江蘇省南京市玄武市級名校2023-2024學(xué)年中考數(shù)學(xué)考試模擬沖刺卷含解析_第1頁
江蘇省南京市玄武市級名校2023-2024學(xué)年中考數(shù)學(xué)考試模擬沖刺卷含解析_第2頁
江蘇省南京市玄武市級名校2023-2024學(xué)年中考數(shù)學(xué)考試模擬沖刺卷含解析_第3頁
江蘇省南京市玄武市級名校2023-2024學(xué)年中考數(shù)學(xué)考試模擬沖刺卷含解析_第4頁
江蘇省南京市玄武市級名校2023-2024學(xué)年中考數(shù)學(xué)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江蘇省南京市玄武市級名校2023-2024學(xué)年中考數(shù)學(xué)考試模擬沖刺卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,點C是直線AB,DE之間的一點,∠ACD=90°,下列條件能使得AB∥DE的是()A.∠α+∠β=180° B.∠β﹣∠α=90° C.∠β=3∠α D.∠α+∠β=90°2.如圖,等邊△ABC的邊長為4,點D,E分別是BC,AC的中點,動點M從點A向點B勻速運動,同時動點N沿B﹣D﹣E勻速運動,點M,N同時出發(fā)且運動速度相同,點M到點B時兩點同時停止運動,設(shè)點M走過的路程為x,△AMN的面積為y,能大致刻畫y與x的函數(shù)關(guān)系的圖象是()A. B.C. D.3.如圖,O為坐標(biāo)原點,四邊彤OACB是菱形,OB在x軸的正半軸上,sin∠AOB=45,反比例函數(shù)yA.10B.9C.8D.64.實數(shù)a,b,c在數(shù)軸上對應(yīng)點的位置如圖所示,則下列結(jié)論中正確的是()A.a(chǎn)+c>0 B.b+c>0 C.a(chǎn)c>bc D.a(chǎn)﹣c>b﹣c5.某數(shù)學(xué)興趣小組開展動手操作活動,設(shè)計了如圖所示的三種圖形,現(xiàn)計劃用鐵絲按照圖形制作相應(yīng)的造型,則所用鐵絲的長度關(guān)系是()A.甲種方案所用鐵絲最長 B.乙種方案所用鐵絲最長C.丙種方案所用鐵絲最長 D.三種方案所用鐵絲一樣長:]6.如圖,a∥b,點B在直線b上,且AB⊥BC,∠1=40°,那么∠2的度數(shù)()A.40° B.50° C.60° D.90°7.如圖,點P(x,y)(x>0)是反比例函數(shù)y=(k>0)的圖象上的一個動點,以點P為圓心,OP為半徑的圓與x軸的正半軸交于點A,若△OPA的面積為S,則當(dāng)x增大時,S的變化情況是()A.S的值增大 B.S的值減小C.S的值先增大,后減小 D.S的值不變8.已知x=1是方程x2+mx+n=0的一個根,則代數(shù)式m2+2mn+n2的值為()A.–1B.2C.1D.–29.若2m﹣n=6,則代數(shù)式m-n+1的值為()A.1 B.2 C.3 D.410.如圖是由5個大小相同的正方體組成的幾何體,則該幾何體的主視圖是()A. B. C. D.11.如圖,函數(shù)y=kx+b(k≠0)與y=(m≠0)的圖象交于點A(2,3),B(-6,-1),則不等式kx+b>的解集為()A. B. C. D.12.如圖,PB切⊙O于點B,PO交⊙O于點E,延長PO交⊙O于點A,連結(jié)AB,⊙O的半徑OD⊥AB于點C,BP=6,∠P=30°,則CD的長度是()A. B. C. D.2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.把16a3﹣ab2因式分解_____.14.=________15.已知線段a=4,線段b=9,則a,b的比例中項是_____.16.如圖所示,擺第一個“小屋子”要5枚棋子,擺第二個要11枚棋子,擺第三個要17枚棋子,則擺第30個“小屋子”要___枚棋子.17.用黑白兩種顏色的正六邊形地面磚按如圖所示的規(guī)律,拼成若干圖案:第4個圖案有白色地面磚______塊;第n個圖案有白色地面磚______塊.18.如圖,矩形ABCD中,AB=3,BC=4,點E是BC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點處,當(dāng)△為直角三角形時,BE的長為.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖所示,AB是⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點D,點E在⊙O上.若∠AOD=52°,求∠DEB的度數(shù);若OC=3,OA=5,求AB的長.20.(6分)隨著社會的發(fā)展,通過微信朋友圈發(fā)布自己每天行走的步數(shù)已經(jīng)成為一種時尚.“健身達人”小陳為了了解他的好友的運動情況.隨機抽取了部分好友進行調(diào)查,把他們6月1日那天行走的情況分為四個類別:A(0~5000步)(說明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),統(tǒng)計結(jié)果如圖所示:請依據(jù)統(tǒng)計結(jié)果回答下列問題:本次調(diào)查中,一共調(diào)查了位好友.已知A類好友人數(shù)是D類好友人數(shù)的5倍.①請補全條形圖;②扇形圖中,“A”對應(yīng)扇形的圓心角為度.③若小陳微信朋友圈共有好友150人,請根據(jù)調(diào)查數(shù)據(jù)估計大約有多少位好友6月1日這天行走的步數(shù)超過10000步?21.(6分)如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經(jīng)過點D,分別交AC、AB于點E.F.試判斷直線BC與⊙O的位置關(guān)系,并說明理由;若BD=23,BF=2,求⊙O的半徑.22.(8分)如圖,在菱形ABCD中,點P在對角線AC上,且PA=PD,⊙O是△PAD的外接圓.(1)求證:AB是⊙O的切線;(2)若AC=8,tan∠BAC=,求⊙O的半徑.23.(8分)在?ABCD中,過點D作DE⊥AB于點E,點F在CD上,CF=AE,連接BF,AF.(1)求證:四邊形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DE=4,求tan∠BAF的值.24.(10分)已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對角線BD上一點,且EA=EC.(1)求證:四邊形ABCD是菱形;(2)如果∠BDC=30°,DE=2,EC=3,求CD的長.25.(10分)“大美濕地,水韻鹽城”.某校數(shù)學(xué)興趣小組就“最想去的鹽城市旅游景點”隨機調(diào)查了本校部分學(xué)生,要求每位同學(xué)選擇且只能選擇一個最想去的景點,下面是根據(jù)調(diào)查結(jié)果進行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計圖:請根據(jù)圖中提供的信息,解答下列問題:(1)求被調(diào)查的學(xué)生總?cè)藬?shù);(2)補全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù);(3)若該校共有800名學(xué)生,請估計“最想去景點B“的學(xué)生人數(shù).26.(12分)如圖,在菱形ABCD中,,點E在對角線BD上.將線段CE繞點C順時針旋轉(zhuǎn),得到CF,連接DF.(1)求證:BE=DF;(2)連接AC,若EB=EC,求證:.27.(12分)如圖,四邊形ABCD中,E點在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求證:△ABC與△DEC全等.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

延長AC交DE于點F,根據(jù)所給條件如果能推出∠α=∠1,則能使得AB∥DE,否則不能使得AB∥DE;【詳解】延長AC交DE于點F.A.∵∠α+∠β=180°,∠β=∠1+90°,∴∠α=90°-∠1,即∠α≠∠1,∴不能使得AB∥DE;B.∵∠β﹣∠α=90°,∠β=∠1+90°,∴∠α=∠1,∴能使得AB∥DE;C.∵∠β=3∠α,∠β=∠1+90°,∴3∠α=90°+∠1,即∠α≠∠1,∴不能使得AB∥DE;D.∵∠α+∠β=90°,∠β=∠1+90°,∴∠α=-∠1,即∠α≠∠1,∴不能使得AB∥DE;故選B.【點睛】本題考查了平行線的判定方法:①兩同位角相等,兩直線平行;

②內(nèi)錯角相等,兩直線平行;③同旁內(nèi)角互補,兩直線平行;④平行于同一直線的兩條直線互相平行;同一平面內(nèi),垂直于同一直線的兩條直線互相平行.2、A【解析】

根據(jù)題意,將運動過程分成兩段.分段討論求出解析式即可.【詳解】∵BD=2,∠B=60°,∴點D到AB距離為,當(dāng)0≤x≤2時,y=;當(dāng)2≤x≤4時,y=.根據(jù)函數(shù)解析式,A符合條件.故選A.【點睛】本題為動點問題的函數(shù)圖象,解答關(guān)鍵是找到動點到達臨界點前后的一般圖形,分類討論,求出函數(shù)關(guān)系式.3、A【解析】過點A作AM⊥x軸于點M,過點F作FN⊥x軸于點N,設(shè)OA=a,BF=b,通過解直角三角形分別找出點A、F的坐標(biāo),結(jié)合反比例函數(shù)圖象上點的坐標(biāo)特征即可求出a、b的值,通過分割圖形求面積,最終找出△AOF的面積等于梯形AMNF的面積,利用梯形的面積公式即可得出結(jié)論.解:過點A作AM⊥x軸于點M,過點F作FN⊥x軸于點N,如圖所示.設(shè)OA=a,BF=b,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=45∴AM=OA?sin∠AOB=45a,OM=OA2∴點A的坐標(biāo)為(35a,4∵點A在反比例函數(shù)y=12x∴35a×45a=1225解得:a=5,或a=﹣5(舍去).∴AM=8,OM=1.∵四邊形OACB是菱形,∴OA=OB=10,BC∥OA,∴∠FBN=∠AOB.在Rt△BNF中,BF=b,sin∠FBN=45∴FN=BF?sin∠FBN=45b,BN=BF2∴點F的坐標(biāo)為(10+35b,4∵點F在反比例函數(shù)y=12x∴(10+35b)×4S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=10故選A.“點睛”本題主要考查了菱形的性質(zhì)、解直角三角形以及反比例函數(shù)圖象上點的坐標(biāo)特征,解題的關(guān)鍵是找出S△AOF=12S菱形OBCA4、D【解析】分析:根據(jù)圖示,可得:c<b<0<a,,據(jù)此逐項判定即可.詳解:∵c<0<a,|c|>|a|,∴a+c<0,∴選項A不符合題意;∵c<b<0,∴b+c<0,∴選項B不符合題意;∵c<b<0<a,c<0,∴ac<0,bc>0,∴ac<bc,∴選項C不符合題意;∵a>b,∴a﹣c>b﹣c,∴選項D符合題意.故選D.點睛:此題考查了數(shù)軸,考查了有理數(shù)的大小比較關(guān)系,考查了不等關(guān)系與不等式.熟記有理數(shù)大小比較法則,即正數(shù)大于0,負數(shù)小于0,正數(shù)大于一切負數(shù).5、D【解析】試題分析:解:由圖形可得出:甲所用鐵絲的長度為:2a+2b,乙所用鐵絲的長度為:2a+2b,丙所用鐵絲的長度為:2a+2b,故三種方案所用鐵絲一樣長.故選D.考點:生活中的平移現(xiàn)象6、B【解析】分析:根據(jù)“平行線的性質(zhì)、平角的定義和垂直的定義”進行分析計算即可.詳解:∵AB⊥BC,∴∠ABC=90°,∵點B在直線b上,∴∠1+∠ABC+∠3=180°,∴∠3=180°-∠1-90°=50°,∵a∥b,∴∠2=∠3=50°.故選B.點睛:熟悉“平行線的性質(zhì)、平角的定義和垂直的定義”是正確解答本題的關(guān)鍵.7、D【解析】

作PB⊥OA于B,如圖,根據(jù)垂徑定理得到OB=AB,則S△POB=S△PAB,再根據(jù)反比例函數(shù)k的幾何意義得到S△POB=|k|,所以S=2k,為定值.【詳解】作PB⊥OA于B,如圖,則OB=AB,∴S△POB=S△PAB.∵S△POB=|k|,∴S=2k,∴S的值為定值.故選D.【點睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義:在反比例函數(shù)y=圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標(biāo)軸圍成的矩形的面積是定值|k|.8、C【解析】

把x=1代入x2+mx+n=0,可得m+n=-1,然后根據(jù)完全平方公式把m2+2mn+n2變形后代入計算即可.【詳解】把x=1代入x2+mx+n=0,代入1+m+n=0,∴m+n=-1,∴m2+2mn+n2=(m+n)2=1.故選C.【點睛】本題考查了方程的根和整體代入法求代數(shù)式的值,能使方程兩邊相等的未知數(shù)的值叫做方程的根.9、D【解析】

先對m-n+1變形得到(2m﹣n)+1,再將2m﹣n=6整體代入進行計算,即可得到答案.【詳解】mn+1=(2m﹣n)+1當(dāng)2m﹣n=6時,原式=×6+1=3+1=4,故選:D.【點睛】本題考查代數(shù)式,解題的關(guān)鍵是掌握整體代入法.10、A【解析】試題分析:觀察圖形可知,該幾何體的主視圖是.故選A.考點:簡單組合體的三視圖.11、B【解析】

根據(jù)函數(shù)的圖象和交點坐標(biāo)即可求得結(jié)果.【詳解】解:不等式kx+b>的解集為:-6<x<0或x>2,

故選B.【點睛】此題考查反比例函數(shù)與一次函數(shù)的交點問題,解題關(guān)鍵是注意掌握數(shù)形結(jié)合思想的應(yīng)用.12、C【解析】

連接OB,根據(jù)切線的性質(zhì)與三角函數(shù)得到∠POB=60°,OB=OD=2,再根據(jù)等腰三角形的性質(zhì)與三角函數(shù)得到OC的長,即可得到CD的長.【詳解】解:如圖,連接OB,∵PB切⊙O于點B,∴∠OBP=90°,∵BP=6,∠P=30°,∴∠POB=60°,OD=OB=BPtan30°=6×=2,∵OA=OB,∴∠OAB=∠OBA=30°,∵OD⊥AB,∴∠OCB=90°,∴∠OBC=30°,則OC=OB=,∴CD=.故選:C.【點睛】本題主要考查切線的性質(zhì)與銳角的三角函數(shù),解此題的關(guān)鍵在于利用切線的性質(zhì)得到相關(guān)線段與角度的值,再根據(jù)圓和等腰三角形的性質(zhì)求解即可.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、a(4a+b)(4a﹣b)【解析】

首先提取公因式a,再利用平方差公式分解因式得出答案.【詳解】解:16a3-ab2=a(16a2-b2)=a(4a+b)(4a-b).故答案為:a(4a+b)(4a-b).【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確應(yīng)用公式是解題關(guān)鍵.14、13【解析】=2+9-4+6=13.故答案是:13.15、6【解析】

根據(jù)已知線段a=4,b=9,設(shè)線段x是a,b的比例中項,列出等式,利用兩內(nèi)項之積等于兩外項之積即可得出答案.【詳解】解:∵a=4,b=9,設(shè)線段x是a,b的比例中項,∴,∴x2=ab=4×9=36,∴x=6,x=﹣6(舍去).故答案為6【點睛】本題主要考查比例線段問題,解題關(guān)鍵是利用兩內(nèi)項之積等于兩外項之積解答.16、1.【解析】

根據(jù)題意分析可得:第1個圖案中棋子的個數(shù)5個,第2個圖案中棋子的個數(shù)5+6=11個,…,每個圖形都比前一個圖形多用6個,繼而可求出第30個“小屋子”需要的棋子數(shù).【詳解】根據(jù)題意分析可得:第1個圖案中棋子的個數(shù)5個.第2個圖案中棋子的個數(shù)5+6=11個.….每個圖形都比前一個圖形多用6個.∴第30個圖案中棋子的個數(shù)為5+29×6=1個.故答案為1.【點睛】考核知識點:圖形的規(guī)律.分析出一般數(shù)量關(guān)系是關(guān)鍵.17、18塊(4n+2)塊.【解析】

由已知圖形可以發(fā)現(xiàn):前三個圖形中白色地磚的塊數(shù)分別為:6,10,14,所以可以發(fā)現(xiàn)每一個圖形都比它前一個圖形多4個白色地磚,所以可以得到第n個圖案有白色地面磚(4n+2)塊.【詳解】解:第1個圖有白色塊4+2,第2圖有4×2+2,第3個圖有4×3+2,所以第4個圖應(yīng)該有4×4+2=18塊,第n個圖應(yīng)該有(4n+2)塊.【點睛】此題考查了平面圖形,主要培養(yǎng)學(xué)生的觀察能力和空間想象能力.18、1或.【解析】

當(dāng)△CEB′為直角三角形時,有兩種情況:

①當(dāng)點B′落在矩形內(nèi)部時,如答圖1所示.

連結(jié)AC,先利用勾股定理計算出AC=5,根據(jù)折疊的性質(zhì)得∠AB′E=∠B=90°,而當(dāng)△CEB′為直角三角形時,只能得到∠EB′C=90°,所以點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,則EB=EB′,AB=AB′=1,可計算出CB′=2,設(shè)BE=x,則EB′=x,CE=4-x,然后在Rt△CEB′中運用勾股定理可計算出x.

②當(dāng)點B′落在AD邊上時,如答圖2所示.此時ABEB′為正方形.【詳解】當(dāng)△CEB′為直角三角形時,有兩種情況:

①當(dāng)點B′落在矩形內(nèi)部時,如答圖1所示.

連結(jié)AC,

在Rt△ABC中,AB=1,BC=4,

∴AC==5,

∵∠B沿AE折疊,使點B落在點B′處,

∴∠AB′E=∠B=90°,

當(dāng)△CEB′為直角三角形時,只能得到∠EB′C=90°,

∴點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,

∴EB=EB′,AB=AB′=1,

∴CB′=5-1=2,

設(shè)BE=x,則EB′=x,CE=4-x,

在Rt△CEB′中,

∵EB′2+CB′2=CE2,

∴x2+22=(4-x)2,解得,

∴BE=;

②當(dāng)點B′落在AD邊上時,如答圖2所示.

此時ABEB′為正方形,∴BE=AB=1.

綜上所述,BE的長為或1.

故答案為:或1.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)26°;(2)1.【解析】試題分析:(1)根據(jù)垂徑定理,得到,再根據(jù)圓周角與圓心角的關(guān)系,得知∠E=∠O,據(jù)此即可求出∠DEB的度數(shù);(2)由垂徑定理可知,AB=2AC,在Rt△AOC中,OC=3,OA=5,由勾股定理求AC即可得到AB的長.試題解析:(1)∵AB是⊙O的一條弦,OD⊥AB,∴,∴∠DEB=∠AOD=×52°=26°;(2)∵AB是⊙O的一條弦,OD⊥AB,∴AC=BC,即AB=2AC,在Rt△AOC中,AC===4,則AB=2AC=1.考點:垂徑定理;勾股定理;圓周角定理.20、(1)30;(2)①補圖見解析;②120;③70人.【解析】分析:(1)由B類別人數(shù)及其所占百分比可得總?cè)藬?shù);(2)①設(shè)D類人數(shù)為a,則A類人數(shù)為5a,根據(jù)總?cè)藬?shù)列方程求得a的值,從而補全圖形;②用360°乘以A類別人數(shù)所占比例可得;③總?cè)藬?shù)乘以樣本中C、D類別人數(shù)和所占比例.詳解:(1)本次調(diào)查的好友人數(shù)為6÷20%=30人,故答案為:30;(2)①設(shè)D類人數(shù)為a,則A類人數(shù)為5a,根據(jù)題意,得:a+6+12+5a=30,解得:a=2,即A類人數(shù)為10、D類人數(shù)為2,補全圖形如下:②扇形圖中,“A”對應(yīng)扇形的圓心角為360°×=120°,故答案為:120;③估計大約6月1日這天行走的步數(shù)超過10000步的好友人數(shù)為150×=70人.點睛:此題主要考查了條形統(tǒng)計圖、扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù).21、(1)相切,理由見解析;(1)1.【解析】

(1)求出OD//AC,得到OD⊥BC,根據(jù)切線的判定得出即可;(1)根據(jù)勾股定理得出方程,求出方程的解即可.【詳解】(1)直線BC與⊙O的位置關(guān)系是相切,理由是:連接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,即OD⊥BC,∵OD為半徑,∴直線BC與⊙O的位置關(guān)系是相切;(1)設(shè)⊙O的半徑為R,則OD=OF=R,在Rt△BDO中,由勾股定理得:OB2=BD2+OD2,即(R+1)2=(13)2+R2,解得:R=1,即⊙O的半徑是1.【點睛】此題考查切線的判定,勾股定理,解題關(guān)鍵在于求出OD⊥BC.22、(1)見解析;(2).【解析】分析:(1)連結(jié)OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根據(jù)垂徑定理的推理得OP⊥AD,AE=DE,則∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根據(jù)菱形的性質(zhì)得∠1=∠2,所以∠2+∠OAP=90°,然后根據(jù)切線的判定定理得到直線AB與⊙O相切;(2)連結(jié)BD,交AC于點F,根據(jù)菱形的性質(zhì)得DB與AC互相垂直平分,則AF=4,tan∠DAC=,得到DF=2,根據(jù)勾股定理得到AD==2,求得AE=,設(shè)⊙O的半徑為R,則OE=R﹣,OA=R,根據(jù)勾股定理列方程即可得到結(jié)論.詳解:(1)連結(jié)OP、OA,OP交AD于E,如圖,∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°.∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°.∵四邊形ABCD為菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,∴直線AB與⊙O相切;(2)連結(jié)BD,交AC于點F,如圖,∵四邊形ABCD為菱形,∴DB與AC互相垂直平分.∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,∴DF=2,∴AD==2,∴AE=.在Rt△PAE中,tan∠1==,∴PE=.設(shè)⊙O的半徑為R,則OE=R﹣,OA=R.在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,∴R=,即⊙O的半徑為.點睛:本題考查了切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.也考查了菱形的性質(zhì)和銳角三角函數(shù)以及勾股定理.23、(1)證明見解析(2)【解析】分析:(1)由已知條件易得BE=DF且BE∥DF,從而可得四邊BFDE是平行四邊形,結(jié)合∠EDB=90°即可得到四邊形BFDE是矩形;(2)由已知易得AB=5,由AF平分∠DAB,DC∥AB可得∠DAF=∠BAF=∠DFA,由此可得DF=AD=5,結(jié)合BE=DF可得BE=5,由此可得AB=8,結(jié)合BF=DE=4即可求得tan∠BAF=.詳解:(1)∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,∵AE=CF,∴BE=DF,∴四邊形BFDE是平行四邊形.∵DE⊥AB,∴∠DEB=90°,∴四邊形BFDE是矩形;(2)在Rt△BCF中,由勾股定理,得AD=,∵四邊形ABCD是平行四邊形,∴AB∥DC,∴∠DFA=∠FAB.∵AF平分∠DAB∴∠DAF=∠FAB,∴∠DAF=∠DFA,∴DF=AD=5,∵四邊形BFDE是矩形,∴BE=DF=5,BF=DE=4,∠ABF=90°,∴AB=AE+BE=8,∴tan∠BAF=.點睛:(1)熟悉平行四邊形的性質(zhì)和矩形的判定方法是解答第1小題的關(guān)鍵;(2)能由AF平分∠DAB,DC∥AB得到∠DAF=∠BAF=∠DFA,進而推得DF=AD=5是解答第2小題的關(guān)鍵.24、(1)證明見解析;(2)CD的長為2.【解析】

(1)首先證得△ADE≌△CDE,由全等三角形的性質(zhì)可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行線的判定定理可得四邊形ABCD為平行四邊形,由AD=CD可得四邊形ABCD是菱形;(2)作EF⊥CD于F,在Rt△DEF中,根據(jù)30°的性質(zhì)和勾股定理可求出EF和DF的長,在Rt△CEF中,根據(jù)勾股定理可求出CF的長,從而可求CD的長.【詳解】證明:(1)在△ADE

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論