浙江省溫州市文成縣黃坦中學(xué)2024屆十校聯(lián)考最后數(shù)學(xué)試題含解析_第1頁
浙江省溫州市文成縣黃坦中學(xué)2024屆十校聯(lián)考最后數(shù)學(xué)試題含解析_第2頁
浙江省溫州市文成縣黃坦中學(xué)2024屆十校聯(lián)考最后數(shù)學(xué)試題含解析_第3頁
浙江省溫州市文成縣黃坦中學(xué)2024屆十校聯(lián)考最后數(shù)學(xué)試題含解析_第4頁
浙江省溫州市文成縣黃坦中學(xué)2024屆十校聯(lián)考最后數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

浙江省溫州市文成縣黃坦中學(xué)2024屆十校聯(lián)考最后數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,△ADE繞正方形ABCD的頂點A順時針旋轉(zhuǎn)90°,得△ABF,連接EF交AB于H,有如下五個結(jié)論①AE⊥AF;②EF:AF=:1;③AF2=FH?FE;④∠AFE=∠DAE+∠CFE⑤FB:FC=HB:EC.則正確的結(jié)論有()A.2個 B.3個 C.4個 D.5個2.如圖,AB是半圓的直徑,O為圓心,C是半圓上的點,D是上的點,若∠BOC=40°,則∠D的度數(shù)為()A.100° B.110° C.120° D.130°3.在△ABC中,AB=3,BC=4,AC=2,D,E,F(xiàn)分別為AB,BC,AC中點,連接DF,F(xiàn)E,則四邊形DBEF的周長是(

)A.5 B.7 C.9 D.114.在代數(shù)式中,m的取值范圍是()A.m≤3 B.m≠0 C.m≥3 D.m≤3且m≠05.若x=-2是關(guān)于x的一元二次方程x2+ax-a2=0的一個根,則a的值為()A.-1或4 B.-1或-4C.1或-4 D.1或46.從﹣1,2,3,﹣6這四個數(shù)中任選兩數(shù),分別記作m,n,那么點(m,n)在函數(shù)y=圖象上的概率是()A. B. C. D.7.計算6m6÷(-2m2)3的結(jié)果為()A. B. C. D.8.如圖,一把矩形直尺沿直線斷開并錯位,點E、D、B、F在同一條直線上,若∠ADE=125°,則∠DBC的度數(shù)為()A.125° B.75° C.65° D.55°9.如圖,菱形OABC的頂點C的坐標(biāo)為(3,4),頂點A在x軸的正半軸上.反比例函數(shù)(x>0)的圖象經(jīng)過頂點B,則k的值為A.12 B.20 C.24 D.3210.為了鍛煉學(xué)生身體素質(zhì),訓(xùn)練定向越野技能,某校在一公園內(nèi)舉行定向越野挑戰(zhàn)賽.路線圖如圖1所示,點E為矩形ABCD邊AD的中點,在矩形ABCD的四個頂點處都有定位儀,可監(jiān)測運動員的越野進程,其中一位運動員P從點B出發(fā),沿著B﹣E﹣D的路線勻速行進,到達點D.設(shè)運動員P的運動時間為t,到監(jiān)測點的距離為y.現(xiàn)有y與t的函數(shù)關(guān)系的圖象大致如圖2所示,則這一信息的來源是()A.監(jiān)測點A B.監(jiān)測點B C.監(jiān)測點C D.監(jiān)測點D11.如圖,是的外接圓,已知,則的大小為A. B. C. D.12.如圖,正方形ABCD中,AB=6,G是BC的中點.將△ABG沿AG對折至△AFG,延長GF交DC于點E,則DE的長是()A.1 B.1.5 C.2 D.2.5二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在每個小正方形的邊長為1的網(wǎng)格中,點O,A,B,M均在格點上,P為線段OM上的一個動點.(1)OM的長等于_______;(2)當(dāng)點P在線段OM上運動,且使PA2+PB2取得最小值時,請借助網(wǎng)格和無刻度的直尺,在給定的網(wǎng)格中畫出點P的位置,并簡要說明你是怎么畫的.14.如圖,把△ABC繞點C按順時針方向旋轉(zhuǎn)35°,得到△A’B’C,A’B’交AC于點D,若∠A’DC=90°,則∠A=°.15.的系數(shù)是_____,次數(shù)是_____.16.如果2,那么=_____(用向量,表示向量).17.如圖,在中國象棋的殘局上建立平面直角坐標(biāo)系,如果“相”和“兵”的坐標(biāo)分別是(3,-1)和(-3,1),那么“卒”的坐標(biāo)為_____.

18.有公共頂點A,B的正五邊形和正六邊形按如圖所示位置擺放,連接AC交正六邊形于點D,則∠ADE的度數(shù)為()A.144° B.84° C.74° D.54°三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖1,在長方形ABCD中,,,點P從A出發(fā),沿的路線運動,到D停止;點Q從D點出發(fā),沿路線運動,到A點停止.若P、Q兩點同時出發(fā),速度分別為每秒、,a秒時P、Q兩點同時改變速度,分別變?yōu)槊棵搿?P、Q兩點速度改變后一直保持此速度,直到停止),如圖2是的面積和運動時間(秒)的圖象.(1)求出a值;(2)設(shè)點P已行的路程為,點Q還剩的路程為,請分別求出改變速度后,和運動時間(秒)的關(guān)系式;(3)求P、Q兩點都在BC邊上,x為何值時P,Q兩點相距3cm?20.(6分)如圖,在平面直角坐標(biāo)系中,拋物線y=-x2+bx+c與x軸交于點A(-1,0),點B(3,0),與y軸交于點C,線段BC與拋物線的對稱軸交于點E、P為線段BC上的一點(不與點B、C重合),過點P作PF∥y軸交拋物線于點F,連結(jié)DF.設(shè)點P的橫坐標(biāo)為m.(1)求此拋物線所對應(yīng)的函數(shù)表達式.(2)求PF的長度,用含m的代數(shù)式表示.(3)當(dāng)四邊形PEDF為平行四邊形時,求m的值.21.(6分)計算:.化簡:.22.(8分)如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個交點.求反比例函數(shù)和一次函數(shù)的解析式;求直線AB與x軸的交點C的坐標(biāo)及△AOB的面積;直接寫出一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍.23.(8分)已知:如圖,在平行四邊形中,的平分線交于點,過點作的垂線交于點,交延長線于點,連接,.求證:;若,,,求的長.24.(10分)已知:如圖,在菱形ABCD中,F(xiàn)為邊BC的中點,DF與對角線AC交于點M,過M作ME⊥CD于點E,∠1=∠1.(1)若CE=1,求BC的長;(1)求證:AM=DF+ME.25.(10分)如圖1,在正方形ABCD中,E是邊BC的中點,F(xiàn)是CD上一點,已知∠AEF=90°.(1)求證:;(2)平行四邊形ABCD中,E是邊BC上一點,F(xiàn)是邊CD上一點,∠AFE=∠ADC,∠AEF=90°.①如圖2,若∠AFE=45°,求的值;②如圖3,若AB=BC,EC=3CF,直接寫出cos∠AFE的值.26.(12分)如圖,拋物線y=ax2+bx﹣2經(jīng)過點A(4,0),B(1,0).(1)求出拋物線的解析式;(2)點D是直線AC上方的拋物線上的一點,求△DCA面積的最大值;(3)P是拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標(biāo);若不存在,請說明理由.27.(12分)為了解某校落實新課改精神的情況,現(xiàn)以該校九年級二班的同學(xué)參加課外活動的情況為樣本,對其參加“球類”、“繪畫類”、“舞蹈類”、“音樂類”、“棋類”活動的情況進行調(diào)查統(tǒng)計,并繪制了如圖所示的統(tǒng)計圖.

(1)參加音樂類活動的學(xué)生人數(shù)為

人,參加球類活動的人數(shù)的百分比為

(2)請把圖2(條形統(tǒng)計圖)補充完整;

(3)該校學(xué)生共600人,則參加棋類活動的人數(shù)約為.

(4)該班參加舞蹈類活動的4位同學(xué)中,有1位男生(用E表示)和3位女生(分別用F,G,H表示),先準(zhǔn)備從中選取兩名同學(xué)組成舞伴,請用列表或畫樹狀圖的方法求恰好選中一男一女的概率.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

由旋轉(zhuǎn)性質(zhì)得到△AFB≌△AED,再根據(jù)相似三角對應(yīng)邊的比等于相似比,即可分別求得各選項正確與否.【詳解】解:由題意知,△AFB≌△AED∴AF=AE,∠FAB=∠EAD,∠FAB+∠BAE=∠EAD+∠BAE=∠BAD=90°.∴AE⊥AF,故此選項①正確;∴∠AFE=∠AEF=∠DAE+∠CFE,故④正確;∵△AEF是等腰直角三角形,有EF:AF=:1,故此選項②正確;∵△AEF與△AHF不相似,∴AF2=FH·FE不正確.故此選項③錯誤,∵HB//EC,∴△FBH∽△FCE,∴FB:FC=HB:EC,故此選項⑤正確.故選:C【點睛】本題主要考查了正方形的性質(zhì)、等腰直角三角形的性質(zhì)、全等三角形的判定和性質(zhì)等知識,熟練地應(yīng)用旋轉(zhuǎn)的性質(zhì)以及相似三角形的性質(zhì)是解決問題的關(guān)鍵.2、B【解析】

根據(jù)同弧所對的圓周角是圓心角度數(shù)的一半即可解題.【詳解】∵∠BOC=40°,∠AOB=180°,∴∠BOC+∠AOB=220°,∴∠D=110°(同弧所對的圓周角是圓心角度數(shù)的一半),故選B.【點睛】本題考查了圓周角和圓心角的關(guān)系,屬于簡單題,熟悉概念是解題關(guān)鍵.3、B【解析】試題解析:∵D、E、F分別為AB、BC、AC中點,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四邊形DBEF為平行四邊形,∴四邊形DBEF的周長=2(DF+EF)=2×(2+)=1.故選B.4、D【解析】

根據(jù)二次根式有意義的條件即可求出答案.【詳解】由題意可知:解得:m≤3且m≠0故選D.【點睛】本題考查二次根式有意義的條件,解題的關(guān)鍵是熟練運用二次根式有意義的條件,本題屬于基礎(chǔ)題型.5、C【解析】試題解析:∵x=-2是關(guān)于x的一元二次方程的一個根,

∴(-2)2+a×(-2)-a2=0,即a2+3a-2=0,

整理,得(a+2)(a-1)=0,

解得a1=-2,a2=1.

即a的值是1或-2.

故選A.點睛:一元二次方程的解的定義:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.又因為只含有一個未知數(shù)的方程的解也叫做這個方程的根,所以,一元二次方程的解也稱為一元二次方程的根.6、B【解析】

首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與點(m,n)恰好在反比例函數(shù)y=圖象上的情況,再利用概率公式即可求得答案.【詳解】解:畫樹狀圖得:∵共有12種等可能的結(jié)果,點(m,n)恰好在反比例函數(shù)y=圖象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴點(m,n)在函數(shù)y=圖象上的概率是:.故選B.【點睛】此題考查了列表法或樹狀圖法求概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.7、D【解析】分析:根據(jù)冪的乘方計算法則求出除數(shù),然后根據(jù)同底數(shù)冪的除法法則得出答案.詳解:原式=,故選D.點睛:本題主要考查的是冪的計算法則,屬于基礎(chǔ)題型.明白冪的計算法則是解決這個問題的關(guān)鍵.8、D【解析】

延長CB,根據(jù)平行線的性質(zhì)求得∠1的度數(shù),則∠DBC即可求得.【詳解】延長CB,延長CB,∵AD∥CB,∴∠1=∠ADE=145°,∴∠DBC=180°?∠1=180°?125°=55°.故答案選:D.【點睛】本題考查的知識點是平行線的性質(zhì),解題的關(guān)鍵是熟練的掌握平行線的性質(zhì).9、D【解析】

如圖,過點C作CD⊥x軸于點D,∵點C的坐標(biāo)為(3,4),∴OD=3,CD=4.∴根據(jù)勾股定理,得:OC=5.∵四邊形OABC是菱形,∴點B的坐標(biāo)為(8,4).∵點B在反比例函數(shù)(x>0)的圖象上,∴.故選D.10、C【解析】試題解析:、由監(jiān)測點監(jiān)測時,函數(shù)值隨的增大先減少再增大.故選項錯誤;、由監(jiān)測點監(jiān)測時,函數(shù)值隨的增大而增大,故選項錯誤;、由監(jiān)測點監(jiān)測時,函數(shù)值隨的增大先減小再增大,然后再減小,選項正確;、由監(jiān)測點監(jiān)測時,函數(shù)值隨的增大而減小,選項錯誤.故選.11、A【解析】解:△AOB中,OA=OB,∠ABO=30°;∴∠AOB=180°-2∠ABO=120°;∴∠ACB=∠AOB=60°;故選A.12、C【解析】

連接AE,根據(jù)翻折變換的性質(zhì)和正方形的性質(zhì)可證Rt△AFE≌Rt△ADE,在直角△ECG中,根據(jù)勾股定理求出DE的長.【詳解】連接AE,∵AB=AD=AF,∠D=∠AFE=90°,由折疊的性質(zhì)得:Rt△ABG≌Rt△AFG,在△AFE和△ADE中,∵AE=AE,AD=AF,∠D=∠AFE,∴Rt△AFE≌Rt△ADE,∴EF=DE,設(shè)DE=FE=x,則CG=3,EC=6?x.在直角△ECG中,根據(jù)勾股定理,得:(6?x)2+9=(x+3)2,解得x=2.則DE=2.【點睛】熟練掌握翻折變換、正方形的性質(zhì)、全等三角形的判定與性質(zhì)是本題的解題關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(1)4;(2)見解析;【解析】

解:(1)由勾股定理可得OM的長度(2)取格點F,E,連接EF,得到點N,取格點S,T,連接ST,得到點R,連接NR交OM于P,則點P即為所求?!驹斀狻浚?)OM==4;故答案為4.(2)以點O為原點建立直角坐標(biāo)系,則A(1,0),B(4,0),設(shè)P(a,a),(0≤a≤4),∵PA2=(a﹣1)2+a2,PB2=(a﹣4)2+a2,∴PA2+PB2=4(a﹣)2+,∵0≤a≤4,∴當(dāng)a=時,PA2+PB2取得最小值,綜上,需作出點P滿足線段OP的長=;取格點F,E,連接EF,得到點N,取格點S,T,連接ST,得到點R,連接NR交OM于P,則點P即為所求.【點睛】(1)根據(jù)勾股定理即可得到結(jié)論;(2)取格點F,E,連接EF,得到點N,取格點S,T,連接ST,得到點R,連接NR即可得到結(jié)果.14、55.【解析】

試題分析:∵把△ABC繞點C按順時針方向旋轉(zhuǎn)35°,得到△A’B’C∴∠ACA’=35°,∠A=∠A’,.∵∠A’DC=90°,∴∠A’=55°.∴∠A=55°.考點:1.旋轉(zhuǎn)的性質(zhì);2.直角三角形兩銳角的關(guān)系.15、1【解析】

根據(jù)單項式系數(shù)及次數(shù)的定義進行解答即可.【詳解】根據(jù)單項式系數(shù)和次數(shù)的定義可知,﹣的系數(shù)是,次數(shù)是1.【點睛】本題考查了單項式,熟知單項式中的數(shù)字因數(shù)叫做單項式的系數(shù),一個單項式中所有字母的指數(shù)的和叫做單項式的次數(shù)是解題的關(guān)鍵.16、【解析】∵2(+)=+,∴2+2=+,∴=-2,故答案為.點睛:本題看成平面向量、一元一次方程等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考基礎(chǔ)題.17、(-2,-2)【解析】

先根據(jù)“相”和“兵”的坐標(biāo)確定原點位置,然后建立坐標(biāo)系,進而可得“卒”的坐標(biāo).【詳解】“卒”的坐標(biāo)為(﹣2,﹣2),故答案是:(﹣2,﹣2).【點睛】考查了坐標(biāo)確定位置,關(guān)鍵是正確確定原點位置.18、B【解析】正五邊形的內(nèi)角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六邊形的內(nèi)角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故選B.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)6;(2);;(3)10或;【解析】

(1)根據(jù)圖象變化確定a秒時,P點位置,利用面積求a;(2)P、Q兩點的函數(shù)關(guān)系式都是在運動6秒的基礎(chǔ)上得到的,因此注意在總時間內(nèi)減去6秒;(3)以(2)為基礎(chǔ)可知,兩個點相距3cm分為相遇前相距或相遇后相距,因此由(2)可列方程.【詳解】(1)由圖象可知,當(dāng)點P在BC上運動時,△APD的面積保持不變,則a秒時,點P在AB上.,∴AP=6,則a=6;(2)由(1)6秒后點P變速,則點P已行的路程為y1=6+2(x﹣6)=2x﹣6,∵Q點路程總長為34cm,第6秒時已經(jīng)走12cm,故點Q還剩的路程為y2=34﹣12﹣;(3)當(dāng)P、Q兩點相遇前相距3cm時,﹣(2x﹣6)=3,解得x=10,當(dāng)P、Q兩點相遇后相距3cm時,(2x﹣6)﹣()=3,解得x=,∴當(dāng)x=10或時,P、Q兩點相距3cm【點睛】本題是雙動點問題,解答時應(yīng)注意分析圖象的變化與動點運動位置之間的關(guān)系.列函數(shù)關(guān)系式時,要考慮到時間x的連續(xù)性才能直接列出函數(shù)關(guān)系式.20、(1)y=-x2+2x+1;(2)-m2+1m.(1)2.【解析】

(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得C點坐標(biāo),根據(jù)平行于y軸的直線上兩點之間的距離是較大的縱坐標(biāo)減較的縱坐標(biāo),可得答案;(1)根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得F點坐標(biāo),根據(jù)平行于y軸的直線上兩點之間的距離是較大的縱坐標(biāo)減較的縱坐標(biāo),可得DE的長,根據(jù)平行四邊形的對邊相等,可得關(guān)于m的方程,根據(jù)解方程,可得m的值.【詳解】解:(1)∵點A(-1,0),點B(1,0)在拋物線y=-x2+bx+c上,∴,解得,此拋物線所對應(yīng)的函數(shù)表達式y(tǒng)=-x2+2x+1;(2)∵此拋物線所對應(yīng)的函數(shù)表達式y(tǒng)=-x2+2x+1,∴C(0,1).設(shè)BC所在的直線的函數(shù)解析式為y=kx+b,將B、C點的坐標(biāo)代入函數(shù)解析式,得,解得,即BC的函數(shù)解析式為y=-x+1.由P在BC上,F(xiàn)在拋物線上,得P(m,-m+1),F(xiàn)(m,-m2+2m+1).PF=-m2+2m+1-(-m+1)=-m2+1m.(1)如圖,∵此拋物線所對應(yīng)的函數(shù)表達式y(tǒng)=-x2+2x+1,∴D(1,4).∵線段BC與拋物線的對稱軸交于點E,當(dāng)x=1時,y=-x+1=2,∴E(1,2),∴DE=4-2=2.由四邊形PEDF為平行四邊形,得PF=DE,即-m2+1m=2,解得m1=1,m2=2.當(dāng)m=1時,線段PF與DE重合,m=1(不符合題意,舍).當(dāng)m=2時,四邊形PEDF為平行四邊形.考點:二次函數(shù)綜合題.21、(1)5;(2)-3x+4【解析】

(1)第一項計算算術(shù)平方根,第二項計算零指數(shù)冪,第三項計算特殊角的三角函數(shù)值,最后計算有理數(shù)運算.(2)利用完全平方公式和去括號法則進行計算,再進行合并同類項運算.【詳解】(1)解:原式(2)解:原式【點睛】本題考查實數(shù)的混合運算和整式運算,解題關(guān)鍵是熟練運用完全平方公式和熟記特殊角的三角函數(shù)值.22、(1)y=﹣x﹣2;(2)C(﹣2,0),△AOB=6,,(3)﹣4<x<0或x>2.【解析】

(1)先把B點坐標(biāo)代入代入y=,求出m得到反比例函數(shù)解析式,再利用反比例函數(shù)解析式確定A點坐標(biāo),然后利用待定系數(shù)法求一次函數(shù)解析式;(2)根據(jù)x軸上點的坐標(biāo)特征確定C點坐標(biāo),然后根據(jù)三角形面積公式和△AOB的面積=S△AOC+S△BOC進行計算;(3)觀察函數(shù)圖象得到當(dāng)﹣4<x<0或x>2時,一次函數(shù)圖象都在反比例函數(shù)圖象下方.【詳解】解:∵B(2,﹣4)在反比例函數(shù)y=的圖象上,∴m=2×(﹣4)=﹣8,∴反比例函數(shù)解析式為:y=﹣,把A(﹣4,n)代入y=﹣,得﹣4n=﹣8,解得n=2,則A點坐標(biāo)為(﹣4,2).把A(﹣4,2),B(2,﹣4)分別代入y=kx+b,得,解得,∴一次函數(shù)的解析式為y=﹣x﹣2;(2)∵y=﹣x﹣2,∴當(dāng)﹣x﹣2=0時,x=﹣2,∴點C的坐標(biāo)為:(﹣2,0),△AOB的面積=△AOC的面積+△COB的面積=×2×2+×2×4=6;(3)由圖象可知,當(dāng)﹣4<x<0或x>2時,一次函數(shù)的值小于反比例函數(shù)的值.【點睛】本題考查的是一次函數(shù)與反比例函數(shù)的交點問題以及待定系數(shù)法的運用,靈活運用待定系數(shù)法是解題的關(guān)鍵,注意數(shù)形結(jié)合思想的正確運用.23、(1)詳見解析;(2)【解析】

(1)根據(jù)題意平分可得,從而證明即可解答(2)由(1)可知,再根據(jù)四邊形是平行四邊形可得,過點作延長線于點,再根據(jù)勾股定理即可解答【詳解】(1)證明:平分又又(2)四邊形是平行四邊形,為等邊三角形過點作延長線于點.在中,【點睛】此題考查三角形全等的判定與性質(zhì),勾股定理,平行四邊形的性質(zhì),解題關(guān)鍵在于作好輔助線24、(1)1;(1)見解析.【解析】試題分析:(1)根據(jù)菱形的對邊平行可得AB∥CD,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠1=∠ACD,所以∠ACD=∠1,根據(jù)等角對等邊的性質(zhì)可得CM=DM,再根據(jù)等腰三角形三線合一的性質(zhì)可得CE=DE,然后求出CD的長度,即為菱形的邊長BC的長度;

(1)先利用“邊角邊”證明△CEM和△CFM全等,根據(jù)全等三角形對應(yīng)邊相等可得ME=MF,延長AB交DF于點G,然后證明∠1=∠G,根據(jù)等角對等邊的性質(zhì)可得AM=GM,再利用“角角邊”證明△CDF和△BGF全等,根據(jù)全等三角形對應(yīng)邊相等可得GF=DF,最后結(jié)合圖形GM=GF+MF即可得證.試題解析:(1)∵四邊形ABCD是菱形,

∴AB∥CD,

∴∠1=∠ACD,

∵∠1=∠1,

∴∠ACD=∠1,

∴MC=MD,

∵ME⊥CD,

∴CD=1CE,

∵CE=1,

∴CD=1,

∴BC=CD=1;

(1)AM=DF+ME證明:如圖,∵F為邊BC的中點,

∴BF=CF=BC,

∴CF=CE,

在菱形ABCD中,AC平分∠BCD,

∴∠ACB=∠ACD,

在△CEM和△CFM中,

∵,

∴△CEM≌△CFM(SAS),

∴ME=MF,

延長AB交DF的延長線于點G,

∵AB∥CD,

∴∠G=∠1,

∵∠1=∠1,

∴∠1=∠G,

∴AM=MG,

在△CDF和△BGF中,

∵∴△CDF≌△BGF(AAS),

∴GF=DF,

由圖形可知,GM=GF+MF,

∴AM=DF+ME.25、(1)見解析;(2)①;②cos∠AFE=【解析】

(1)用特殊值法,設(shè),則,證,可求出CF,DF的長,即可求出結(jié)論;(2)①如圖2,過F作交AD于點G,證和是等腰直角三角形,證,求出的值,即可寫出的值;②如圖3,作交AD于點T,作于H,證,設(shè)CF=2,則CE=6,可設(shè)AT=x,則TF=3x,,,分別用含x的代數(shù)式表示出∠AFE和∠D的余弦值,列出方程,求出x的值,即可求出結(jié)論.【詳解】(1)設(shè)BE=EC=2,則AB=BC=4,∵,∴,∵,∴∠FEC=∠EAB,又∴,∴,∴,即,∴CF=1,則,∴;(2)①如圖2,過F作交AD于點G,∵,∴和是等腰直角三角形,∴,,∴∠AGF=∠C,又∵,∴∠GAF=∠CFE,∴,∴,又∵GF=DF,∴;②如圖3,作交AD于點T,作于H,則,∴,∴∠ATF=∠C,又∵,且∠D=∠AFE,∴∠TAF=∠CFE,∴,∴,設(shè)CF=2,則CE=6,可設(shè)AT=x,則TF=3x,,∴,且,由,得,解得x=5,∴.【點睛】本題主要考查了三角形相似的判定及性質(zhì)的綜合應(yīng)用,熟練掌握三角形相似的判定及性質(zhì)是解決本題的關(guān)鍵.26、(1)y=﹣x2+x﹣2;(2)當(dāng)t=2時,△DAC面積最大為4;(3)符合條件的點P為(2,1)或(5,﹣2)或(﹣3,﹣14).【解析】

(1)把A與B坐標(biāo)代入解析式求出a與b的值,即可確定出解析式;(2)如圖所示,過D作DE與y軸平行,三角形ACD面積等于DE與OA乘積的一半,表示出S與t的二次函數(shù)解析式,利用二次函數(shù)性質(zhì)求出S的最大值即可;(3)存在P點,使得以A,P,M為頂點的三角形與△OAC相似,分當(dāng)1<m<4時;當(dāng)m<

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論