版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
長沙市重點(diǎn)達(dá)標(biāo)名校2024屆中考數(shù)學(xué)模擬預(yù)測題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,已知四邊形ABCD,R,P分別是DC,BC上的點(diǎn),E,F(xiàn)分別是AP,RP的中點(diǎn),當(dāng)點(diǎn)P在BC上從點(diǎn)B向點(diǎn)C移動而點(diǎn)R不動時,那么下列結(jié)論成立的是().A.線段EF的長逐漸增大 B.線段EF的長逐漸減少C.線段EF的長不變 D.線段EF的長不能確定2.下列四張正方形硬紙片,剪去陰影部分后,如果沿虛線折疊,可以圍成一個封閉的長方體包裝盒的是()A. B. C. D.3.如圖,小明將一張長為20cm,寬為15cm的長方形紙(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,則剪去的直角三角形的斜邊長為()A.5cm B.12cm C.16cm D.20cm4.如圖,△ADE繞正方形ABCD的頂點(diǎn)A順時針旋轉(zhuǎn)90°,得△ABF,連接EF交AB于H,有如下五個結(jié)論①AE⊥AF;②EF:AF=:1;③AF2=FH?FE;④∠AFE=∠DAE+∠CFE⑤FB:FC=HB:EC.則正確的結(jié)論有()A.2個 B.3個 C.4個 D.5個5.將2001×1999變形正確的是()A.20002﹣1 B.20002+1 C.20002+2×2000+1 D.20002﹣2×2000+16.如圖,若AB∥CD,CD∥EF,那么∠BCE=()A.∠1+∠2 B.∠2-∠1C.180°-∠1+∠2 D.180°-∠2+∠17.實(shí)數(shù)的相反數(shù)是()A. B. C. D.8.已知反比例函數(shù),下列結(jié)論不正確的是()A.圖象經(jīng)過點(diǎn)(﹣2,1) B.圖象在第二、四象限C.當(dāng)x<0時,y隨著x的增大而增大 D.當(dāng)x>﹣1時,y>29.下列圖形中,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.10.已知:如圖,在扇形中,,半徑,將扇形沿過點(diǎn)的直線折疊,點(diǎn)恰好落在弧上的點(diǎn)處,折痕交于點(diǎn),則弧的長為()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.關(guān)于x的不等式組有2個整數(shù)解,則a的取值范圍是____________.12.用一條長60cm的繩子圍成一個面積為216的矩形.設(shè)矩形的一邊長為xcm,則可列方程為______.13.如圖,BD是⊙O的直徑,BA是⊙O的弦,過點(diǎn)A的切線交BD延長線于點(diǎn)C,OE⊥AB于E,且AB=AC,若CD=2,則OE的長為_____.14.如果=k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=_____.15.若一個正n邊形的每個內(nèi)角為144°,則這個正n邊形的所有對角線的條數(shù)是_________.16.計算:2﹣1+=_____.三、解答題(共8題,共72分)17.(8分)平面直角坐標(biāo)系xOy中(如圖),已知拋物線y=ax2+bx+3與y軸相交于點(diǎn)C,與x軸正半軸相交于點(diǎn)A,OA=OC,與x軸的另一個交點(diǎn)為B,對稱軸是直線x=1,頂點(diǎn)為P.(1)求這條拋物線的表達(dá)式和頂點(diǎn)P的坐標(biāo);(2)拋物線的對稱軸與x軸相交于點(diǎn)M,求∠PMC的正切值;(3)點(diǎn)Q在y軸上,且△BCQ與△CMP相似,求點(diǎn)Q的坐標(biāo).18.(8分)如圖,在平面直角坐標(biāo)系中,點(diǎn)A和點(diǎn)C分別在x軸和y軸的正半軸上,OA=6,OC=4,以O(shè)A,OC為鄰邊作矩形OABC,動點(diǎn)M,N以每秒1個單位長度的速度分別從點(diǎn)A、C同時出發(fā),其中點(diǎn)M沿AO向終點(diǎn)O運(yùn)動,點(diǎn)N沿CB向終點(diǎn)B運(yùn)動,當(dāng)兩個動點(diǎn)運(yùn)動了t秒時,過點(diǎn)N作NP⊥BC,交OB于點(diǎn)P,連接MP.(1)直接寫出點(diǎn)B的坐標(biāo)為,直線OB的函數(shù)表達(dá)式為;(2)記△OMP的面積為S,求S與t的函數(shù)關(guān)系式;并求t為何值時,S有最大值,并求出最大值.19.(8分)某年級組織學(xué)生參加夏令營活動,本次夏令營分為甲、乙、丙三組進(jìn)行活動.下面兩幅統(tǒng)計圖反映了學(xué)生報名參加夏令營的情況,請你根據(jù)圖中的信息回答下列問題:該年級報名參加丙組的人數(shù)為;該年級報名參加本次活動的總?cè)藬?shù),并補(bǔ)全頻數(shù)分布直方圖;根據(jù)實(shí)際情況,需從甲組抽調(diào)部分同學(xué)到丙組,使丙組人數(shù)是甲組人數(shù)的3倍,應(yīng)從甲組抽調(diào)多少名學(xué)生到丙組?20.(8分)如圖,在梯形ABCD中,AD∥BC,對角線AC、BD交于點(diǎn)M,點(diǎn)E在邊BC上,且∠DAE=∠DCB,聯(lián)結(jié)AE,AE與BD交于點(diǎn)F.(1)求證:;(2)連接DE,如果BF=3FM,求證:四邊形ABED是平行四邊形.21.(8分)如圖,AB為⊙O直徑,過⊙O外的點(diǎn)D作DE⊥OA于點(diǎn)E,射線DC切⊙O于點(diǎn)C、交AB的延長線于點(diǎn)P,連接AC交DE于點(diǎn)F,作CH⊥AB于點(diǎn)H.(1)求證:∠D=2∠A;(2)若HB=2,cosD=,請求出AC的長.22.(10分)小晗家客廳裝有一種三位單極開關(guān),分別控制著A(樓梯)、B(客廳)、C(走廊)三盞電燈,在正常情況下,小晗按下任意一個開關(guān)均可打開對應(yīng)的一盞電燈,既可三盞、兩盞齊開,也可分別單盞開.因剛搬進(jìn)新房不久,不熟悉情況.若小晗任意按下一個開關(guān),正好樓梯燈亮的概率是多少?若任意按下一個開關(guān)后,再按下另兩個開關(guān)中的一個,則正好客廳燈和走廊燈同時亮的概率是多少?請用樹狀圖或列表法加以說明.23.(12分)如圖,AB是⊙O的直徑,∠BAC=90°,四邊形EBOC是平行四邊形,EB交⊙O于點(diǎn)D,連接CD并延長交AB的延長線于點(diǎn)F.(1)求證:CF是⊙O的切線;(2)若∠F=30°,EB=6,求圖中陰影部分的面積.(結(jié)果保留根號和π)24.綜合與探究:如圖,已知在△ABC中,AB=AC,∠BAC=90°,點(diǎn)A在x軸上,點(diǎn)B在y軸上,點(diǎn)在二次函數(shù)的圖像上.(1)求二次函數(shù)的表達(dá)式;(2)求點(diǎn)A,B的坐標(biāo);(3)把△ABC沿x軸正方向平移,當(dāng)點(diǎn)B落在拋物線上時,求△ABC掃過區(qū)域的面積.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
因?yàn)镽不動,所以AR不變.根據(jù)三角形中位線定理可得EF=AR,因此線段EF的長不變.【詳解】如圖,連接AR,∵E、F分別是AP、RP的中點(diǎn),∴EF為△APR的中位線,∴EF=AR,為定值.∴線段EF的長不改變.故選:C.【點(diǎn)睛】本題考查了三角形的中位線定理,只要三角形的邊AR不變,則對應(yīng)的中位線的長度就不變.2、C【解析】A、剪去陰影部分后,組成無蓋的正方體,故此選項(xiàng)不合題意;B、剪去陰影部分后,無法組成長方體,故此選項(xiàng)不合題意;C、剪去陰影部分后,能組成長方體,故此選項(xiàng)正確;D、剪去陰影部分后,組成無蓋的正方體,故此選項(xiàng)不合題意;故選C.3、D【解析】
解答此題要延長AB、DC相交于F,則BFC構(gòu)成直角三角形,再用勾股定理進(jìn)行計算.【詳解】延長AB、DC相交于F,則BFC構(gòu)成直角三角形,運(yùn)用勾股定理得:BC2=(15-3)2+(1-4)2=122+162=400,所以BC=1.則剪去的直角三角形的斜邊長為1cm.故選D.【點(diǎn)睛】本題主要考查了勾股定理的應(yīng)用,解答此題要延長AB、DC相交于F,構(gòu)造直角三角形,用勾股定理進(jìn)行計算.4、C【解析】
由旋轉(zhuǎn)性質(zhì)得到△AFB≌△AED,再根據(jù)相似三角對應(yīng)邊的比等于相似比,即可分別求得各選項(xiàng)正確與否.【詳解】解:由題意知,△AFB≌△AED∴AF=AE,∠FAB=∠EAD,∠FAB+∠BAE=∠EAD+∠BAE=∠BAD=90°.∴AE⊥AF,故此選項(xiàng)①正確;∴∠AFE=∠AEF=∠DAE+∠CFE,故④正確;∵△AEF是等腰直角三角形,有EF:AF=:1,故此選項(xiàng)②正確;∵△AEF與△AHF不相似,∴AF2=FH·FE不正確.故此選項(xiàng)③錯誤,∵HB//EC,∴△FBH∽△FCE,∴FB:FC=HB:EC,故此選項(xiàng)⑤正確.故選:C【點(diǎn)睛】本題主要考查了正方形的性質(zhì)、等腰直角三角形的性質(zhì)、全等三角形的判定和性質(zhì)等知識,熟練地應(yīng)用旋轉(zhuǎn)的性質(zhì)以及相似三角形的性質(zhì)是解決問題的關(guān)鍵.5、A【解析】
原式變形后,利用平方差公式計算即可得出答案.【詳解】解:原式=(2000+1)×(2000-1)=20002-1,故選A.【點(diǎn)睛】此題考查了平方差公式,熟練掌握平方差公式是解本題的關(guān)鍵.6、D【解析】
先根據(jù)AB∥CD得出∠BCD=∠1,再由CD∥EF得出∠DCE=180°-∠2,再把兩式相加即可得出結(jié)論.【詳解】解:∵AB∥CD,∴∠BCD=∠1,∵CD∥EF,∴∠DCE=180°-∠2,∴∠BCE=∠BCD+∠DCE=180°-∠2+∠1.故選:D.【點(diǎn)睛】本題考查的是平行線的判定,用到的知識點(diǎn)為:兩直線平行,內(nèi)錯角相等,同旁內(nèi)角互補(bǔ).7、D【解析】
根據(jù)相反數(shù)的定義求解即可.【詳解】的相反數(shù)是-,故選D.【點(diǎn)睛】本題考查了實(shí)數(shù)的性質(zhì),在一個數(shù)的前面加上負(fù)號就是這個數(shù)的相反數(shù).8、D【解析】
A選項(xiàng):把(-2,1)代入解析式得:左邊=右邊,故本選項(xiàng)正確;
B選項(xiàng):因?yàn)?2<0,圖象在第二、四象限,故本選項(xiàng)正確;
C選項(xiàng):當(dāng)x<0,且k<0,y隨x的增大而增大,故本選項(xiàng)正確;
D選項(xiàng):當(dāng)x>0時,y<0,故本選項(xiàng)錯誤.
故選D.9、B【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念判斷即可.【詳解】解:A、是軸對稱圖形,也是中心對稱圖形,故錯誤;B、是中心對稱圖形,不是軸對稱圖形,故正確;C、是軸對稱圖形,也是中心對稱圖形,故錯誤;D、是軸對稱圖形,也是中心對稱圖形,故錯誤.故選B.【點(diǎn)睛】本題考查的是中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.10、D【解析】
如圖,連接OD.根據(jù)折疊的性質(zhì)、圓的性質(zhì)推知△ODB是等邊三角形,則易求∠AOD=110°-∠DOB=50°;然后由弧長公式弧長的公式來求的長【詳解】解:如圖,連接OD.解:如圖,連接OD.
根據(jù)折疊的性質(zhì)知,OB=DB.
又∵OD=OB,
∴OD=OB=DB,即△ODB是等邊三角形,
∴∠DOB=60°.
∵∠AOB=110°,
∴∠AOD=∠AOB-∠DOB=50°,
∴的長為=5π.
故選D.【點(diǎn)睛】本題考查了弧長的計算,翻折變換(折疊問題).折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.所以由折疊的性質(zhì)推知△ODB是等邊三角形是解答此題的關(guān)鍵之處.二、填空題(本大題共6個小題,每小題3分,共18分)11、8?a<13;【解析】
首先確定不等式組的解集,先利用含a的式子表示,根據(jù)整數(shù)解的個數(shù)就可以確定有哪些整數(shù)解,根據(jù)解的情況可以得到關(guān)于a的不等式,從而求出a的范圍.【詳解】解不等式3x?5>1,得:x>2,解不等式5x?a?12,得:x?,∵不等式組有2個整數(shù)解,∴其整數(shù)解為3和4,則4?<5,解得:8?a<13,故答案為:8?a<13【點(diǎn)睛】此題考查一元一次不等式組的整數(shù)解,掌握運(yùn)算法則是解題關(guān)鍵12、【解析】
根據(jù)周長表達(dá)出矩形的另一邊,再根據(jù)矩形的面積公式即可列出方程.【詳解】解:由題意可知,矩形的周長為60cm,∴矩形的另一邊為:,∵面積為216,∴故答案為:.【點(diǎn)睛】本題考查了一元二次方程與實(shí)際問題,解題的關(guān)鍵是找出等量關(guān)系.13、【解析】
連接OA,所以∠OAC=90°,因?yàn)锳B=AC,所以∠B=∠C,根據(jù)圓周角定理可知∠AOD=2∠B=2∠C,故可求出∠B和∠C的度數(shù),在Rt△OAC中,求出OA的值,再在Rt△OAE中,求出OE的值,得到答案.【詳解】連接OA,由題意可知∠OAC=90°,∵AB=AC,∴∠B=∠C,根據(jù)圓周角定理可知∠AOD=2∠B=2∠C,∵∠OAC=90°∴∠C+∠AOD=90°,∴∠C+2∠C=90°,故∠C=30°=∠B,∴在Rt△OAC中,sin∠C==,∴OC=2OA,∵OA=OD,∴OD+CD=2OA,∴CD=OA=2,∵OB=OA,∴∠OAE=∠B=30°,∴在Rt△OAE中,sin∠OAE==,∴OA=2OE,∴OE=OA=,故答案為.【點(diǎn)睛】本題主要考查了圓周角定理,角的轉(zhuǎn)換,以及在直角三角形中的三角函數(shù)的運(yùn)用,解本題的要點(diǎn)在于求出OA的值,從而利用直角三角形的三角函數(shù)的運(yùn)用求出答案.14、3【解析】∵=k,∴a=bk,c=dk,e=fk,∴a+c+e=bk+dk+fk=k(a+b+c),∵a+c+e=3(b+d+f),∴k=3,故答案為:3.15、2【解析】
由正n邊形的每個內(nèi)角為144°結(jié)合多邊形內(nèi)角和公式,即可得出關(guān)于n的一元一次方程,解方程即可求出n的值,將其代入中即可得出結(jié)論.【詳解】∵一個正n邊形的每個內(nèi)角為144°,
∴144n=180×(n-2),解得:n=1.
這個正n邊形的所有對角線的條數(shù)是:==2.
故答案為2.【點(diǎn)睛】本題考查了多邊形的內(nèi)角以及多邊形的對角線,解題的關(guān)鍵是求出正n邊形的邊數(shù).本題屬于基礎(chǔ)題,難度不大,解決該題型題目時,根據(jù)多邊形的內(nèi)角和公式求出多邊形邊的條數(shù)是關(guān)鍵.16、【解析】根據(jù)負(fù)整指數(shù)冪的性質(zhì)和二次根式的性質(zhì),可知=.故答案為.三、解答題(共8題,共72分)17、(1)(1,4)(2)(0,)或(0,-1)【解析】試題分析:(1)先求得點(diǎn)C的坐標(biāo),再由OA=OC得到點(diǎn)A的坐標(biāo),再根據(jù)拋物線的對稱性得到點(diǎn)B的坐標(biāo),利用待定系數(shù)法求得解析式后再進(jìn)行配方即可得到頂點(diǎn)坐標(biāo);(2)由OC//PM,可得∠PMC=∠MCO,求tan∠MCO即可;(3)分情況進(jìn)行討論即可得.試題解析:(1)當(dāng)x=0時,拋物線y=ax2+bx+3=3,所以點(diǎn)C坐標(biāo)為(0,3),∴OC=3,∵OA=OC,∴OA=3,∴A(3,0),∵A、B關(guān)于x=1對稱,∴B(-1,0),∵A、B在拋物線y=ax2+bx+3上,∴,∴,∴拋物線解析式為:y=-x2+2x+3=-(x-1)2+4,∴頂點(diǎn)P(1,4);(2)由(1)可知P(1,4),C(0,3),所以M(1,0),∴OC=3,OM=1,∵OC//PM,∴∠PMC=∠MCO,∴tan∠PMC=tan∠MCO==;(3)Q在C點(diǎn)的下方,∠BCQ=∠CMP,CM=,PM=4,BC=,∴或,∴CQ=或4,∴Q1(0,),Q2(0,-1).18、(1),;(2),1,1.【解析】
(1)根據(jù)四邊形OABC為矩形即可求出點(diǎn)B坐標(biāo),設(shè)直線OB解析式為,將B代入即可求直線OB的解析式;(2)由題意可得,由(1)可得點(diǎn)的坐標(biāo)為,表達(dá)出△OMP的面積即可,利用二次函數(shù)的性質(zhì)求出最大值.【詳解】解:(1)∵OA=6,OC=4,四邊形OABC為矩形,∴AB=OC=4,∴點(diǎn)B,設(shè)直線OB解析式為,將B代入得,解得,∴,故答案為:;(2)由題可知,,由(1)可知,點(diǎn)的坐標(biāo)為,∴當(dāng)時,有最大值1.【點(diǎn)睛】本題考查了二次函數(shù)與幾何動態(tài)問題,解題的關(guān)鍵是根據(jù)題意表達(dá)出點(diǎn)的坐標(biāo),利用幾何知識列出函數(shù)關(guān)系式.19、(1)21人;(2)10人,見解析(3)應(yīng)從甲抽調(diào)1名學(xué)生到丙組【解析】(1)參加丙組的人數(shù)為21人;(2)21÷10%=10人,則乙組人數(shù)=10-21-11=10人,如圖:(3)設(shè)需從甲組抽調(diào)x名同學(xué)到丙組,根據(jù)題意得:3(11-x)=21+x解得x=1.答:應(yīng)從甲抽調(diào)1名學(xué)生到丙組(1)直接根據(jù)條形統(tǒng)計圖獲得數(shù)據(jù);(2)根據(jù)丙組的21人占總體的10%,即可計算總體人數(shù),然后計算乙組的人數(shù),補(bǔ)全統(tǒng)計圖;(3)設(shè)需從甲組抽調(diào)x名同學(xué)到丙組,根據(jù)丙組人數(shù)是甲組人數(shù)的3倍列方程求解20、(1)證明見解析;(2)證明見解析.【解析】分析:(1)由AD∥BC可得出∠DAE=∠AEB,結(jié)合∠DCB=∠DAE可得出∠DCB=∠AEB,進(jìn)而可得出AE∥DC、△AMF∽△CMD,根據(jù)相似三角形的性質(zhì)可得出=,根據(jù)AD∥BC,可得出△AMD∽△CMB,根據(jù)相似三角形的性質(zhì)可得出=,進(jìn)而可得出=,即MD2=MF?MB;(2)設(shè)FM=a,則BF=3a,BM=4a.由(1)的結(jié)論可求出MD的長度,代入DF=DM+MF可得出DF的長度,由AD∥BC,可得出△AFD∽△△EFB,根據(jù)相似三角形的性質(zhì)可得出AF=EF,利用“對角線互相平分的四邊形是平行四邊形”即可證出四邊形ABED是平行四邊形.詳解:(1)∵AD∥BC,∴∠DAE=∠AEB.∵∠DCB=∠DAE,∴∠DCB=∠AEB,∴AE∥DC,∴△AMF∽△CMD,∴=.∵AD∥BC,∴△AMD∽△CMB,∴==,即MD2=MF?MB.(2)設(shè)FM=a,則BF=3a,BM=4a.由MD2=MF?MB,得:MD2=a?4a,∴MD=2a,∴DF=BF=3a.∵AD∥BC,∴△AFD∽△△EFB,∴==1,∴AF=EF,∴四邊形ABED是平行四邊形.點(diǎn)睛:本題考查了相似三角形的判定與性質(zhì)、平行四邊形的判定、平行線的性質(zhì)以及矩形,解題的關(guān)鍵是:(1)利用相似三角形的性質(zhì)找出=、=;(2)牢記“對角線互相平分的四邊形是平行四邊形”.21、(1)證明見解析;(2)AC=4.【解析】
(1)連接,根據(jù)切線的性質(zhì)得到,根據(jù)垂直的定義得到,得到,然后根據(jù)圓周角定理證明即可;(2)設(shè)的半徑為,根據(jù)余弦的定義、勾股定理計算即可.【詳解】(1)連接.∵射線切于點(diǎn),.,,,,,由圓周角定理得:,;(2)由(1)可知:,,,,,設(shè)的半徑為,則,在中,,,,∴由勾股定理可知:,.在中,,由勾股定理可知:.【點(diǎn)睛】本題考查了切線的性質(zhì)、圓周角定理以及解直角三角形,掌握切線的性質(zhì)定理、圓周角定理、余弦的定義是解題的關(guān)鍵.22、(1);(2).【解析】試題分析:(1)、3個等只有一個控制樓梯,則概率就是1÷3;(2)、根據(jù)題意畫出樹狀圖,然后根據(jù)概率的計算法則得出概率.試題解析:(1)、小晗任意按下一個開關(guān),正好樓梯燈亮的概率是:(2)、畫樹狀圖得:結(jié)果:(A,B)、(A,C)、(B,A)、(B,C)、(C,A)、(C,B)∵共有6種等可能的結(jié)果,正好客廳燈和走廊燈同時亮的有2種情況,∴正好客廳燈和走廊燈同時亮的概率是=.考點(diǎn):概率的計算.23、(1)證明見解析;(2)93﹣3π【解析】試題分析:(1)、連接OD,根據(jù)平行四邊形的性質(zhì)得出∠AOC=∠OBE,∠COD=∠ODB,結(jié)合OB=OD得出∠DOC=∠AOC,從而證明出△COD和△COA全等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 志愿者活動計劃方案樣本(5篇)
- 工會小組長崗位職責(zé)模版(3篇)
- 中學(xué)電子閱覽室管理制度模版(2篇)
- 2024年教師師德師風(fēng)工作計劃(2篇)
- 安全主管崗位的主要職責(zé)概述(3篇)
- 農(nóng)業(yè)高產(chǎn)高效創(chuàng)建方案范文(2篇)
- 學(xué)校勞動節(jié)活動方案(5篇)
- 塑料制品在家電制造上的應(yīng)用考核試卷
- 危險源辨識與評估在城市地鐵線路巡檢中的角色考核試卷
- 城市交通規(guī)劃與人口流動性考核試卷
- 中醫(yī)護(hù)理方案考核標(biāo)準(zhǔn)
- 一例肺癌術(shù)后并發(fā)肺栓塞患者的個案護(hù)理
- 2022版新課標(biāo)初中數(shù)學(xué)《數(shù)與代數(shù)、圖形與幾何》解讀
- 心房顫動診斷和治療中國指南(2023) 解讀
- 中式面點(diǎn)技藝智慧樹知到期末考試答案2024年
- 期中模擬試卷(試題)2023-2024學(xué)年外研版(一起)英語五年級上冊
- 幼兒園主題探究活動
- 唐宋名家詞智慧樹知到期末考試答案2024年
- 2024年4月貴州省高三年級適應(yīng)性考試歷史試卷
- 臨“震”不慌+守護(hù)生命安全-防震減災(zāi)安全教育原創(chuàng)
- 數(shù)字媒體藝術(shù)設(shè)計大學(xué)生職業(yè)生涯規(guī)劃書
評論
0/150
提交評論