(xué)生進(jìn)行調(diào)查,把調(diào)查結(jié)果分成四類(A:特別好,B:好,C:一般,D:較差)后,再將調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計圖(如圖1,2).請根據(jù)統(tǒng)計圖解答下列問題:本次調(diào)查中,王老師一共調(diào)查了名學(xué)生;將條形統(tǒng)計圖補充完整;為了共同進(jìn)步,王老師從被調(diào)查的A類和D類學(xué)生中分別選取一名學(xué)生進(jìn)行“兵教兵”互助學(xué)習(xí),請用列表或畫樹狀圖的方法求出恰好選中一名男生和一名女生的概率.24.(10分)如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交BC,AC于點D,E,DG⊥AC于點G,交AB的延長線于點F.(1)求證:直線FG是⊙O的切線;(2)若AC=10,cosA=2525.(10分)如圖,已知⊙O,請用尺規(guī)做⊙O的內(nèi)接正四邊形ABCD,(保留作圖痕跡,不寫做法)26.(12分)已知:如圖,拋物線y=ax2+bx+c與坐標(biāo)軸分別交于點A(0,6),B(6,0),C(﹣2,0),點P是線段AB上方拋物線上的一個動點.(1)求拋物線的解析式;(2)當(dāng)點P運動到什么位置時,△PAB的面積有最大值?(3)過點P作x軸的垂線,交線段AB于點D,再過點P做PE∥x軸交拋物線于點E,連結(jié)DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求出點P的坐標(biāo);若不存在,說明理由.27.(12分)如圖,在△ABC中,D、E分別是AB、AC的中點,BE=2DE,延長DE到點F,使得EF=BE,連接CF.(1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
根據(jù)題意求出AB的值,由D是AB中點求出CD的值,再由題意可得出EF是△ACD的中位線即可求出.【詳解】∵∠ACB=90°,∠A=30°,∴BC=12∵BC=2,∴AB=2BC=2×2=4,∵D是AB的中點,∴CD=12AB=12∵E,F分別為AC,AD的中點,∴EF是△ACD的中位線.∴EF=12CD=12故答案選B.【點睛】本題考查的知識點是三角形中位線定理,解題的關(guān)鍵是熟練的掌握三角形中位線定理.2、B【解析】
先根據(jù)題意畫出圖形,再根據(jù)平行線的性質(zhì)及方向角的描述方法解答即可.【詳解】如圖所示,由題意可知,∠1=60°,∠4=50°,∴∠5=∠4=50°,即B在C處的北偏西50°,故①正確;∵∠2=60°,∴∠3+∠7=180°﹣60°=120°,即A在B處的北偏西120°,故②錯誤;∵∠1=∠2=60°,∴∠BAC=30°,∴cos∠BAC=,故③正確;∵∠6=90°﹣∠5=40°,即公路AC和BC的夾角是40°,故④錯誤.故選B.【點睛】本題考查的是方向角,平行線的性質(zhì),特殊角的三角函數(shù)值,解答此類題需要從運動的角度,正確畫出方位角,再結(jié)合平行線的性質(zhì)求解.3、D【解析】試題解析:A原式=2x2,故A不正確;B原式=x6,故B不正確;C原式=x5,故C不正確;D原式=x2-x2=0,故D正確;故選D考點:1.同底數(shù)冪的除法;2.合并同類項;3.同底數(shù)冪的乘法;4.冪的乘方與積的乘方.4、C【解析】
解:A.故錯誤;B.故錯誤;C.正確;D.故選C.【點睛】本題考查合并同類項,同底數(shù)冪相乘;冪的乘方,以及完全平方公式的計算,掌握運算法則正確計算是解題關(guān)鍵.5、C【解析】試題分析:對于直線,令x=0,得到y(tǒng)=2;令y=0,得到x=1,∴A(1,0),B(0,﹣2),即OA=1,OB=2,在△OBA和△CDA中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC,OA=AD,∴△OBA≌△CDA(AAS),∴CD=OB=2,OA=AD=1,∴(同底等高三角形面積相等),選項①正確;∴C(2,2),把C坐標(biāo)代入反比例解析式得:k=4,即,由函數(shù)圖象得:當(dāng)0<x<2時,,選項②錯誤;當(dāng)x=3時,,,即EF==,選項③正確;當(dāng)x>0時,隨x的增大而增大,隨x的增大而減小,選項④正確,故選C.考點:反比例函數(shù)與一次函數(shù)的交點問題.6、B【解析】∵2a=3b,∴ab=3故選B.7、D【解析】
首先根據(jù)有理數(shù)a,b在數(shù)軸上的位置判斷出a、b兩數(shù)的符號,從而確定答案.【詳解】由數(shù)軸可知:a<0<b,a<-1,0<b<1,所以,A.a+b<0,故原選項錯誤;B.ab<0,故原選項錯誤;C.a-b<0,故原選項錯誤;D.,正確.故選D.【點睛】本題考查了數(shù)軸及有理數(shù)的乘法,數(shù)軸上的數(shù):右邊的數(shù)總是大于左邊的數(shù),從而確定a,b的大小關(guān)系.8、B【解析】A.y=-4x+5是一次函數(shù),故此選項錯誤;B.
y=x(2x-3)=2x2-3x,是二次函數(shù),故此選項正確;C.
y=(x+4)2?x2=8x+16,為一次函數(shù),故此選項錯誤;D.
y=是組合函數(shù),故此選項錯誤.故選B.9、A【解析】
根據(jù)折疊的性質(zhì)明確對應(yīng)關(guān)系,易得∠A=∠1,DE是△ABC的中位線,所以易得B、D答案正確,D是AB中點,所以DB=DA,故C正確.【詳解】根據(jù)題意可知DE是三角形ABC的中位線,所以DE∥BC;∠B+∠1+∠C=180°;∵BD=AD,∴△DBA是等腰三角形.故只有A錯,BA≠CA.故選A.【點睛】主要考查了三角形的內(nèi)角和外角之間的關(guān)系以及等腰三角形的性質(zhì).還涉及到翻折變換以及中位線定理的運用.(1)三角形的外角等于與它不相鄰的兩個內(nèi)角和.(1)三角形的內(nèi)角和是180度.求角的度數(shù)常常要用到“三角形的內(nèi)角和是180°這一隱含的條件.通過折疊變換考查正多邊形的有關(guān)知識,及學(xué)生的邏輯思維能力.解答此類題最好動手操作.10、D【解析】
依據(jù)一次函數(shù)的圖象,二次函數(shù)的圖象以及反比例函數(shù)的圖象進(jìn)行判斷即可.【詳解】A.正比例函數(shù)y=2x與x軸交于(0,0),不合題意;B.一次函數(shù)y=-3x+1與x軸交于(,0),不合題意;C.二次函數(shù)y=x2與x軸交于(0,0),不合題意;D.反比例函數(shù)y=與x軸沒有交點,符合題意;故選D.11、A【解析】試題分析:設(shè)這個多邊形的外角為x°,則內(nèi)角為3x°,根據(jù)多邊形的相鄰的內(nèi)角與外角互補可的方程x+3x=180,解可得外角的度數(shù),再用外角和除以外角度數(shù)即可得到邊數(shù).解:設(shè)這個多邊形的外角為x°,則內(nèi)角為3x°,由題意得:x+3x=180,解得x=45,這個多邊形的邊數(shù):360°÷45°=8,故選A.考點:多邊形內(nèi)角與外角.12、D【解析】
甶待定系數(shù)法可求出函數(shù)的解析式為:,由上步所得可知比例系數(shù)為負(fù),聯(lián)系反比例函數(shù),一次函數(shù)的性質(zhì)即可確定函數(shù)圖象.【詳解】解:由于函數(shù)的圖像經(jīng)過點,則有∴圖象過第二、四象限,
∵k=-1,
∴一次函數(shù)y=x-1,
∴圖象經(jīng)過第一、三、四象限,
故選:D.【點睛】本題考查反比例函數(shù)的圖象與性質(zhì),一次函數(shù)的圖象,解題的關(guān)鍵是求出函數(shù)的解析式,根據(jù)解析式進(jìn)行判斷;二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】
根據(jù)△ABC中DE垂直平分AC,可求出AE=CE,再根據(jù)等腰三角形的性質(zhì)求出∠ACE=∠A=30°,再根據(jù)∠ACB=80°即可解答.【詳解】∵DE垂直平分AC,∠A=30°,∴AE=CE,∠ACE=∠A=30°,∵∠ACB=80°,∴∠BCE=80°-30°=1°.故答案為:1.14、1或1﹣2【解析】
當(dāng)點P在AF上時,由翻折的性質(zhì)可求得PF=FC=1,然后再求得正方形的對角線AF的長,從而可得到PA的長;當(dāng)點P在BE上時,由正方形的性質(zhì)可知BP為AF的垂直平分線,則AP=PF,由翻折的性質(zhì)可求得PF=FC=1,故此可得到AP的值.【詳解】解:如圖1所示:由翻折的性質(zhì)可知PF=CF=1,∵ABFE為正方形,邊長為2,∴AF=2.∴PA=1﹣2.如圖2所示:由翻折的性質(zhì)可知PF=FC=1.∵ABFE為正方形,∴BE為AF的垂直平分線.∴AP=PF=1.故答案為:1或1﹣2.【點睛】本題主要考查的是翻折的性質(zhì)、正方形的性質(zhì)的應(yīng)用,根據(jù)題意畫出符合題意的圖形是解題的關(guān)鍵.15、-1【解析】
根據(jù)一元二次方程的解的定義,將x=a代入方程3x1-5x+1=0,列出關(guān)于a的一元二次方程,通過變形求得3a1-5a的值后,將其整體代入所求的代數(shù)式并求值即可.【詳解】解:∵方程3x1-5x+1=0的一個根是a,∴3a1-5a+1=0,∴3a1-5a=-1,∴6a1-10a+1=1(3a1-5a)+1=-1×1+1=-1.故答案是:-1.【點睛】此題主要考查了方程解的定義.此類題型的特點是,利用方程解的定義找到相等關(guān)系,再把所求的代數(shù)式化簡后整理出所找到的相等關(guān)系的形式,再把此相等關(guān)系整體代入所求代數(shù)式,即可求出代數(shù)式的值.16、1.【解析】
根據(jù)題意作出合適的輔助線,然后根據(jù)正方形的性質(zhì)和反比例函數(shù)的性質(zhì),相似三角形的判定和性質(zhì)、勾股定理可以求得AB的長.【詳解】解:由題意可得:OA=AB,設(shè)AP=a,則BP=2a,OA=3a,設(shè)點A的坐標(biāo)為(m,),作AE⊥x軸于點E.∵∠PAO=∠OEA=90°,∠POA+∠AOE=90°,∠AOE+∠OAE=90°,∴∠POA=∠OAE,∴△POA∽△OAE,∴=,即=,解得:m=1或m=﹣1(舍去),∴點A的坐標(biāo)為(1,3),∴OA=,∴正方形OABC的面積=OA2=1.故答案為1.【點睛】本題考查了反比例函數(shù)圖象點的坐標(biāo)特征、正方形的性質(zhì),解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.17、1【解析】分析:直接利用二次根式以及絕對值的性質(zhì)分別化簡得出答案.詳解:原式=5-3=1.故答案為1.點睛:此題主要考查了實數(shù)運算,正確化簡各數(shù)是解題關(guān)鍵.18、x>0【解析】【分析】分式值為正,則分子與分母同號,據(jù)此進(jìn)行討論即可得.【詳解】∵分式的值為正,∴x與x2+2的符號同號,∵x2+2>0,∴x>0,故答案為x>0.【點睛】本題考查了分式值為正的情況,熟知分式值為正時,分子分母同號是解題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y=﹣x2+2x+3,D點坐標(biāo)為();(2)當(dāng)m=時,△CDP的面積存在最大值,最大值為;(3)m的值為或或.【解析】
(1)利用待定系數(shù)法求拋物線解析式和直線CD的解析式,然后解方程組得D點坐標(biāo);
(2)設(shè)P(m,-m2+2m+3),則E(m,-m+3),則PE=-m2+m,利用三角形面積公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函數(shù)的性質(zhì)解決問題;
(3)討論:當(dāng)PC=PE時,m2+(-m2+2m+3-3)2=(-m2+m)2;當(dāng)CP=CE時,m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;當(dāng)EC=EP時,m2+(-m+3-3)2=(-m2+m)2,然后分別解方程即可得到滿足條件的m的值.【詳解】(1)把A(﹣1,0),C(0,3)分別代入y=﹣x2+bx+c得,解得,∴拋物線的解析式為y=﹣x2+2x+3;把C(0,3)代入y=﹣x+n,解得n=3,∴直線CD的解析式為y=﹣x+3,解方程組,解得或,∴D點坐標(biāo)為(,);(2)存在.設(shè)P(m,﹣m2+2m+3),則E(m,﹣m+3),∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,∴S△PCD=??(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,當(dāng)m=時,△CDP的面積存在最大值,最大值為;(3)當(dāng)PC=PE時,m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;當(dāng)CP=CE時,m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;當(dāng)EC=EP時,m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m=,綜上所述,m的值為或或.【點睛】本題考核知識點:二次函數(shù)的綜合應(yīng)用.解題關(guān)鍵點:靈活運用二次函數(shù)性質(zhì),運用數(shù)形結(jié)合思想.20、(1)y=﹣;(1)點K的坐標(biāo)為(,0);(2)點P的坐標(biāo)為:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).【解析】試題分析:(1)把A、C兩點坐標(biāo)代入拋物線解析式可求得a、c的值,可求得拋物線解析;(1)可求得點C關(guān)于x軸的對稱點C′的坐標(biāo),連接C′N交x軸于點K,再求得直線C′K的解析式,可求得K點坐標(biāo);(2)過點E作EG⊥x軸于點G,設(shè)Q(m,0),可表示出AB、BQ,再證明△BQE≌△BAC,可表示出EG,可得出△CQE關(guān)于m的解析式,再根據(jù)二次函數(shù)的性質(zhì)可求得Q點的坐標(biāo);(4)分DO=DF、FO=FD和OD=OF三種情況,分別根據(jù)等腰三角形的性質(zhì)求得F點的坐標(biāo),進(jìn)一步求得P點坐標(biāo)即可.試題解析:(1)∵拋物線經(jīng)過點C(0,4),A(4,0),∴,解得,∴拋物線解析式為y=﹣x1+x+4;(1)由(1)可求得拋物線頂點為N(1,),如圖1,作點C關(guān)于x軸的對稱點C′(0,﹣4),連接C′N交x軸于點K,則K點即為所求,設(shè)直線C′N的解析式為y=kx+b,把C′、N點坐標(biāo)代入可得,解得,∴直線C′N的解析式為y=x-4,令y=0,解得x=,∴點K的坐標(biāo)為(,0);(2)設(shè)點Q(m,0),過點E作EG⊥x軸于點G,如圖1,由﹣x1+x+4=0,得x1=﹣1,x1=4,∴點B的坐標(biāo)為(﹣1,0),AB=6,BQ=m+1,又∵QE∥AC,∴△BQE≌△BAC,∴,即,解得EG=;∴S△CQE=S△CBQ﹣S△EBQ=(CO-EG)·BQ=(m+1)(4-)==-(m-1)1+2.又∵﹣1≤m≤4,∴當(dāng)m=1時,S△CQE有最大值2,此時Q(1,0);(4)存在.在△ODF中,(ⅰ)若DO=DF,∵A(4,0),D(1,0),∴AD=OD=DF=1.又在Rt△AOC中,OA=OC=4,∴∠OAC=45°.∴∠DFA=∠OAC=45°.∴∠ADF=90°.此時,點F的坐標(biāo)為(1,1).由﹣x1+x+4=1,得x1=1+,x1=1﹣.此時,點P的坐標(biāo)為:P1(1+,1)或P1(1﹣,1);(ⅱ)若FO=FD,過點F作FM⊥x軸于點M.由等腰三角形的性質(zhì)得:OM=OD=1,∴AM=2.∴在等腰直角△AMF中,MF=AM=2.∴F(1,2).由﹣x1+x+4=2,得x1=1+,x1=1﹣.此時,點P的坐標(biāo)為:P2(1+,2)或P4(1﹣,2);(ⅲ)若OD=OF,∵OA=OC=4,且∠AOC=90°.∴AC=4.∴點O到AC的距離為1.而OF=OD=1<1,與OF≥1矛盾.∴在AC上不存在點使得OF=OD=1.此時,不存在這樣的直線l,使得△ODF是等腰三角形.綜上所述,存在這樣的直線l,使得△ODF是等腰三角形.所求點P的坐標(biāo)為:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).點睛:本題是二次函數(shù)綜合題,主要考查待定系數(shù)法、三角形全等的判定與性質(zhì)、等腰三角形的性質(zhì)等,能正確地利用數(shù)形結(jié)合思想、分類討論思想等進(jìn)行解題是關(guān)鍵.21、(10-4)米【解析】
延長OC,AB交于點P,△PCB∽△PAO,根據(jù)相似三角形對應(yīng)邊比例相等的性質(zhì)即可解題.【詳解】解:如圖,延長OC,AB交于點P.∵∠ABC=120°,∴∠PBC=60°,∵∠OCB=∠A=90°,∴∠P=30°,∵AD=20米,∴OA=AD=10米,∵BC=2米,∴在Rt△CPB中,PC=BC?tan60°=米,PB=2BC=4米,∵∠P=∠P,∠PCB=∠A=90°,∴△PCB∽△PAO,∴,∴PA===米,∴AB=PA﹣PB=()米.答:路燈的燈柱AB高應(yīng)該設(shè)計為()米.22、(1)1件;(2)第40天,利潤最大7200元;(3)46天【解析】試題分析:(1)根據(jù)待定系數(shù)法解出一次函數(shù)解析式,然后把x=10代入即可;(2)設(shè)利潤為y元,則當(dāng)1≤x<50時,y=﹣2x2+160x+4000;當(dāng)50≤x≤90時,y=﹣120x+12000,分別求出各段上的最大值,比較即可得到結(jié)論;(3)直接寫出在該產(chǎn)品銷售的過程中,共有46天銷售利潤不低于5400元.試題解析:解:(1)∵n與x成一次函數(shù),∴設(shè)n=kx+b,將x=1,m=198,x=3,m=194代入,得:,解得:,所以n關(guān)于x的一次函數(shù)表達(dá)式為n=-2x+200;當(dāng)x=10時,n=-2×10+200=1.(2)設(shè)銷售該產(chǎn)品每天利潤為y元,y關(guān)于x的函數(shù)表達(dá)式為:當(dāng)1≤x<50時,y=-2x2+160x+4000=-2(x-40)2+7200,∵-2<0,∴當(dāng)x=40時,y有最大值,最大值是7200;當(dāng)50≤x≤90時,y=-120x+12000,∵-120<0,∴y隨x增大而減小,即當(dāng)x=50時,y的值最大,最大值是6000;綜上所述:當(dāng)x=40時,y的值最大,最大值是7200,即在90天內(nèi)該產(chǎn)品第40天的銷售利潤最大,最大利潤是7200元;(3)在該產(chǎn)品銷售的過程中,共有46天銷售利潤不低于5400元.23、(1)20;(2)作圖見試題解析;(3).【解析】
(1)由A類的學(xué)生數(shù)以及所占的百分比即可求得答案;(2)先求出C類的女生數(shù)、D類的男生數(shù),繼而可補全條形統(tǒng)計圖;(3)首先根據(jù)題意列出表格,再利用表格求得所有等可能的結(jié)果與恰好選中一名男生和一名女生的情況,繼而求得答案.【詳解】(1)根據(jù)題意得:王老師一共調(diào)查學(xué)生:(2+1)÷15%=20(名);故答案為20;(2)∵C類女生:20×25%﹣2=3(名);D類男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如圖:(3)列表如下:A類中的兩名男生分別記為A1和A2,男A1男A2女A男D男A1男D男A2男D女A男D女D男A1女D男A2女D女A女D共有6種等可能的結(jié)果,其中,一男一女的有3種,所以所選兩位同學(xué)恰好是一位男生和一位女生的概率為:.24、(3)證明見試題解析;(3)3.【解析】試題分析:(3)先得出OD∥AC,有∠ODG=∠DGC,再由DG⊥AC,得到∠DGC=90°,∠ODG=90°,得出OD⊥FG,即可得出直線FG是⊙O的切線.(3)先得出△ODF∽△AGF,再由cosA=25,得出cos∠DOF=2試題解析:(3)如圖3,連接OD,∵AB=AC,∴∠C=∠ABC,∵OD=OB,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴∠ODG=∠DGC,∵DG⊥AC,∴∠DGC=90°,∴∠ODG=90°,∴OD⊥FG,∵OD是⊙O的半徑,∴直線FG是⊙O的切線;(3)如圖3,∵AB=AC=30,AB是⊙O的直徑,∴OA=OD=30÷3=5,由(3),可得:OD⊥FG,OD∥AC,∴∠ODF=90°,∠DOF=∠A,在△ODF和△AGF中,∵∠DOF=∠A,∠F=∠F,∴△ODF∽△AGF,∴ODAG=OFAF,∵cosA=25,∴cos∠DOF=25,∴OF=ODcos∠DOF=52考點:3.切線的判定;3.相似三角形的判定與性質(zhì);3.綜合題.25、見解析【解析】
根據(jù)內(nèi)接正四邊形的作圖方法畫出圖,保留作圖痕跡即可.【詳解】任作一條直徑,再作該直徑的中垂線,順次連接圓上的四點即可.【點睛】此題重點考察學(xué)生對圓內(nèi)接正四邊形作圖的應(yīng)用,掌握圓內(nèi)接正四邊形的作圖方法是解題的關(guān)鍵.26、(1)拋物線解析式為y=﹣x2+2x+6;(2)當(dāng)t=3時,△PAB的面積有最大值;(3)點P(4,6).【解析】
(1)利用待定系數(shù)法進(jìn)行求解即可得;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年鐵路貨物運輸與專用線運營合同
- 2025年度建筑勞務(wù)分包合同標(biāo)的工程進(jìn)度與質(zhì)量監(jiān)管條款3篇
- 2024年贈與股份合同:父子權(quán)益的傳遞與確認(rèn)
- 2024庭院園藝景觀設(shè)計與生態(tài)修復(fù)工程包工合同范本6篇
- 2024年電子商務(wù)平臺送貨員聘用合同
- 2024年航空航天產(chǎn)業(yè)投資合作意向書(國家戰(zhàn)略版)3篇
- 2024年社交媒體品牌建設(shè)與維護(hù)服務(wù)條款3篇
- 2024年版權(quán)許可合同違約責(zé)任認(rèn)定
- 2024年資產(chǎn)重組合同范本
- 2024物業(yè)管理實務(wù)客戶關(guān)系管理與滿意度調(diào)查合同3篇
- 中國馬克思主義與當(dāng)代思考題(附答案)
- ESD靜電防護(hù)檢測及管控標(biāo)準(zhǔn)
- 【求陰影部分面積】五年級上冊數(shù)學(xué)必考求陰影部分面積35題2023.9.27
- 結(jié)核病診斷-TSPOT-實驗課件
- 業(yè)主搭建陽光房申請書
- 小學(xué)語文分層作業(yè)設(shè)計案例
- 四川旭虹光電科技有限公司曲面顯示用蓋板玻璃生產(chǎn)項目環(huán)評報告
- 傷口愈合的病理生理及濕性愈合理論-課件
- GB/T 24475-2023電梯遠(yuǎn)程報警系統(tǒng)
- 科技計劃項目(課題)驗收(結(jié)題)經(jīng)費審計業(yè)務(wù)約定書
- SIS系統(tǒng)操作規(guī)程
評論
0/150
提交評論