2023-2024學年天津市重點中學下學期九年級數(shù)學聯(lián)考經(jīng)典試題_第1頁
2023-2024學年天津市重點中學下學期九年級數(shù)學聯(lián)考經(jīng)典試題_第2頁
2023-2024學年天津市重點中學下學期九年級數(shù)學聯(lián)考經(jīng)典試題_第3頁
2023-2024學年天津市重點中學下學期九年級數(shù)學聯(lián)考經(jīng)典試題_第4頁
2023-2024學年天津市重點中學下學期九年級數(shù)學聯(lián)考經(jīng)典試題_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年天津市重點中學下學期九年級數(shù)學聯(lián)考經(jīng)典試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,小明在打乒乓球時,為使球恰好能過網(wǎng)(設網(wǎng)高AB=15cm),且落在對方區(qū)域桌子底線C處,已知小明在自己桌子底線上方擊球,則他擊球點距離桌面的高度DE為()A.15cm B.20cm C.25cm D.30cm2.若有意義,則x的取值范圍是A.且 B. C. D.3.如圖,PA、PB、分別切⊙O于A、B兩點,∠P=40°,則∠C的度數(shù)為()A.40° B.140° C.70° D.80°4.在下列四個圖案中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.5.如圖,在△ABC中,CD平分∠ACB交AB于點D,過點D作DE∥BC交AC于點E,若∠A=54°,∠B=48°,則∠CDE的大小為()A.44° B.40° C.39° D.38°6.如圖,四邊形和是以點為位似中心的位似圖形,若,則四邊形與四邊形的面積比為()A. B. C. D.7.如圖,二次函數(shù)y=ax1+bx+c(a≠0)圖象與x軸交于A,B兩點,與y軸交于C點,且對稱軸為x=1,點B坐標為(﹣1,0).則下面的四個結論:①1a+b=0;②4a﹣1b+c<0;③b1﹣4ac>0;④當y<0時,x<﹣1或x>1.其中正確的有()A.4個 B.3個 C.1個 D.1個8.下列幾何圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A.等腰三角形 B.正三角形 C.平行四邊形 D.正方形9.如圖,已知A、B是反比例函數(shù)上的兩點,BC∥x軸,交y軸于C,動點P從坐標原點O出發(fā),沿O→A→B→C勻速運動,終點為C,過運動路線上任意一點P作PM⊥x軸于M,PN⊥y軸于N,設四邊形OMPN的面積為S,P點運動的時間為t,則S關于t的函數(shù)圖象大致是()A. B. C. D.10.如圖,是等邊三角形,點,,分別在,,邊上,且若,則與的面積比為()A. B. C. D.11.如圖,一次函數(shù)分別與軸、軸交于點、,若sin,則的值為()A. B. C. D.12.下列說法不正確的是()A.一組鄰邊相等的矩形是正方形B.對角線互相垂直的矩形是正方形C.對角線相等的菱形是正方形D.有一組鄰邊相等、一個角是直角的四邊形是正方形二、填空題(每題4分,共24分)13.如圖,點A,B,C在⊙O上,∠A=40度,∠C=20度,則∠B=_____度.14.小亮同學想測量學校旗桿的高度,他在某一時刻測得米長的竹竿豎直放置時影長為米,同時測量旗桿的影長時由于影子不全落在地面上,他測得地面上的影長為米,留在墻上的影高為米,通過計算他得出旗桿的高度是___________米.15.若二次函數(shù)的圖像經(jīng)過點,則的值是_______.16.如圖,將半徑為2,圓心角為90°的扇形BAC繞點A逆時針旋轉60°,點B、C的對應點分別為D、E,點D在上,則陰影部分的面積為_____.17.如果關于的方程有兩個相等的實數(shù)根,那么的值為________,此時方程的根為_______.18.在長8cm,寬6cm的矩形中,截去一個矩形,使留下的矩形與原矩形相似,那么留下的矩形面積是_______cm2三、解答題(共78分)19.(8分)按要求解答下列各小題.(1)解方程:;(2)計算:.20.(8分)如圖,在△ABC中,AB=AC,以AB為直徑作⊙O,交BC于點D,交CA的延長線于點E,連接AD,DE.(1)求證:D是BC的中點(2)若DE=3,AD=1,求⊙O的半徑.21.(8分)已知(1)求的值;(2)若,求的值.22.(10分)已知:二次函數(shù),求證:無論為任何實數(shù),該二次函數(shù)的圖象與軸都在兩個交點;23.(10分)小明家所在居民樓的對面有一座大廈AB,高為74米,為測量居民樓與大廈之間的距離,小明從自己家的窗戶C處測得大廈頂部A的仰角為37°,大廈底部B的俯角為48°.(1)求∠ACB的度數(shù);(2)求小明家所在居民樓與大廈之間的距離.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈,sin48°≈,cos48°≈,tan48°≈)24.(10分)為了解某校九年級學生立定跳遠水平,隨機抽取該年級50名學生進行測試,并把測試成績(單位:m)繪制成不完整的頻數(shù)分布表和頻數(shù)分布直方圖.請根據(jù)圖表中所提供的信息,完成下列問題:(1)表中________,________,樣本成績的中位數(shù)落在證明見解析________范圍內(nèi);(2)請把頻數(shù)分布直方圖補充完整;(3)該校九年級共有1000名學生,估計該年級學生立定跳遠成績在范圍內(nèi)的學生有多少人?25.(12分)如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點C按順時針方向旋轉n度后,得到△DEC,點D剛好落在AB邊上.(1)求n的值;(2)若F是DE的中點,判斷四邊形ACFD的形狀,并說明理由.26.已知正方形ABCD,P為射線AB上的一點,以BP為邊作正方形BPEF,使點F在線段CB的延長線上,連接EA、EC(1)如圖1,若點P在線段AB的延長線上,求證:EA=EC;(2)若點P在線段AB上.①如圖2,連接AC,當P為AB的中點時,判斷△ACE的形狀,并說明理由;②如圖3,設AB=a,BP=b,當EP平分∠AEC時,求a:b及∠AEC的度數(shù).

參考答案一、選擇題(每題4分,共48分)1、D【分析】證明△CAB∽△CDE,然后利用相似比得到DE的長.【詳解】∵AB∥DE,∴△CAB∽△CDE,∴,而BC=BE,∴DE=2AB=2×15=30(cm).故選:D.本題考查了相似三角形的應用,用相似三角形對應邊的比相等的性質(zhì)求物體的高度.2、A【分析】根據(jù)二次根式有意義的條件和分式有意義的條件即可求出答案.【詳解】由題意可知:,解得:且,故選A.本題考查了分式有意義的條件、二次根式有意義的條件,熟練掌握分式的分母不為0、二次根式的被開方數(shù)為非負數(shù)是解題的關鍵.3、C【分析】連接OA,OB根據(jù)切線的性質(zhì)定理,切線垂直于過切點的半徑,即可求得∠OAP,∠OBP的度數(shù),根據(jù)四邊形的內(nèi)角和定理即可求的∠AOB的度數(shù),然后根據(jù)圓周角定理即可求解.【詳解】∵PA是圓的切線,∴同理根據(jù)四邊形內(nèi)角和定理可得:∴故選:C.考查切線的性質(zhì)以及圓周角定理,連接圓心與切點是解題的關鍵.4、C【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A.此圖案既不是軸對稱圖形,也不是中心對稱圖形;

B.此圖案既不是軸對稱圖形,也不是中心對稱圖形;

C.此圖案既是軸對稱圖形,又是中心對稱圖形;

D.此圖案僅是軸對稱圖形;

故選:C.本題考查了中心對稱圖形與軸對稱圖形的知識,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形的關鍵是要尋找對稱中心,旋轉180度后兩部分重合.5、C【解析】根據(jù)三角形內(nèi)角和得出∠ACB,利用角平分線得出∠DCB,再利用平行線的性質(zhì)解答即可.【詳解】∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD平分∠ACB交AB于點D,∴∠DCB=×78°=39°,∵DE∥BC,∴∠CDE=∠DCB=39°,故選C.【點睛】本題考查了三角形內(nèi)角和定理、角平分線的定義、平行線的性質(zhì)等,解題的關鍵是熟練掌握和靈活運用根據(jù)三角形內(nèi)角和定理、角平分線的定義和平行線的性質(zhì).6、C【解析】由位似圖的面積比等于位似比的平方可得答案.【詳解】∵即四邊形和的位似比為∴四邊形和的面積比為故選:C.本題考查了位似圖的性質(zhì),熟記位似圖的面積比等于位似比的平方是解題的關鍵.7、B【分析】根據(jù)二次函數(shù)的圖象和二次函數(shù)的性質(zhì),可以判斷各個小題中的結論是否成立,從而可以解答本題.【詳解】∵二次函數(shù)y=ax1+bx+c(a≠0)的對稱軸為x=1,∴﹣=1,得1a+b=0,故①正確;當x=﹣1時,y=4a﹣1b+c<0,故②正確;該函數(shù)圖象與x軸有兩個交點,則b1﹣4ac>0,故③正確;∵二次函數(shù)y=ax1+bx+c(a≠0)的對稱軸為x=1,點B坐標為(﹣1,0),∴點A(3,0),∴當y<0時,x<﹣1或x>3,故④錯誤;故選B.本題考查二次函數(shù)圖象與系數(shù)的關系、拋物線與x軸的交點,解答本題的關鍵是明確題意,利用二次函數(shù)的性質(zhì)和數(shù)形結合的思想解答.8、D【分析】在一個平面內(nèi),如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,這樣的圖形叫做軸對稱圖形;在平面內(nèi),把一個圖形繞著某個點旋轉180°,如果旋轉后的圖形與另一個圖形重合,這樣的圖形叫做中心對稱圖形.【詳解】根據(jù)定義可得A、B為軸對稱圖形;C為中心對稱圖形;D既是軸對稱圖形,也是中心對稱圖形.故選:D.考點:軸對稱圖形與中心對稱圖形9、A【詳解】解:①點P在AB上運動時,此時四邊形OMPN的面積S=K,保持不變,故排除B、D;②點P在BC上運動時,設路線O→A→B→C的總路程為l,點P的速度為a,則S=OC×CP=OC×(l﹣at),因為l,OC,a均是常數(shù),所以S與t成一次函數(shù)關系,故排除C.故選A.考點:動點問題的函數(shù)圖象.10、C【分析】根據(jù)等邊三角形的性質(zhì)先判定是等邊三角形,再利用直角三角形中角的性質(zhì)求得,,進而求得答案.【詳解】是等邊三角形,,,,∴,,是等邊三角形,,,,,,,,,,.故選:C.本題主要考查相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),解題的關鍵是掌握等邊三角形的判定與性質(zhì)、直角三角形的性質(zhì)及相似三角形的判定與性質(zhì).11、D【分析】由解析式求得圖象與x軸、y軸的交點坐標,再由sin,求出AB,利用勾股定理求出OA=,由此即可利用OA=1求出k的值.【詳解】∵,∴當x=0時,y=-k,當y=0時,x=1,∴B(0,-k),A(1,0),∵sin,∴,∵OB=-k,∴AB=,∴OA==∴=1,∴k=,故選:D.此題考查一次函數(shù)的性質(zhì),勾股定理,三角函數(shù),解題中綜合運用,題中求出AB,利用勾股定理求得OA的長是解題的關鍵.12、D【分析】利用正方形的判定方法分別判斷得出即可.【詳解】A、一組鄰邊相等的矩形是正方形,說法正確,不合題意;B、對角線互相垂直的矩形是正方形,說法正確,不合題意;C、對角線相等的菱形是正方形,說法正確,不合題意;D、有一組鄰邊相等、一個角是直角的平行四邊形是正方形,原說法錯誤,符合題意;故選:D.本題考查了正方形的判定問題,掌握正方形的性質(zhì)以及判定定理是解題的關鍵.二、填空題(每題4分,共24分)13、1【分析】如圖,連接OA,根據(jù)等腰三角形的性質(zhì)得到∠OAC=∠C=20°,根據(jù)等腰三角形的性質(zhì)解答即可.【詳解】如圖,連接OA,∵OA=OC,∴∠OAC=∠C=20°,∴∠OAB=∠OAC+∠BAC=20°+40°=1°,∵OA=OB,∴∠B=∠OAB=1°,故答案為1.本題考查了圓的性質(zhì)的應用,熟練掌握圓的半徑相等、等腰三角形的性質(zhì)是解題的關鍵.14、【分析】根據(jù)題意畫出圖形,然后利用某物體的實際高度:影長=被測物體的實際高度:被測物體的影長即可求出旗桿的高度.【詳解】根據(jù)題意畫出如下圖形,有,則AC即為所求.設AB=x則解得∴故答案為10.5.本題主要考查相似三角形的應用,掌握某物體的實際高度:影長=被測物體的實際高度:被測物體的影長是解題的關鍵.15、1【分析】首先根據(jù)二次函數(shù)的圖象經(jīng)過點得到,再整體代值計算即可.【詳解】解:∵二次函數(shù)的圖象經(jīng)過點,

∴,

∴,

∴==1,

故答案為1.本題主要考查了二次函數(shù)圖象上點的坐標特征,解題的關鍵是利用整體代值計算,此題比較簡單.16、【分析】直接利用旋轉的性質(zhì)結合扇形面積求法以及等邊三角形的判定與性質(zhì)得出S陰影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD,進而得出答案.【詳解】連接BD,過點B作BN⊥AD于點N,∵將半徑為2,圓心角為90°的扇形BAC繞A點逆時針旋轉60°,∴∠BAD=60°,AB=AD,∴△ABD是等邊三角形,∴∠ABD=60°,則∠ABN=30°,故AN=1,BN=,S陰影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD==π﹣=.故答案為.考查了扇形面積求法以及等邊三角形的判定與性質(zhì),正確得出△ABD是等邊三角形是解題關鍵.17、1【分析】根據(jù)題意,討論當k=0時,符合題意,當時,一元二次方程有兩個相等的實數(shù)根即,據(jù)此代入系數(shù),結合完全平方公式解題即可.【詳解】當k=0,方程為一元一次方程,沒有兩個實數(shù)根,故關于的方程有兩個相等的實數(shù)根,即即故答案為:1;.本題考查一元二次方程根與系數(shù)的關系、完全平方公式等知識,是重要考點,難度較易,掌握相關知識是解題關鍵.18、1【解析】由題意,在長為8cm寬6cm的矩形中,截去一個矩形使留下的矩形與原矩形相似,根據(jù)相似形的對應邊長比例關系,就可以求解.【詳解】解:設寬為xcm,

∵留下的矩形與原矩形相似,解得∴截去的矩形的面積為∴留下的矩形的面積為48-21=1cm2,

故答案為:1.本題就是考查相似形的對應邊的比相等,分清矩形的對應邊是解決本題的關鍵.三、解答題(共78分)19、(1);;(2).【分析】(1)去括號整理后利用因式分解法解方程即可;

(2)直接利用特殊角的三角函數(shù)值代入求出答案.【詳解】(1)去括號得:移項合并得:因式分解得:即:或∴;(2).本題考查了解一元二次方程-因式分解法,特殊角的三角函數(shù)值,正確分解因式、熟記特殊角的三角函數(shù)值是解題關鍵.20、(1)證明見解析;(2)【分析】(1)根據(jù)圓周角定理、等腰三角形的三線合一的性質(zhì)即可證得結論;(2)根據(jù)圓周角定理及等腰三角形的判定得到DE=BD=3,再根據(jù)勾股定理求出AB,即可得到半徑的長.【詳解】(1)∵AB是⊙O直徑∴∠ADB=90°,在△ABC中,AB=AC,∴DB=DC,即點D是BC的中點;(2)∵AB=AC,∴∠B=∠C,又∠B=∠E,∴∠C=∠E,∴DE=DC,∵DC=BD,∴DE=BD=3,∵AD=1,又∠ADB=90°,∴AB=,∴⊙O的半徑=.此題考查圓周角定理,等腰三角形的三線合一的性質(zhì)及等角對等邊的判定,勾股定理.21、(1)3;(2)a=-4,b=-6,c=-8.【解析】(1)設,可得,,,代入原式即可解答;(2)把,,,帶入(2)式即可計算出k的值,從而求解.【詳解】(1)設,則,,∴(2)由(1)解得,,,本題考查比例的性質(zhì),設是解題關鍵.22、見解析【分析】計算判別式,并且配方得到△=,然后根據(jù)判別式的意義得到結論.【詳解】二次函數(shù)∵,,,∴,而,∴,即為任何實數(shù)時,方程都有兩個不等的實數(shù)根,∴二次函數(shù)的圖象與軸都有兩個交點.本題考查了拋物線與軸的交點:把求二次函數(shù)是常數(shù),與軸的交點坐標問題轉化為解關于的一元二次方程.23、(1)85°;(2)小明家所在居民樓與大廈的距離CD的長度是40米.【分析】(1)結合圖形即可得出答案;(2)利用所給角的三角函數(shù)用CD表示出AD、BD;根據(jù)AB=AD+BD=74米,即可求得居民樓與大廈的距離.【詳解】解:(1)由圖知∠ACB=37°+48°=85°;(2)設CD=x米.在Rt△ACD中,tan37°=,則=,∴AD=x;在Rt△BCD中,tan48°=,則=,∴BD=x.∵AD+BD=AB,∴x+x=74,解得:x=40,答:小明家所在居民樓與大廈的距離CD的長度是40米.本題考查的是解直角三角形的應用?仰角俯角問題,掌握仰角俯角的概念、熟記銳角三角函數(shù)的定義是解題的關鍵.24、(1)8,20,;(2)見解析;(3)200人【分析】(1)根據(jù)題意和統(tǒng)計圖可以求得a、b的值,并得到樣本成績的中位數(shù)所在的取值范圍;(2)根據(jù)b的值可以將頻數(shù)分布直方圖補充完整;(3)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得該年級學生立定跳遠成績在2.4≤x<2.8范圍內(nèi)的學生有多少人.【詳解】(1)由統(tǒng)計圖可得,a=8,b=50?8?12?10=20,樣本成績的中位數(shù)落在:2.0≤x<2.4范圍內(nèi),故答案為:8,20,2.0≤x<2.4;(2)由(1)知,b=20,補全的頻數(shù)分布直方圖如圖所示;(3)(人)答:估計該年級學生立定跳遠成績在范圍內(nèi)的學生有200人.本題考查頻數(shù)分布直方圖、頻數(shù)分布表、用樣本估計總體、中位數(shù),解答本題的關鍵是明確題意,利用數(shù)形結合的思想解答.25、(1)60;(2)四邊形ACFD是菱形.理由見解析.【分析】(1)利用旋轉的性質(zhì)得出AC=CD,進而得出△ADC是等邊三角形,即可得出∠ACD的度數(shù);(2)利用直角三角形的性質(zhì)得出FC=DF,進而得出AD=AC=FC=DF,即可得出答案.【詳解】解:(1)∵在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點C按順時針方向旋轉n度后,得到△DEC,∴AC=DC,∠A=60°,∠DCE=∠ACB=90°,∴△ADC是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論