2024屆江西省撫州市臨川區(qū)第四中學中考數(shù)學四模試卷含解析_第1頁
2024屆江西省撫州市臨川區(qū)第四中學中考數(shù)學四模試卷含解析_第2頁
2024屆江西省撫州市臨川區(qū)第四中學中考數(shù)學四模試卷含解析_第3頁
2024屆江西省撫州市臨川區(qū)第四中學中考數(shù)學四模試卷含解析_第4頁
2024屆江西省撫州市臨川區(qū)第四中學中考數(shù)學四模試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆江西省撫州市臨川區(qū)第四中學中考數(shù)學四模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.A種飲料比B種飲料單價少1元,小峰買了2瓶A種飲料和3瓶B種飲料,一共花了13元,如果設B種飲料單價為x元/瓶,那么下面所列方程正確的是()A.2(x1)+3x=13 B.2(x+1)+3x=13C.2x+3(x+1)=13 D.2x+3(x1)=132.中國幅員遼闊,陸地面積約為960萬平方公里,“960萬”用科學記數(shù)法表示為()A.0.96×107 B.9.6×106 C.96×105 D.9.6×1023.已知二次函數(shù)(為常數(shù)),當時,函數(shù)的最小值為5,則的值為()A.-1或5 B.-1或3 C.1或5 D.1或34.如圖,正方形ABCD的對角線AC與BD相交于點O,∠ACB的角平分線分別交AB,BD于M,N兩點.若AM=2,則線段ON的長為()A. B. C.1 D.5.的相反數(shù)是()A. B.2 C. D.6.下列幾何體是由4個相同的小正方體搭成的,其中左視圖與俯視圖相同的是()A. B. C. D.7.如圖所示是由相同的小正方體搭成的幾何體的俯視圖,小正方形中的數(shù)字表示該位置上小正方體的個數(shù),那么該幾何體的主視圖是()A. B. C. D.8.如圖,直線a、b被c所截,若a∥b,∠1=45°,∠2=65°,則∠3的度數(shù)為()A.110° B.115° C.120° D.130°9.下圖是由八個相同的小正方體組合而成的幾何體,其左視圖是()A. B. C. D.10.如圖,矩形ABCD中,AB=8,BC=1.點E在邊AB上,點F在邊CD上,點G、H在對角線AC上.若四邊形EGFH是菱形,則AE的長是()A.2 B.3 C.5 D.6二、填空題(本大題共6個小題,每小題3分,共18分)11.某菜農(nóng)搭建了一個橫截面為拋物線的大棚,尺寸如圖,若菜農(nóng)身高為1.8m,他在不彎腰的情況下,在棚內(nèi)的橫向活動范圍是__m.12.如圖,在△ABC中,AD、BE分別是邊BC、AC上的中線,AB=AC=5,cos∠C=,那么GE=_______.13.如圖,在△ABC中,BC=7,,tanC=1,點P為AB邊上一動點(點P不與點B重合),以點P為圓心,PB為半徑畫圓,如果點C在圓外,那么PB的取值范圍______.14.計算﹣的結果為_____.15.如圖,已知,第一象限內(nèi)的點A在反比例函數(shù)y=的圖象上,第四象限內(nèi)的點B在反比例函數(shù)y=的圖象上.且OA⊥OB,∠OAB=60°,則k的值為_________.16.函數(shù)y=1x-1的自變量x的取值范圍是三、解答題(共8題,共72分)17.(8分)已知直線y=mx+n(m≠0,且m,n為常數(shù))與雙曲線y=(k<0)在第一象限交于A,B兩點,C,D是該雙曲線另一支上兩點,且A、B、C、D四點按順時針順序排列.(1)如圖,若m=﹣,n=,點B的縱坐標為,①求k的值;②作線段CD,使CD∥AB且CD=AB,并簡述作法;(2)若四邊形ABCD為矩形,A的坐標為(1,5),①求m,n的值;②點P(a,b)是雙曲線y=第一象限上一動點,當S△APC≥24時,則a的取值范圍是.18.(8分)某工廠準備用圖甲所示的A型正方形板材和B型長方形板材,制作成圖乙所示的豎式和橫式兩種無蓋箱子.若該工廠準備用不超過10000元的資金去購買A,B兩種型號板材,并全部制作豎式箱子,已知A型板材每張30元,B型板材每張90元,求最多可以制作豎式箱子多少只?若該工廠倉庫里現(xiàn)有A型板材65張、B型板材110張,用這批板材制作兩種類型的箱子,問制作豎式和橫式兩種箱子各多少只,恰好將庫存的板材用完?若該工廠新購得65張規(guī)格為的C型正方形板材,將其全部切割成A型或B型板材不計損耗,用切割成的板材制作兩種類型的箱子,要求豎式箱子不少于20只,且材料恰好用完,則能制作兩種箱子共______只19.(8分)經(jīng)過校園某路口的行人,可能左轉(zhuǎn),也可能直行或右轉(zhuǎn).假設這三種可能性相同,現(xiàn)有小明和小亮兩人經(jīng)過該路口,請用列表法或畫樹狀圖法,求兩人之中至少有一人直行的概率.20.(8分)在平面直角坐標系中,O為原點,點A(8,0)、點B(0,4),點C、D分別是邊OA、AB的中點.將△ACD繞點A順時針方向旋轉(zhuǎn),得△AC′D′,記旋轉(zhuǎn)角為α.(I)如圖①,連接BD′,當BD′∥OA時,求點D′的坐標;(II)如圖②,當α=60°時,求點C′的坐標;(III)當點B,D′,C′共線時,求點C′的坐標(直接寫出結果即可).21.(8分)為了傳承中華優(yōu)秀傳統(tǒng)文化,市教育局決定開展“經(jīng)典誦讀進校園”活動,某校團委組織八年級100名學生進行“經(jīng)典誦讀”選拔賽,賽后對全體參賽學生的成績進行整理,得到下列不完整的統(tǒng)計圖表.

請根據(jù)所給信息,解答以下問題:

表中___;____請計算扇形統(tǒng)計圖中B組對應扇形的圓心角的度數(shù);

已知有四名同學均取得98分的最好成績,其中包括來自同一班級的甲、乙兩名同學,學校將從這四名同學中隨機選出兩名參加市級比賽,請用列表法或畫樹狀圖法求甲、乙兩名同學都被選中的概率.22.(10分)﹣(﹣1)2018+﹣()﹣123.(12分)某區(qū)域平面示意圖如圖,點O在河的一側(cè),AC和BC表示兩條互相垂直的公路.甲勘測員在A處測得點O位于北偏東45°,乙勘測員在B處測得點O位于南偏西73.7°,測得AC=840m,BC=500m.請求出點O到BC的距離.參考數(shù)據(jù):sin73.7°≈,cos73.7°≈,tan73.7°≈24.如圖,已知點A(﹣2,0),B(4,0),C(0,3),以D為頂點的拋物線y=ax2+bx+c過A,B,C三點.(1)求拋物線的解析式及頂點D的坐標;(2)設拋物線的對稱軸DE交線段BC于點E,P為第一象限內(nèi)拋物線上一點,過點P作x軸的垂線,交線段BC于點F,若四邊形DEFP為平行四邊形,求點P的坐標.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

要列方程,首先要根據(jù)題意找出題中存在的等量關系,由題意可得到:買A飲料的錢+買B飲料的錢=總印數(shù)1元,明確了等量關系再列方程就不那么難了.【詳解】設B種飲料單價為x元/瓶,則A種飲料單價為(x-1)元/瓶,根據(jù)小峰買了2瓶A種飲料和3瓶B種飲料,一共花了1元,可得方程為:2(x-1)+3x=1.故選A.【點睛】列方程題的關鍵是找出題中存在的等量關系,此題的等量關系為買A中飲料的錢+買B中飲料的錢=一共花的錢1元.2、B【解析】試題分析:“960萬”用科學記數(shù)法表示為9.6×106,故選B.考點:科學記數(shù)法—表示較大的數(shù).3、A【解析】

由解析式可知該函數(shù)在x=h時取得最小值1,x>h時,y隨x的增大而增大;當x<h時,y隨x的增大而減?。桓鶕?jù)1≤x≤3時,函數(shù)的最小值為5可分如下兩種情況:①若h<1,可得x=1時,y取得最小值5;②若h>3,可得當x=3時,y取得最小值5,分別列出關于h的方程求解即可.【詳解】解:∵x>h時,y隨x的增大而增大,當x<h時,y隨x的增大而減小,∴①若h<1,當時,y隨x的增大而增大,∴當x=1時,y取得最小值5,可得:,解得:h=?1或h=3(舍),∴h=?1;②若h>3,當時,y隨x的增大而減小,當x=3時,y取得最小值5,可得:,解得:h=5或h=1(舍),∴h=5,③若1≤h≤3時,當x=h時,y取得最小值為1,不是5,∴此種情況不符合題意,舍去.綜上所述,h的值為?1或5,故選:A.【點睛】本題主要考查二次函數(shù)的性質(zhì)和最值,根據(jù)二次函數(shù)的性質(zhì)和最值進行分類討論是解題的關鍵.4、C【解析】

作MH⊥AC于H,如圖,根據(jù)正方形的性質(zhì)得∠MAH=45°,則△AMH為等腰直角三角形,所以AH=MH=AM=,再根據(jù)角平分線性質(zhì)得BM=MH=,則AB=2+,于是利用正方形的性質(zhì)得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后證明△CON∽△CHM,再利用相似比可計算出ON的長.【詳解】試題分析:作MH⊥AC于H,如圖,∵四邊形ABCD為正方形,∴∠MAH=45°,∴△AMH為等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,∴BM=MH=,∴AB=2+,∴AC=AB=(2+)=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴,即,∴ON=1.故選C.【點睛】本題考查了相似三角形的判定與性質(zhì):在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形.也考查了角平分線的性質(zhì)和正方形的性質(zhì).5、B【解析】

根據(jù)相反數(shù)的性質(zhì)可得結果.【詳解】因為-2+2=0,所以﹣2的相反數(shù)是2,故選B.【點睛】本題考查求相反數(shù),熟記相反數(shù)的性質(zhì)是解題的關鍵.6、C【解析】試題分析:從物體的前面向后面投射所得的視圖稱主視圖(正視圖)——能反映物體的前面形狀;從物體的上面向下面投射所得的視圖稱俯視圖——能反映物體的上面形狀;從物體的左面向右面投射所得的視圖稱左視圖——能反映物體的左面形狀.選項C左視圖與俯視圖都是,故選C.7、C【解析】A、B、D不是該幾何體的視圖,C是主視圖,故選C.【點睛】主視圖是由前面看到的圖形,俯視圖是由上面看到的圖形,左視圖是由左面看到的圖形,能看到的線畫實線,看不到的線畫虛線.8、A【解析】試題分析:首先根據(jù)三角形的外角性質(zhì)得到∠1+∠2=∠4,然后根據(jù)平行線的性質(zhì)得到∠3=∠4求解.解:根據(jù)三角形的外角性質(zhì),∴∠1+∠2=∠4=110°,∵a∥b,∴∠3=∠4=110°,故選A.點評:本題考查了平行線的性質(zhì)以及三角形的外角性質(zhì),屬于基礎題,難度較?。?、B【解析】

解:找到從左面看所得到的圖形,從左面可看到從左往右三列小正方形的個數(shù)為:2,3,1.故選B.10、C【解析】試題分析:連接EF交AC于點M,由四邊形EGFH為菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易證△FMC≌△EMA,根據(jù)全等三角形的性質(zhì)可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案選C.考點:菱形的性質(zhì);矩形的性質(zhì);勾股定理;銳角三角函數(shù).二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】

設拋物線的解析式為:y=ax2+b,由圖得知點(0,2.4),(1,0)在拋物線上,列方程組得到拋物線的解析式為:y=﹣x2+2.4,根據(jù)題意求出y=1.8時x的值,進而求出答案;【詳解】設拋物線的解析式為:y=ax2+b,由圖得知:點(0,2.4),(1,0)在拋物線上,∴,解得:,∴拋物線的解析式為:y=﹣x2+2.4,∵菜農(nóng)的身高為1.8m,即y=1.8,則1.8=﹣x2+2.4,解得:x=(負值舍去)故他在不彎腰的情況下,橫向活動范圍是:1米,故答案為1.12、【解析】

過點E作EF⊥BC交BC于點F,分別求得AD=3,BD=CD=4,EF=,DF=2,BF=6,再結合△BGD∽△BEF即可.【詳解】過點E作EF⊥BC交BC于點F.∵AB=AC,AD為BC的中線∴AD⊥BC∴EF為△ADC的中位線.又∵cos∠C=,AB=AC=5,∴AD=3,BD=CD=4,EF=,DF=2∴BF=6∴在Rt△BEF中BE==,又∵△BGD∽△BEF∴,即BG=.GE=BE-BG=故答案為.【點睛】本題考查的知識點是三角形的相似,解題的關鍵是熟練的掌握三角形的相似.13、【解析】分析:根據(jù)題意作出合適的輔助線,然后根據(jù)題意即可求得PB的取值范圍.詳解:作AD⊥BC于點D,作PE⊥BC于點E.∵在△ABC中,BC=7,AC=3,tanC=1,∴AD=CD=3,∴BD=4,∴AB=5,由題意可得,當PB=PC時,點C恰好在以點P為圓心,PB為半徑圓上.∵AD⊥BC,PE⊥BC,∴PE∥AD,∴△BPE∽△BDA,∴,即,得:BP=.故答案為0<PB<.點睛:本題考查了點與圓的位置關系、解直角三角形,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答.14、.【解析】

根據(jù)同分母分式加減運算法則化簡即可.【詳解】原式=,故答案為.【點睛】本題考查了分式的加減運算,熟記運算法則是解題的關鍵.15、-6【解析】如圖,作AC⊥x軸,BD⊥x軸,∵OA⊥OB,∴∠AOB=90°,∵∠OAC+∠AOC=90°,∠AOC+∠BOD=90°,∴∠OAC=∠BOD,∴△ACO∽△ODB,∴,∵∠OAB=60°,∴,設A(x,),∴BD=OC=x,OD=AC=,∴B(x,-),把點B代入y=得,-=,解得k=-6,故答案為-6.16、x>1【解析】依題意可得x-1>0,解得x>1,所以函數(shù)的自變量x的取值范圍是x>1三、解答題(共8題,共72分)17、(1)①k=5;②見解析,由此AO交雙曲線于點C,延長BO交雙曲線于點D,線段CD即為所求;(2)①;②0<a<1或a>5【解析】

(1)①求出直線的解析式,利用待定系數(shù)法即可解決問題;②如圖,由此AO交雙曲線于點C,延長BO交雙曲線于點D,線段CD即為所求;(2)①求出A,B兩點坐標,利用待定系數(shù)法即可解決問題;②分兩種情形求出△PAC的面積=24時a的值,即可判斷.【詳解】(1)①∵,,∴直線的解析式為,∵點B在直線上,縱坐標為,∴,解得x=2∴,∴;②如下圖,由此AO交雙曲線于點C,延長BO交雙曲線于點D,線段CD即為所求;(2)①∵點在上,∴k=5,∵四邊形ABCD是矩形,∴OA=OB=OC=OD,∴A,B關于直線y=x對稱,∴,則有:,解得;②如下圖,當點P在點A的右側(cè)時,作點C關于y軸的對稱點C′,連接AC,AC′,PC,PC′,PA.∵A,C關于原點對稱,,∴,∵,當時,∴,∴,∴a=5或(舍棄),當點P在點A的左側(cè)時,同法可得a=1,∴滿足條件的a的范圍為或.【點睛】本題屬于反比例函數(shù)與一次函數(shù)的綜合問題,熟練掌握待定系數(shù)法解函數(shù)解析式以及交點坐標的求法是解決本題的關鍵.18、(1)最多可以做25只豎式箱子;(2)能制作豎式、橫式兩種無蓋箱子分別為5只和30只;(3)47或1.【解析】

表示出豎式箱子所用板材數(shù)量進而得出總金額即可得出答案;設制作豎式箱子a只,橫式箱子b只,利用A型板材65張、B型板材110張,得出方程組求出答案;設裁剪出B型板材m張,則可裁A型板材張,進而得出方程組求出符合題意的答案.【詳解】解:設最多可制作豎式箱子x只,則A型板材x張,B型板材4x張,根據(jù)題意得解得.答:最多可以做25只豎式箱子.設制作豎式箱子a只,橫式箱子b只,根據(jù)題意,得,解得:.答:能制作豎式、橫式兩種無蓋箱子分別為5只和30只.設裁剪出B型板材m張,則可裁A型板材張,由題意得:,整理得,,.豎式箱子不少于20只,或22,這時,或,.則能制作兩種箱子共:或.故答案為47或1.【點睛】本題考查了一元一次不等式的應用以及二元一次方程組的應用,解題的關鍵是理解題意,列出等式.19、兩人之中至少有一人直行的概率為.【解析】【分析】畫樹狀圖展示所有9種等可能的結果數(shù),找出“至少有一人直行”的結果數(shù),然后根據(jù)概率公式求解.【詳解】畫樹狀圖為:共有9種等可能的結果數(shù),其中兩人之中至少有一人直行的結果數(shù)為5,所以兩人之中至少有一人直行的概率為.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.概率=所求情況數(shù)與總情況數(shù)之比.20、(I)(10,4)或(6,4)(II)C′(6,2)(III)①C′(8,4)②C′(,﹣)【解析】

(I)如圖①,當OB∥AC′,四邊形OBC′A是平行四邊形,只要證明B、C′、D′共線即可解決問題,再根據(jù)對稱性確定D″的坐標;(II)如圖②,當α=60°時,作C′K⊥AC于K.解直角三角形求出OK,C′K即可解決問題;(III)分兩種情形分別求解即可解決問題;【詳解】解:(I)如圖①,∵A(8,0),B(0,4),∴OB=4,OA=8,∵AC=OC=AC′=4,∴當OB∥AC′,四邊形OBC′A是平行四邊形,∵∠AOB=90°,∴四邊形OBC′A是矩形,∴∠AC′B=90°,∵∠AC′D′=90°,∴B、C′、D′共線,∴BD′∥OA,∵AC=CO,BD=AD,∴CD=C′D′=OB=2,∴D′(10,4),根據(jù)對稱性可知,點D″在線段BC′上時,D″(6,4)也滿足條件.綜上所述,滿足條件的點D坐標(10,4)或(6,4).(II)如圖②,當α=60°時,作C′K⊥AC于K.在Rt△AC′K中,∵∠KAC′=60°,AC′=4,∴AK=2,C′K=2,∴OK=6,∴C′(6,2).(III)①如圖③中,當B、C′、D′共線時,由(Ⅰ)可知,C′(8,4).②如圖④中,當B、C′、D′共線時,BD′交OA于F,易證△BOF≌△AC′F,∴OF=FC′,設OF=FC′=x,在Rt△ABC′中,BC′==8,在RT△BOF中,OB=4,OF=x,BF=8﹣x,∴(8﹣x)2=42+x2,解得x=3,∴OF=FC′=3,BF=5,作C′K⊥OA于K,∵OB∥KC′,∴==,∴==,∴KC′=,KF=,∴OK=,∴C′(,﹣).【點睛】本題考查三角形綜合題、旋轉(zhuǎn)變換、矩形的判定和性質(zhì)、平行線的性質(zhì)、勾股定理等知識,解題的關鍵是靈活應用所學知識解決問題,學會用分類討論的思想思考問題,屬于中考壓軸題.21、(1)0.3,45;(2);(3)【解析】

(1)根據(jù)頻數(shù)的和為樣本容量,頻率的和為1,可直接求解;(2)根據(jù)頻率可得到百分比,乘以360°即可;(3)列出相應的可能性表格,找到所發(fā)生的所有可能和符合條件的可能求概率即可.【詳解】(1)a=0.3,b=45(2)360°×0.3=108°(3)列關系表格為:由表格可知,滿足題意的概率為:.考點:1、頻數(shù)分布表,2、扇形統(tǒng)計圖,3、概率22、-1.【解析】

直接利用負指數(shù)冪的性質(zhì)以及算術平方根的性質(zhì)分別化

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論