2023-2024學(xué)年湖北省黃石市十四中學(xué)教育集團中考數(shù)學(xué)模擬預(yù)測題含解析_第1頁
2023-2024學(xué)年湖北省黃石市十四中學(xué)教育集團中考數(shù)學(xué)模擬預(yù)測題含解析_第2頁
2023-2024學(xué)年湖北省黃石市十四中學(xué)教育集團中考數(shù)學(xué)模擬預(yù)測題含解析_第3頁
2023-2024學(xué)年湖北省黃石市十四中學(xué)教育集團中考數(shù)學(xué)模擬預(yù)測題含解析_第4頁
2023-2024學(xué)年湖北省黃石市十四中學(xué)教育集團中考數(shù)學(xué)模擬預(yù)測題含解析_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學(xué)年湖北省黃石市十四中學(xué)教育集團中考數(shù)學(xué)模擬預(yù)測題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,⊙O是△ABC的外接圓,AD是⊙O的直徑,連接CD,若⊙O的半徑r=5,AC=53,則∠B的度數(shù)是(

)A.30°B.45°C.50°D.60°2.平面直角坐標(biāo)系中的點P(2﹣m,m)在第一象限,則m的取值范圍在數(shù)軸上可表示為()A. B.C. D.3.下列運算正確的是()A.a(chǎn)2+a2=a4 B.(a+b)2=a2+b2 C.a(chǎn)6÷a2=a3 D.(﹣2a3)2=4a64.如圖,在△ABC中,cosB=,sinC=,AC=5,則△ABC的面積是()A. B.12 C.14 D.215.一次函數(shù)與二次函數(shù)在同一平面直角坐標(biāo)系中的圖像可能是()A. B. C. D.6.去年12月24日全國大約有1230000人參加研究生招生考試,1230000這個數(shù)用科學(xué)記數(shù)法表示為()A.1.23×106 B.1.23×107 C.0.123×107 D.12.3×1057.的相反數(shù)是()A. B.- C. D.8.如圖,已知矩形ABCD中,BC=2AB,點E在BC邊上,連接DE、AE,若EA平分∠BED,則的值為()A. B. C. D.9.若=1,則符合條件的m有()A.1個 B.2個 C.3個 D.4個10.一個多邊形的每一個外角都等于72°,這個多邊形是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形二、填空題(本大題共6個小題,每小題3分,共18分)11.計算:3﹣(﹣2)=____.12.口袋中裝有4個小球,其中紅球3個,黃球1個,從中隨機摸出兩球,都是紅球的概率為_________.13.如圖,點P是邊長為2的正方形ABCD的對角線BD上的動點,過點P分別作PE⊥BC于點E,PF⊥DC于點F,連接AP并延長,交射線BC于點H,交射線DC于點M,連接EF交AH于點G,當(dāng)點P在BD上運動時(不包括B、D兩點),以下結(jié)論:①MF=MC;②AH⊥EF;③AP2=PM?PH;④EF的最小值是.其中正確的是________.(把你認為正確結(jié)論的序號都填上)14.如圖,在矩形ABCD中,E是AD邊的中點,,垂足為點F,連接DF,分析下列四個結(jié)論:∽;;;其中正確的結(jié)論有______.15.因式分解.16.因式分解:-2x2y+8xy-6y=__________.三、解答題(共8題,共72分)17.(8分)石獅泰禾某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進價為80元,銷售價為120元時,每天可售出20件,為了迎接“十一”國慶節(jié),商店決定采取適當(dāng)?shù)慕祪r措施,以擴大銷售量,增加利潤,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件童裝降價1元,那么平均可多售出2件.設(shè)每件童裝降價x元時,每天可銷售______件,每件盈利______元;(用x的代數(shù)式表示)每件童裝降價多少元時,平均每天贏利1200元.要想平均每天贏利2000元,可能嗎?請說明理由.18.(8分)如圖所示,內(nèi)接于圓O,于D;(1)如圖1,當(dāng)AB為直徑,求證:;(2)如圖2,當(dāng)AB為非直徑的弦,連接OB,則(1)的結(jié)論是否成立?若成立請證明,不成立說明由;(3)如圖3,在(2)的條件下,作于E,交CD于點F,連接ED,且,若,,求CF的長度.19.(8分)如圖,已知AD是的中線,M是AD的中點,過A點作,CM的延長線與AE相交于點E,與AB相交于點F.(1)求證:四邊形是平行四邊形;(2)如果,求證四邊形是矩形.20.(8分)如圖所示,在△ABC中,AB=CB,以BC為直徑的⊙O交AC于點E,過點E作⊙O的切線交AB于點F.(1)求證:EF⊥AB;(2)若AC=16,⊙O的半徑是5,求EF的長.21.(8分)如圖,已知△ABC,按如下步驟作圖:①分別以A、C為圓心,以大于12②連接MN,分別交AB、AC于點D、O;③過C作CE∥AB交MN于點E,連接AE、CD.(1)求證:四邊形ADCE是菱形;(2)當(dāng)∠ACB=90°,BC=6,△ADC的周長為18時,求四邊形ADCE的面積.22.(10分)如圖,點A的坐標(biāo)為(﹣4,0),點B的坐標(biāo)為(0,﹣2),把點A繞點B順時針旋轉(zhuǎn)90°得到的點C恰好在拋物線y=ax2上,點P是拋物線y=ax2上的一個動點(不與點O重合),把點P向下平移2個單位得到動點Q,則:(1)直接寫出AB所在直線的解析式、點C的坐標(biāo)、a的值;(2)連接OP、AQ,當(dāng)OP+AQ獲得最小值時,求這個最小值及此時點P的坐標(biāo);(3)是否存在這樣的點P,使得∠QPO=∠OBC,若不存在,請說明理由;若存在,請你直接寫出此時P點的坐標(biāo).23.(12分)某校為了了解九年級學(xué)生體育測試成績情況,以九年(1)班學(xué)生的體育測試成績?yōu)闃颖?,按A、B、C、D四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制如下兩幅統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:(說明:A級:90分﹣100分;B級:75分﹣89分;C級:60分﹣74分;D級:60分以下)(1)寫出D級學(xué)生的人數(shù)占全班總?cè)藬?shù)的百分比為,C級學(xué)生所在的扇形圓心角的度數(shù)為;(2)該班學(xué)生體育測試成績的中位數(shù)落在等級內(nèi);(3)若該校九年級學(xué)生共有500人,請你估計這次考試中A級和B級的學(xué)生共有多少人?24.光華農(nóng)機租賃公司共有50臺聯(lián)合收割機,其中甲型20臺,乙型30臺,先將這50臺聯(lián)合收割機派往A、B兩地區(qū)收割小麥,其中30臺派往A地區(qū),20臺派往B地區(qū).兩地區(qū)與該農(nóng)機租賃公司商定的每天的租賃價格見表:每臺甲型收割機的租金每臺乙型收割機的租金A地區(qū)18001600B地區(qū)16001200(1)設(shè)派往A地區(qū)x臺乙型聯(lián)合收割機,租賃公司這50臺聯(lián)合收割機一天獲得的租金為y(元),求y與x間的函數(shù)關(guān)系式,并寫出x的取值范圍;(2)若使農(nóng)機租賃公司這50臺聯(lián)合收割機一天獲得的租金總額不低于79600元,說明有多少種分配方案,并將各種方案設(shè)計出來;(3)如果要使這50臺聯(lián)合收割機每天獲得的租金最高,請你為光華農(nóng)機租賃公司提一條合理化建議.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】根據(jù)圓周角定理的推論,得∠B=∠D.根據(jù)直徑所對的圓周角是直角,得∠ACD=90°.

在直角三角形ACD中求出∠D.則sinD=AC∠D=60°∠B=∠D=60°.故選D.“點睛”此題綜合運用了圓周角定理的推論以及銳角三角函數(shù)的定義,解答時要找準(zhǔn)直角三角形的對應(yīng)邊.2、B【解析】

根據(jù)第二象限中點的特征可得:,解得:.在數(shù)軸上表示為:故選B.考點:(1)、不等式組;(2)、第一象限中點的特征3、D【解析】

根據(jù)完全平方公式、合并同類項、同底數(shù)冪的除法、積的乘方,即可解答.【詳解】A、a2+a2=2a2,故錯誤;B、(a+b)2=a2+2ab+b2,故錯誤;C、a6÷a2=a4,故錯誤;D、(-2a3)2=4a6,正確;故選D.【點睛】本題考查了完全平方公式、同底數(shù)冪的除法、積的乘方以及合并同類項,解決本題的關(guān)鍵是熟記公式和法則.4、A【解析】

根據(jù)已知作出三角形的高線AD,進而得出AD,BD,CD,的長,即可得出三角形的面積.【詳解】解:過點A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,

∴cosB==,

∴∠B=45°,

∵sinC===,

∴AD=3,

∴CD==4,

∴BD=3,

則△ABC的面積是:×AD×BC=×3×(3+4)=.

故選:A.【點睛】此題主要考查了解直角三角形的知識,作出AD⊥BC,進而得出相關(guān)線段的長度是解決問題的關(guān)鍵.5、D【解析】

本題可先由一次函數(shù)y=ax+c圖象得到字母系數(shù)的正負,再與二次函數(shù)y=ax2+bx+c的圖象相比較看是否一致.【詳解】A、一次函數(shù)y=ax+c與y軸交點應(yīng)為(0,c),二次函數(shù)y=ax2+bx+c與y軸交點也應(yīng)為(0,c),圖象不符合,故本選項錯誤;B、由拋物線可知,a>0,由直線可知,a<0,a的取值矛盾,故本選項錯誤;C、由拋物線可知,a<0,由直線可知,a>0,a的取值矛盾,故本選項錯誤;D、由拋物線可知,a<0,由直線可知,a<0,且拋物線與直線與y軸的交點相同,故本選項正確.故選D.【點睛】本題考查拋物線和直線的性質(zhì),用假設(shè)法來搞定這種數(shù)形結(jié)合題是一種很好的方法.6、A【解析】分析:科學(xué)記數(shù)法的表示形式為的形式,其中為整數(shù).確定的值時,要看把原數(shù)變成時,小數(shù)點移動了多少位,的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,是正數(shù);當(dāng)原數(shù)的絕對值<1時,是負數(shù).詳解:1230000這個數(shù)用科學(xué)記數(shù)法可以表示為故選A.點睛:考查科學(xué)記數(shù)法,掌握絕對值大于1的數(shù)的表示方法是解題的關(guān)鍵.7、C【解析】

根據(jù)只有符號不同的兩個數(shù)互為相反數(shù)進行解答即可.【詳解】與只有符號不同,所以的相反數(shù)是,故選C.【點睛】本題考查了相反數(shù)的定義,熟練掌握相反數(shù)的定義是解題的關(guān)鍵.8、C【解析】

過點A作AF⊥DE于F,根據(jù)角平分線上的點到角的兩邊距離相等可得AF=AB,利用全等三角形的判定和性質(zhì)以及矩形的性質(zhì)解答即可.【詳解】解:如圖,過點A作AF⊥DE于F,在矩形ABCD中,AB=CD,∵AE平分∠BED,∴AF=AB,∵BC=2AB,∴BC=2AF,∴∠ADF=30°,在△AFD與△DCE中∵∠C=∠AFD=90°,∠ADF=∠DEC,AF=DC,,∴△AFD≌△DCE(AAS),∴△CDE的面積=△AFD的面積=∵矩形ABCD的面積=AB?BC=2AB2,∴2△ABE的面積=矩形ABCD的面積﹣2△CDE的面積=(2﹣)AB2,∴△ABE的面積=,∴,故選:C.【點睛】本題考查了矩形的性質(zhì),角平分線上的點到角的兩邊距離相等的性質(zhì),以及全等三角形的判定與性質(zhì),關(guān)鍵是根據(jù)角平分線上的點到角的兩邊距離相等可得AF=AB.9、C【解析】

根據(jù)有理數(shù)的乘方及解一元二次方程-直接開平方法得出兩個有關(guān)m的等式,即可得出.【詳解】=1m2-9=0或m-2=1即m=3或m=3,m=1m有3個值故答案選C.【點睛】本題考查的知識點是有理數(shù)的乘方及解一元二次方程-直接開平方法,解題的關(guān)鍵是熟練的掌握有理數(shù)的乘方及解一元二次方程-直接開平方法.10、C【解析】

任何多邊形的外角和是360°,用360°除以一個外角度數(shù)即可求得多邊形的邊數(shù).【詳解】360°÷72°=1,則多邊形的邊數(shù)是1.故選C.【點睛】本題主要考查了多邊形的外角和定理,已知外角求邊數(shù)的這種方法是需要熟記的內(nèi)容.二、填空題(本大題共6個小題,每小題3分,共18分)11、2+2【解析】

根據(jù)平面向量的加法法則計算即可.【詳解】3﹣(﹣2)=3﹣+2=2+2,故答案為:2+2,【點睛】本題考查平面向量,熟練掌握平面向量的加法法則是解題的關(guān)鍵.12、【解析】

先畫出樹狀圖,用隨意摸出兩個球是紅球的結(jié)果個數(shù)除以所有可能的結(jié)果個數(shù)即可.【詳解】∵從中隨意摸出兩個球的所有可能的結(jié)果個數(shù)是12,隨意摸出兩個球是紅球的結(jié)果個數(shù)是6,∴從中隨意摸出兩個球的概率=;故答案為:.【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.13、②③④【解析】

①可用特殊值法證明,當(dāng)為的中點時,,可見.②可連接,交于點,先根據(jù)證明,得到,根據(jù)矩形的性質(zhì)可得,故,又因為,故,故.③先證明,得到,再根據(jù),得到,代換可得.④根據(jù),可知當(dāng)取最小值時,也取最小值,根據(jù)點到直線的距離也就是垂線段最短可得,當(dāng)時,取最小值,再通過計算可得.【詳解】解:①錯誤.當(dāng)為的中點時,,可見;②正確.如圖,連接,交于點,,,,,四邊形為矩形,,,,,,,.③正確.,,,,,又,,,,,.④正確.且四邊形為矩形,,當(dāng)時,取最小值,此時,故的最小值為.故答案為:②③④.【點睛】本題是動點問題,綜合考查了矩形、正方形的性質(zhì),全等三角形與相似三角形的性質(zhì)與判定,線段的最值問題等,合理作出輔助線,熟練掌握各個相關(guān)知識點是解答關(guān)鍵.14、【解析】

①證明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;②由AD∥BC,推出△AEF∽△CBF,得到,由AE=AD=BC,得到,即CF=2AF;③作DM∥EB交BC于M,交AC于N,證明DM垂直平分CF,即可證明;④設(shè)AE=a,AB=b,則AD=2a,根據(jù)△BAE∽△ADC,得到,即b=a,可得tan∠CAD=.【詳解】如圖,過D作DM∥BE交AC于N,∵四邊形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于點F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正確;∵AD∥BC,∴△AEF∽△CBF,∴,∵AE=AD=BC,∴,即CF=2AF,∴CF=2AF,故②正確;作DM∥EB交BC于M,交AC于N,∵DE∥BM,BE∥DM,∴四邊形BMDE是平行四邊形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于點F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正確;設(shè)AE=a,AB=b,則AD=2a,由△BAE∽△ADC,∴,即b=a,∴tan∠CAD=,故④錯誤;故答案為:①②③.【點睛】本題主要考查了相似三角形的判定和性質(zhì),矩形的性質(zhì),圖形面積的計算以及解直角三角形的綜合應(yīng)用,正確的作出輔助線構(gòu)造平行四邊形是解題的關(guān)鍵.15、【解析】試題分析:要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式后繼續(xù)應(yīng)用平方差公式分解即可:.16、-2y(x-1)(x-3)【解析】分析:提取公因式法和十字相乘法相結(jié)合因式分解即可.詳解:原式故答案為點睛:本題主要考查因式分解,熟練掌握提取公因式法和十字相乘法是解題的關(guān)鍵.分解一定要徹底.三、解答題(共8題,共72分)17、(1)(20+2x),(40﹣x);(2)每件童裝降價20元或10元,平均每天贏利1200元;(3)不可能做到平均每天盈利2000元.【解析】

(1)、根據(jù)銷售量=原銷售量+因價格下降而增加的數(shù)量;每件利潤=原售價-進價-降價,列式即可;(2)、根據(jù)總利潤=單件利潤×數(shù)量,列出方程即可;(3)、根據(jù)(2)中的相關(guān)關(guān)系方程,判斷方程是否有實數(shù)根即可.【詳解】(1)、設(shè)每件童裝降價x元時,每天可銷售20+2x件,每件盈利40-x元,

故答案為(20+2x),(40-x);(2)、根據(jù)題意可得:(20+2x)(40-x)=1200,解得:即每件童裝降價10元或20元時,平均每天盈利1200元;(3)、(20+2x)(40-x)=2000,,∵此方程無解,∴不可能盈利2000元.【點睛】本題主要考查的是一元二次方程的實際應(yīng)用問題,屬于中等難度題型.解決這個問題的關(guān)鍵就是要根據(jù)題意列出方程.18、(1)見解析;(2)成立;(3)【解析】

(1)根據(jù)圓周角定理求出∠ACB=90°,求出∠ADC=90°,再根據(jù)三角形內(nèi)角和定理求出即可;(2)根據(jù)圓周角定理求出∠BOC=2∠A,求出∠OBC=90°-∠A和∠ACD=90°-∠A即可;(3)分別延長AE、CD交⊙O于H、K,連接HK、CH、AK,在AD上取DG=BD,延長CG交AK于M,延長KO交⊙O于N,連接CN、AN,求出關(guān)于a的方程,再求出a即可.【詳解】(1)證明:∵AB為直徑,∴,∵于D,∴,∴,,∴;(2)成立,證明:連接OC,由圓周角定理得:,∵,∴,∵,∴,∴;(3)分別延長AE、CD交⊙O于H、K,連接HK、CH、AK,∵,,∴,∴,,∵,∴,∵根據(jù)圓周角定理得:,∴,∴由三角形內(nèi)角和定理得:,∴,∴,同理,∵,∴,在AD上取,延長CG交AK于M,則,,∴,∴,延長KO交⊙O于N,連接CN、AN,則,∴,∵,∴,∴四邊形CGAN是平行四邊形,∴,作于T,則T為CK的中點,∵O為KN的中點,∴,∵,,∴由勾股定理得:,∴,作直徑HS,連接KS,∵,,∴由勾股定理得:,∴,∴,設(shè),,∴,,∵,∴,解得:,∴,∴.【點睛】本題考查了垂徑定理、解直角三角形、等腰三角形的性質(zhì)、圓周角定理、勾股定理等知識點,能綜合運用知識點進行推理是解此題的關(guān)鍵,綜合性比較強,難度偏大.19、(1)見解析;(2)見解析.【解析】

(1)先判定,可得,再根據(jù)是的中線,即可得到,依據(jù),即可得出四邊形是平行四邊形;(2)先判定,即可得到,依據(jù),可得根據(jù)是的中線,可得,進而得出四邊形是矩形.【詳解】證明:(1)是的中點,,,,又,,,又是的中線,,又,四邊形是平行四邊形;(2),,∴,即,,又,,又是的中線,,又四邊形是平行四邊形,四邊形是矩形.【點睛】本題主要考查了平行四邊形、矩形的判定,等腰三角形的性質(zhì)以及相似三角形的性質(zhì)的運用,解題時注意:對角線相等的平行四邊形是矩形.20、(1)證明見解析;(2)4.8.【解析】

(1)連結(jié)OE,根據(jù)等腰三角形的性質(zhì)可得∠OEC=∠OCA、∠A=∠OCA,即可得∠A=∠OEC,由同位角相等,兩直線平行即可判定OE∥AB,又因EF是⊙O的切線,根據(jù)切線的性質(zhì)可得EF⊥OE,由此即可證得EF⊥AB;(2)連結(jié)BE,根據(jù)直徑所對的圓周角為直角可得,∠BEC=90°,再由等腰三角形三線合一的性質(zhì)求得AE=EC=8,在Rt△BEC中,根據(jù)勾股定理求的BE=6,再由△ABE的面積=△BEC的面積,根據(jù)直角三角形面積的兩種表示法可得8×6=10×EF,由此即可求得EF=4.8.【詳解】(1)證明:連結(jié)OE.∵OE=OC,∴∠OEC=∠OCA,∵AB=CB,∴∠A=∠OCA,∴∠A=∠OEC,∴OE∥AB,∵EF是⊙O的切線,∴EF⊥OE,∴EF⊥AB.(2)連結(jié)BE.∵BC是⊙O的直徑,∴∠BEC=90°,又AB=CB,AC=16,∴AE=EC=AC=8,∵AB=CB=2BO=10,∴BE=,又△ABE的面積=△BEC的面積,即8×6=10×EF,∴EF=4.8.【點睛】本題考查了切線的性質(zhì)定理、圓周角定理、等腰三角形的性質(zhì)與判定、勾股定理及直角三角形的兩種面積求法等知識點,熟練運算這些知識是解決問題的關(guān)鍵.21、(1)詳見解析;(2)1.【解析】

(1)利用直線DE是線段AC的垂直平分線,得出AC⊥DE,即∠AOD=∠COE=90°,從而得出△AOD≌△COE,即可得出四邊形ADCE是菱形.

(2)利用當(dāng)∠ACB=90°時,OD∥BC,即有△ADO∽△ABC,即可由相似三角形的性質(zhì)和勾股定理得出OD和AO的長,即根據(jù)菱形的性質(zhì)得出四邊形ADCE的面積.【詳解】(1)證明:由題意可知:∵分別以A、C為圓心,以大于12∴直線DE是線段AC的垂直平分線,∴AC⊥DE,即∠AOD=∠COE=90°;且AD=CD、AO=CO,又∵CE∥AB,∴∠1=∠2,在△AOD和△COE中∠1=∠2∠AOD=∠COE=∴△AOD≌△COE(AAS),∴OD=OE,∵A0=CO,DO=EO,∴四邊形ADCE是平行四邊形,又∵AC⊥DE,∴四邊形ADCE是菱形;(2)解:當(dāng)∠ACB=90°時,OD∥BC,即有△ADO∽△ABC,∴ODBC又∵BC=6,∴OD=3,又∵△ADC的周長為18,∴AD+AO=9,即AD=9﹣AO,∴OD=A可得AO=4,∴DE=6,AC=8,∴S=1【點睛】考查線段垂直平分線的性質(zhì),菱形的判定,相似三角形的判定與性質(zhì)等,綜合性比較強.22、(1)a=;(2)OP+AQ的最小值為2,此時點P的坐標(biāo)為(﹣1,);(3)P(﹣4,8)或(4,8),【解析】

(1)利用待定系數(shù)法求出直線AB解析式,根據(jù)旋轉(zhuǎn)性質(zhì)確定出C的坐標(biāo),代入二次函數(shù)解析式求出a的值即可;(2)連接BQ,可得PQ與OB平行,而PQ=OB,得到四邊形PQBO為平行四邊形,當(dāng)Q在線段AB上時,求出OP+AQ的最小值,并求出此時P的坐標(biāo)即可;(3)存在這樣的點P,使得∠QPO=∠OBC,如備用圖所示,延長PQ交x軸于點H,設(shè)此時點P的坐標(biāo)為(m,m2),根據(jù)正切函數(shù)定義確定出m的值,即可確定出P的坐標(biāo).【詳解】解:(1)設(shè)直線AB解析式為y=kx+b,把A(﹣4,0),B(0,﹣2)代入得:,解得:,∴直線AB的解析式為y=﹣x﹣2,根據(jù)題意得:點C的坐標(biāo)為(2,2),把C(2,2)代入二次函數(shù)解析式得:a=;(2)連接BQ,則易得PQ∥OB,且PQ=OB,∴四邊形PQBO是平行四邊形,∴OP=BQ,∴OP+AQ=BQ+AQ≥AB=2,(等號成立的條件是點Q在線段AB上),∵直線AB的解析式為y=﹣x﹣2,∴可設(shè)此時點Q的坐標(biāo)為(t,﹣t﹣2),于是,此時點P的坐標(biāo)為(t,﹣t),∵點P在拋物線y=x2上,∴﹣t=t2,解得:t=0或t=﹣1,∴當(dāng)t=0,點P與點O重合,不合題意,應(yīng)舍去,∴OP+AQ的最小值為2,此時點P的坐標(biāo)為(﹣1,);(3)P(﹣4,8)或(4,8),如備用圖所示,延長PQ交x軸于點H,設(shè)此時點P的坐標(biāo)為(m,m2),則tan∠HPO=,又,易得tan∠OBC=,當(dāng)tan∠HPO=tan∠OBC時,可使得∠QPO=∠OBC,于是,得,解得:m=±4,所以P(﹣4,8)或(4,8).【點睛】此題屬于二次函數(shù)綜合題,涉及的知識有:二次函數(shù)的圖象與性質(zhì),待定系數(shù)法求一次函數(shù)解析式,旋轉(zhuǎn)的性質(zhì),以及銳角三角函數(shù)定義,熟練掌握各自的性質(zhì)是解本題的關(guān)鍵.23、(1)4%;(2)72°;(3)380人【解析】

(1)根據(jù)A級人數(shù)及百分數(shù)計算九年級(1)班學(xué)生人數(shù),用總?cè)藬?shù)減A、B、D級人數(shù),得C級人數(shù),再用C級人數(shù)÷總?cè)藬?shù)×360°,得C等級所在的扇形圓心角的度數(shù);(2)將人數(shù)按級排列,可得該班學(xué)生體育測試成績的中位數(shù);(3)用(A級百分數(shù)+B級百分數(shù))×1900,得這次考試中獲得A級和B級的九年級學(xué)生共有的人數(shù);(4)根據(jù)各等級人數(shù)多少,設(shè)計合格的等級,使大多數(shù)人能合格.【詳解】解:(1)九年級(1)班學(xué)生人數(shù)為13÷26%=50人,C級人數(shù)為50-1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論