廣東省汕尾市海豐縣2024年數(shù)學(xué)八年級下冊期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
廣東省汕尾市海豐縣2024年數(shù)學(xué)八年級下冊期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
廣東省汕尾市海豐縣2024年數(shù)學(xué)八年級下冊期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
廣東省汕尾市海豐縣2024年數(shù)學(xué)八年級下冊期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
廣東省汕尾市海豐縣2024年數(shù)學(xué)八年級下冊期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣東省汕尾市海豐縣2024年數(shù)學(xué)八年級下冊期末學(xué)業(yè)水平測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.如果直角三角形的邊長為3,4,a,則a的值是()A.5 B.6 C. D.5或2.如圖,將矩形ABCD繞點A旋轉(zhuǎn)至矩形AB′C′D′位置,此時AC的中點恰好與D點重合,AB′交CD于點E,若AB=3,則△AEC的面積為()A.3 B.1.5 C.2 D.3.等式?=成立的條件是()A. B. C. D.4.已知某四邊形的兩條對角線相交于點O.動點P從點A出發(fā),沿四邊形的邊按A→B→C的路徑勻速運動到點C.設(shè)點P運動的時間為x,線段OP的長為y,表示y與x的函數(shù)關(guān)系的圖象大致如圖所示,則該四邊形可能是()A. B. C. D.5.下列角度中,不能是某多邊形內(nèi)角和的是()A.600° B.720° C.900° D.1080°6.在直角三角形中,自銳角頂點所引的兩條中線長為和,那么這個直角三角形的斜邊長為()A.6 B.7 C.2 D.27.做“拋擲一枚質(zhì)地均勻的硬幣試驗”,在大量重復(fù)試驗中,對于事件“正面朝上”的頻率和概率,下列說法正確的是()A.概率等于頻率 B.頻率等于 C.概率是隨機的 D.頻率會在某一個常數(shù)附近擺動8.如圖,是某市6月份日平均氣溫情況,在日平均氣溫這組數(shù)據(jù)中,眾數(shù)和中位數(shù)分別是()A.21,22 B.21,21.5 C.10,21 D.10,229.我校開展了主題為“青春·夢想”的藝術(shù)作品征集活動、從八年級某六個班中收集到的作品數(shù)量(單位:件)統(tǒng)計如圖,則這組數(shù)據(jù)的眾數(shù)、中位數(shù)、平均數(shù)依次是()A.48,48,48 B.48,47.5,47.5C.48,48,48.5 D.48,47.5,48.510.星期天晚飯后,小麗的爸爸從家里出去散步,如圖描述了她爸爸散步過程中離家的距離(km)與散步所用的時間(min)之間的函數(shù)關(guān)系,依據(jù)圖象,下面描述符合小麗爸爸散步情景的是()A.從家出發(fā),休息一會,就回家B.從家出發(fā),一直散步(沒有停留),然后回家C.從家出發(fā),休息一會,返回用時20分鐘D.從家出發(fā),休息一會,繼續(xù)行走一段,然后回家二、填空題(每小題3分,共24分)11.如圖,矩形紙片ABCD,AB=5,BC=3,點P在BC邊上,將△CDP沿DP折疊,點C落在點E處,PE,DE分別交AB于點O,F(xiàn),且OP=OF,則AF的值為______.12.已知一元二次方程2x2﹣5x+1=0的兩根為m,n,則m2+n2=_____.13.如圖,在平面直角坐標(biāo)系中,已知的直角頂點在軸上,,反比例函數(shù)在第一象限的圖像經(jīng)過邊上點和的中點,連接.若,則實數(shù)的值為__________.14.如圖,在中,角是邊上的一點,作垂直,垂直,垂足分別為,則的最小值是______.15.如圖,長方形ABCD中,AB=3,AD=1,AB在數(shù)軸上,若以點A為圓心,AC的長為半徑作弧交數(shù)軸于點M,則點M表示的數(shù)為__________.16.如圖所示,小明從坡角為30°的斜坡的山底(A)到山頂(B)共走了200米,則山坡的高度BC為米.17.已知.若整數(shù)滿足.則=_________.18.在一個矩形中,若一個角的平分線把一條邊分成長為3cm和4cm的兩條線段,則該矩形周長為_________三、解答題(共66分)19.(10分)已知與成正比例,且當(dāng)時,,則當(dāng)時,求的值.20.(6分)如圖1,將紙片折疊,折疊后的三個三角形可拼合形成一個矩形,類似地,對多邊形進(jìn)行折疊,若翻折后的圖形恰能拼合成一個無縫隙、無重疊的矩形,這樣的矩形稱為疊合矩形.(1)將紙片按圖2的方式折疊成一個疊合矩形,則操作形成的折痕分別是線段_______,__________;___________.(2)將紙片按圖3的方式折疊成一個疊合矩形,若,,求的長;(3)如圖4,四邊形紙片滿足,,,,,小明把該紙片折疊,得到疊合正方形,請你幫助畫出一種疊合正方形的示意圖,并求出、的長.21.(6分)在平面直角坐標(biāo)系中,一次函數(shù)的圖象與軸負(fù)半軸交于點,與軸正半軸交于點,點為直線上一點,,點為軸正半軸上一點,連接,的面積為1.(1)如圖1,求點的坐標(biāo);(2)如圖2,點分別在線段上,連接,點的橫坐標(biāo)為,點的橫坐標(biāo)為,求與的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);(3)在(2)的條件下,如圖3,連接,點為軸正半軸上點右側(cè)一點,點為第一象限內(nèi)一點,,,延長交于點,點為上一點,直線經(jīng)過點和點,過點作,交直線于點,連接,請你判斷四邊形的形狀,并說明理由.22.(8分)已知一次函數(shù)y=(1m-1)x+m-1.(1)若此函數(shù)圖象過原點,則m=________;(1)若此函數(shù)圖象不經(jīng)過第二象限,求m的取值范圍.23.(8分)耒陽市某校為了進(jìn)一步豐富學(xué)生的課外閱讀,欲增購一些課外書,為此對該校一部分學(xué)生進(jìn)行了一次“你最喜歡的書籍”問卷調(diào)查(每人只選一項).根據(jù)收集到的數(shù)據(jù),繪制成如下統(tǒng)計圖(不完整):請根據(jù)圖中提供的信息,完成下列問題:(1)在這次問卷調(diào)查中,喜歡“科普書籍”出現(xiàn)的頻率為;(2)補全條形圖;(3)求在扇形統(tǒng)計圖中,喜歡“科普書籍”的所占的圓心角度數(shù);(4)如果全校共有學(xué)生1500名,請估計該校最喜歡“科普”書籍的學(xué)生約有多少人?24.(8分)如圖,矩形中,點分別在邊與上,點在對角線上,,.求證:四邊形是平行四邊形.若,,,求的長.25.(10分)如圖,ABCD中,的角平分線交AD于點E,的角平分線交于點,,,=50°.(1)求的度數(shù);(2)求ABCD的周長.26.(10分)甲、乙兩地相距300千米,一輛貨車和一輛轎車分別從甲地開往乙地(轎車的平均速度大于貨車的平均速度),如圖,線段OA、折線BCD分別表示兩車離甲地的距離y(單位:千米)與時間x(單位:小時)之間的函數(shù)關(guān)系.(1)線段OA與折線BCD中,______(填線段OA或折線BCD)表示貨車離甲地的距離y與時間x之間的函數(shù)關(guān)系.(2)求線段CD的函數(shù)關(guān)系式(標(biāo)出自變量x取值范圍);(3)貨車出發(fā)多長時間兩車相遇?

參考答案一、選擇題(每小題3分,共30分)1、D【解析】

分兩種情況分析:a是斜邊或直角邊,根據(jù)勾股定理可得.【詳解】解:當(dāng)a是斜邊時,a=;當(dāng)a是直角邊時,a=所以,a的值是5或故選:D.【點睛】本題考核知識點:勾股定理,解題關(guān)鍵點:分兩種情況分析.2、D【解析】

解:∵旋轉(zhuǎn)后AC的中點恰好與D點重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE.在Rt△ADE中,設(shè)AE=EC=x,則有DE=DC﹣EC=AB﹣EC=3﹣x,AD=×3=.根據(jù)勾股定理得:,解得:x=2,∴EC=2,則S△AEC=EC?AD=.故選D.3、C【解析】根據(jù)二次根式的乘法法則成立的條件:a≥0且b≥0,即可確定.解:根據(jù)題意得:,

解得:x≥1.x≥–1,

故答案是:x≥1.

“點睛”本題考查了二次根式的乘法法則,理解二次根式有意義的條件是關(guān)鍵.4、D【解析】

通過點經(jīng)過四邊形各個頂點,觀察圖象的對稱趨勢問題可解.【詳解】、選項路線都關(guān)于對角線對稱,因而函數(shù)圖象應(yīng)具有對稱性,故、錯誤,對于選項點從到過程中的長也存在對稱性,則圖象前半段也應(yīng)該具有對稱特征,故錯誤.故選:.【點睛】本題動點問題的函數(shù)圖象,考查學(xué)生對動點運動過程中所產(chǎn)生函數(shù)圖象的變化趨勢判斷.解答關(guān)鍵是注意動點到達(dá)臨界前后的圖象變化.5、A【解析】

利用多邊形的內(nèi)角和公式即可作出判斷.【詳解】解:∵多邊形內(nèi)角和公式為(n-2)×180,

∴多邊形內(nèi)角和一定是180的倍數(shù).

故選:A.【點睛】本題考查多邊形內(nèi)角和公式,在解題時要記住多邊形內(nèi)角和公式,并加以應(yīng)用即可解決問題.6、A【解析】

根據(jù)題意畫出圖形,利用勾股定理解答即可.【詳解】如圖,設(shè)AC=b,BC=a,分別在直角△ACE與直角△BCD中,根據(jù)勾股定理得到:,兩式相加得:a2+b2=31,根據(jù)勾股定理得到斜邊==1.故選A.【點睛】本題是根據(jù)勾股定理,把求直角三角形的斜邊長的問題轉(zhuǎn)化為求兩直角邊的平方和的問題.7、D【解析】

頻率是在一次試驗中某一事件出現(xiàn)的次數(shù)與試驗總數(shù)的比值。概率是某一事件所固有的性質(zhì)。頻率是變化的每次試驗可能不同,概率是穩(wěn)定值不變。在一定條件下頻率可以近似代替概率。【詳解】A、概率不等于頻率,A選項錯誤;B、頻率等于,B選項錯誤C、概率是穩(wěn)定值不變,C選項錯誤D、頻率會在某一個常數(shù)附近擺動,D選項是正確的。故答案為:D【點睛】此題主要考查了概率公式,以及頻率和概率的區(qū)別。8、A【解析】

根據(jù)眾數(shù)和中位數(shù)的定義求解.【詳解】解:這組數(shù)據(jù)中,21出現(xiàn)了10次,出現(xiàn)次數(shù)最多,所以眾數(shù)為21,第15個數(shù)和第16個數(shù)都是1,所以中位數(shù)是1.

故選A.【點睛】本題考查眾數(shù)的定義:一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù).也考查了條形統(tǒng)計圖和中位數(shù).9、A【解析】

根據(jù)眾數(shù)、中位數(shù)的定義和加權(quán)平均數(shù)公式分別進(jìn)行解答即可.【詳解】解:這組數(shù)據(jù)48出現(xiàn)的次數(shù)最多,出現(xiàn)了3次,則這組數(shù)據(jù)的眾數(shù)是48;

把這組數(shù)據(jù)從小到大排列,最中間兩個數(shù)的平均數(shù)是(48+48)÷2=48,則中位數(shù)是48;

這組數(shù)據(jù)的平均數(shù)是:(47×2+48×3+50)÷6=48,

故選:A.【點睛】本題考查了眾數(shù)、中位數(shù)和平均數(shù),眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù);中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(或最中間兩個數(shù)的平均數(shù)).10、D【解析】

利用函數(shù)圖象,得出各段的時間以及離家的距離變化,進(jìn)而得出答案.【詳解】由圖象可得出:小麗的爸爸從家里出去散步10分鐘,休息20分鐘,再向前走10分鐘,然后利用20分鐘回家.

故選:D.【點睛】本題考查了函數(shù)的圖象,解題的關(guān)鍵是要看懂圖象的橫縱坐標(biāo)所表示的意義,然后再進(jìn)行解答.二、填空題(每小題3分,共24分)11、【解析】

根據(jù)折疊的性質(zhì)可得出DC=DE、CP=EP,由“AAS”可證△OEF≌△OBP,可得出OE=OB、EF=BP,設(shè)EF=x,則BP=x、DF=5-x、BF=PC=3-x,進(jìn)而可得出AF=2+x,在Rt△DAF中,利用勾股定理可求出x的值,即可得AF的長.【詳解】解:∵將△CDP沿DP折疊,點C落在點E處,∴DC=DE=5,CP=EP.在△OEF和△OBP中,,∴△OEF≌△OBP(AAS),∴OE=OB,EF=BP.設(shè)EF=x,則BP=x,DF=DE-EF=5-x,又∵BF=OB+OF=OE+OP=PE=PC,PC=BC-BP=3-x,∴AF=AB-BF=2+x.在Rt△DAF中,AF2+AD2=DF2,∴(2+x)2+32=(5-x)2,∴x=∴AF=2+=故答案為:【點睛】本題考查了翻折變換,矩形的性質(zhì),全等三角形的判定與性質(zhì)以及勾股定理的應(yīng)用,解題時常常設(shè)要求的線段長為x,然后根據(jù)折疊和軸對稱的性質(zhì)用含x的代數(shù)式表示其他線段的長度,選擇適當(dāng)?shù)闹苯侨切?,運用勾股定理列出方程求出答案.12、【解析】

先由根與系數(shù)的關(guān)系得:兩根和與兩根積,再將m2+n2進(jìn)行變形,化成和或積的形式,代入即可.【詳解】由根與系數(shù)的關(guān)系得:m+n=,mn=,∴m2+n2=(m+n)2-2mn=()2-2×=,故答案為:.【點睛】本題考查了利用根與系數(shù)的關(guān)系求代數(shù)式的值,先將一元二次方程化為一般形式,寫出兩根的和與積的值,再將所求式子進(jìn)行變形;如、x12+x22等等,本題是??碱}型,利用完全平方公式進(jìn)行轉(zhuǎn)化.13、【解析】

先根據(jù)含30°的直角三角形得出點B和點D的坐標(biāo),再根據(jù)△OAC面積為4和點C在反比例函數(shù)圖象上得出k.【詳解】在Rt△OAB中,∠B=30°,∴可設(shè)OA=a,則AB=OA=a,∴點B的坐標(biāo)為(a,a),∴直線OB的解析是為y=x∵D是AB的中點∴點D的坐標(biāo)為(a,a)∴k=a2又∵S△OAC=4,∴OA?yc=4,即?a?yc=4,∴yc=∴C(,)∴k=?=∴∴a2=16,∴k=a2=8.故答案為8.【點睛】本題主要考查反比例函數(shù)的圖象和性質(zhì),熟練運用30°直角三角形的性質(zhì)與反比例函數(shù)k的幾何意義是解題的關(guān)鍵.14、【解析】

根據(jù)已知條件得出四邊形AEPF為矩形,得出EF=AP,要使EF最小,只要AP最小即可,根據(jù)垂線段最短得出即可.【詳解】連接AP,四邊形AFPE是矩形,要使EF最小,只要AP最小即可,過點A作于P,此時AP最小,在直角三角形中,由勾股定理得:BC=5,由三角形面積公式得:,即,故答案為:.【點睛】本題是矩形的判定與性質(zhì)和直角三角形結(jié)合考查的題型,找出與EF相等的線段,結(jié)合垂線段最短的性質(zhì)是解題的關(guān)鍵.15、【解析】

根據(jù)勾股定理,可得AC的長,根據(jù)圓的性質(zhì),可得答案.【詳解】由題意得故可得,又∵點B的坐標(biāo)為2∴M點的坐標(biāo)是,故答案為:.【點睛】此題考查勾股定理,解題關(guān)鍵在于結(jié)合實數(shù)與數(shù)軸解決問題.16、1【解析】試題分析:直接利用坡角的定義以及結(jié)合直角三角中30°所對的邊與斜邊的關(guān)系得出答案.解:由題意可得:AB=200m,∠A=30°,則BC=AB=1(m).故答案為:1.17、2【解析】

根據(jù)題意可知m-3≤0,被開方數(shù)是非負(fù)數(shù)列不等式組可得m的取值,又根據(jù),表示m的值代入不等式的解集中可得結(jié)論.【詳解】解:,∴解得:.∵為整數(shù),.∴∴故答案為:2;【點睛】本題考查了二次根式的性質(zhì)和估算、不等式組的解法,有難度,能正確表示m的值是本題的關(guān)鍵.18、20或22【解析】

根據(jù)題意矩形的長為7,寬為3或4,因此計算矩形的周長即可.【詳解】根據(jù)題意可得矩形的長為7當(dāng)形成的直角等腰三角形的直角邊為3時,則矩形的寬為3當(dāng)形成的直角等腰三角形的直角邊為4時,則矩形的寬為4矩形的寬為3或4周長為或故答案為20或22【點睛】本題主要考查等腰直角三角形的性質(zhì),關(guān)鍵在于確定寬的長.三、解答題(共66分)19、12.【解析】

利用正比例函數(shù)的定義,設(shè)y=k(x-2),然后把已知的一組對應(yīng)值代入求出k即可得到y(tǒng)與x的關(guān)系式;再將x=5代入已求解析式,從而可求出y的值.【詳解】設(shè),把代入得,解得,∴,即,當(dāng)時,.【點睛】本題考查考查了待定系數(shù)法求一次函數(shù)解析式:先設(shè)出函數(shù)的一般形式,如求一次函數(shù)的解析式時,先設(shè)y=kx+b;再將自變量x的值及與它對應(yīng)的函數(shù)值y的值代入所設(shè)的解析式,得到關(guān)于待定系數(shù)的方程或方程組;然后解方程或方程組,求出待定系數(shù)的值,進(jìn)而寫出函數(shù)解析式.20、(1)AE,GF,1:2;(2)13;(3)AD=1,BC=7;

【解析】

(1)根據(jù)題意得出操作形成的折痕分別是線段AE、GF;由折疊的性質(zhì)得出△ABE的面積=△AHE的面積,四邊形AHFG的面積=四邊形DCFG的面積,得出S矩形AEFG=S?ABCD,即可得出答案;

(2)由矩形的性質(zhì)和勾股定理求出FH,即可得出答案;

(3)由折疊的性質(zhì)得:AD=BG,AE=BE=AB=4,CF=DF=CD=5,GM=CM,∠FMC=90°,由疊合正方形的性質(zhì)得出BM=FM=4,由勾股定理得出GM=CM==3,得出AD=BG=BM-GM=1,BC=BM+CM=7;【詳解】解:(1)根據(jù)題意得:操作形成的折痕分別是線段AE、GF;

由折疊的性質(zhì)得:△ABE≌△AHE,四邊形AHFG≌四邊形DCFG,

∴△ABE的面積=△AHE的面積,四邊形AHFG的面積=四邊形DCFG的面積,

∴S矩形AEFG=S?ABCD,

∴S矩形AEFG:S?ABCD=1:2;

故答案為:AE,GF,1:2;

(2)∵四邊形EFGH是矩形,

∴∠HEF=90°,

∴FH==13,

由折疊的性質(zhì)得:AD=FH=13;

(3)圖5所示:如圖4所示:由折疊的性質(zhì)得:AD=BG,AE=BE=AB=4,CF=DF=CD=5,GM=CM,∠FMC=90°,

∵四邊形EFMB是疊合正方形,

∴BM=FM=4,

∴GM=CM==3,

∴AD=BG=BM-GM=1,BC=BM+CM=7;【點睛】此題考查折疊的性質(zhì),正方形的性質(zhì),勾股定理,梯形面積,解題關(guān)鍵在于掌握折疊的性質(zhì).21、(1)B(6,0);(2)d=;(3)四邊形是矩形,理由見解析【解析】

(1)作DL⊥y軸垂足為L點,DI⊥AB垂足為I,證明△DLC≌△AOC,求得D(2,12),再由S△ABD=AB?DI=1,求得OB=AB?AO=8?2=6,即可求B坐標(biāo);

(2)設(shè)∠MNB=∠MBN=α,作NK⊥x軸垂足為K,MQ⊥AB垂足為Q,MP⊥NK,垂足為P;證明四邊形MPKQ為矩形,再證明△MNP≌△MQB,求出BD的解析式為y=?3x+18,MQ=d,把y=d代入y=?3x+18得d=?3x+18,表達(dá)出OQ的值,再由OQ=OK+KQ=t+d,可得d=?;

(3)作NW⊥AB垂足為W,證明△ANW≌△CAO,根據(jù)邊的關(guān)系求得N(4,2);延長NW到Y(jié),使NW=WY,作NS⊥YF,再證明△FHN≌△FSN,可得SF=FH=,NY=2+2=4;設(shè)YS=a,F(xiàn)Y=FN=a+,在Rt△NYS和Rt△FNS中利用勾股定理求得FN;在Rt△NWF中,利用勾股定理求出WF=6,得到F(10,0);設(shè)GF交y軸于點T,設(shè)FN的解析式為y=px+q

(p≠0)把F(10,0)N(4,2)代入即可求出直線FN的解析式,聯(lián)立方程組得到G點坐標(biāo);把G點代入得到y(tǒng)=x+3,可知R(4,0),證明△GRA≌△EFR,可得四邊形AGFE為平行四邊形,再由∠AGF=180°?∠CGF=90°,可證明平行四邊形AGFE為矩形.【詳解】解:(1)令x=0,y=6,令y=0,x=?2,

∴A(?2,0),B(0,6),

∴AO=2,CO=6,

作DL⊥y軸垂足為L點,DI⊥AB垂足為I,

∴∠DLO=∠COA=90°,∠DCL=∠ACO,DC=AC,

∴△DLC≌△AOC(AAS),

∴DL=AO=2,

∴D的橫坐標(biāo)為2,

把x=2代入y=3x+6得y=12,

∴D(2,12),

∴DI=12,

∵S△ABD=AB?DI=1,

∴AB=8;

∵OB=AB?AO=8?2=6,

∴B(6,0);

(2)∵OC=OB=6,

∴∠OCB=∠CBO=45°,

∵M(jìn)N=MB,

∴設(shè)∠MNB=∠MBN=α,

作NK⊥x軸垂足為K,MQ⊥AB垂足為Q,MP⊥NK,垂足為P;

∴∠NKB=∠MQK=∠MPK=90°,

∴四邊形MPKQ為矩形,

∴NK∥CO,MQ=PK;

∵∠KNB=90°?45°=45°,

∴∠MNK=45°+α,∠MBQ=45°+α,

∴∠MNK=∠MBQ,

∵M(jìn)N=MB,∠NPM=∠MQB=90°,

∴△MNP≌△MQB(AAS),

∴MP=MQ;

∵B(6,0),D(2,12),

∴設(shè)BD的解析式為y=kx+b(k≠0),

∴,解得:k=-3,b=18,

∴BD的解析式為y=?3x+18,

∵點M的縱坐標(biāo)為d,

∴MQ=MP=d,把y=d代入y=?3x+18得d=?3x+18,

解得x=,

∴OQ=;

∵N的橫坐標(biāo)為t,

∴OK=t,

∴OQ=OK+KQ=t+d,

∴=t+d,

∴d=;

(3)作NW⊥AB垂足為W,

∴∠NWO=90°,

∵∠ACN=45°+∠ACO,∠ANC=45°+∠NAO,

∵∠ACO=∠NAO,

∴∠ACN=∠ANC,

∴AC=AN,

又∵∠ACO=∠NAO,∠AOC=∠NOW=90°,

∴△ANW≌△CAO(AAS),

∴AO=NW=2,

∴WB=NW=2,

∴OW=OB?WB=6?2=4,

∴N(4,2);

延長NW到Y(jié),使NW=WY,∴△NFW≌△YFW(SAS)∴NF=Y(jié)F,∠NFW=∠YFW,

又∵∠HFN=2∠NFO,

∴∠HFN=∠YFN,

作NS⊥YF,

∵∠FH⊥NH,

∴∠H=∠NSF=90°,

∵FN=FN,

∴△FHN≌△FSN(AAS),

∴SF=FH=,NY=2+2=4,

設(shè)YS=a,F(xiàn)Y=FN=a+,

在Rt△NYS和Rt△FNS中:NS2=NY2?YS2;NS2=FN2?FS2;NY2?YS2=FN2?FS2,

∴42?a2=(a+)2-()2,

解得a=

∴FN=;

在Rt△NWF中WF=,

∴FO=OW+WF=4+6=10,

∴F(10,0),

∴AW=AO+OW=2+4=6,

∴AW=FW,

∵NW⊥AF,

∴NA=NF,

∴∠NFA=∠NAF,

∵∠ACO=∠NAO,

∴∠NFA=∠ACO,

設(shè)GF交y軸于點T,∠CTF=∠ACO+∠CGF=∠COF+∠GFO,

∴∠CGF=∠COF=90°,

設(shè)FN的解析式為y=px+q

(p≠0),把F(10,0)N(4,2)代入y=px+q

得,解得,∴,∴聯(lián)立,解得:,∴,

把G點代入y=mx+3,得,得m=,

∴y=x+3,

令y=0得0=x+3,x=4,

∴R(4,0),

∴AR=AO+OR=2+4=6,RF=OF?OR=10?4=6,

∴AR=RF,

∵FE∥AC,

∴∠FEG=∠AGE,∠GAF=∠EFA,

∴△GRA≌△EFR(AAS),

∴EF=AG,

∴四邊形AGFE為平行四邊形,

∵∠AGF=180°?∠CGF=180°?90°=90°,

∴平行四邊形AGFE為矩形.【點睛】本題是一次函數(shù)的綜合題;靈活應(yīng)用全等三角形的判定和性質(zhì)以及勾股定理,熟練掌握平行四邊形和矩形的判定,會待定系數(shù)法求函數(shù)解析式是解題的關(guān)鍵.22、(1)1;(1)-<m≤1.【解析】

(1)把坐標(biāo)原點代入函數(shù)解析式進(jìn)行計算即可得解;(1)根據(jù)圖象不在第二象限,k>0,b0列出不等式組求解即可.【詳解】(1)∵函數(shù)的圖象經(jīng)過原點,∴m-1=0,解得m=1;(1)∵函數(shù)的圖象不過第二象限,∴,由①得,m>-,由②得,m1,所以,-<m1.【點睛】本題考查了兩直線平行的問題,一次函數(shù)與系數(shù)的關(guān)系,一次函數(shù)圖象上點的坐標(biāo)特征,綜合題但難度不大,熟記一次函數(shù)的性質(zhì)是解題的關(guān)鍵.23、(1)0.25;(2)見解析;(3)90°;(4)375人【解析】

(1)根據(jù)扇形圖可知“科普書籍”出現(xiàn)的頻率為1-其他的百分比-文藝的百分比-體育的百分比求解即可;(2)選取其他、文藝或體育任意條形圖數(shù)據(jù)結(jié)合扇形百分比求出全體人數(shù),再根據(jù)(1)科普的頻數(shù)即可確定人數(shù),據(jù)此補全圖形即可;(3)根據(jù)喜歡“科普書籍”的所占圓心角度數(shù)=喜歡“科普書籍”的百分比×360°求解即可;(4)根據(jù)該校最喜歡“科普”書籍的學(xué)生數(shù)=該校學(xué)生數(shù)×喜歡“科普”的百分比求解即可.【詳解】解:(1)“科普書籍”出現(xiàn)的頻率=1-20%-15%-40%=25%=0.25,故答案為0.25;(2)調(diào)查的全體人數(shù)=人,所以喜歡科普書籍的人數(shù)=人,如圖;(3)喜歡“科普書籍”的所占的圓心角度數(shù)=0.25×360°=90°(4)該校最喜歡“科普”書籍的學(xué)生約有0.25×1500=375人.【點睛】本題考查的是統(tǒng)計相關(guān)知識,能夠結(jié)合扇形圖和條形圖共解問題是解題的關(guān)鍵.24、(1)證明見詳解;(2)1【解析】

(1)依據(jù)矩形的性質(zhì),即可得出△AEG≌△CFH,進(jìn)而得到GE=FH,∠CHF=∠AGE,由∠FHG=∠EGH,可得FH∥GE,即可得到四邊形EGFH是平行四邊形;

(2)由菱形的性質(zhì),即可得到EF垂直平分AC,進(jìn)而得出AF=CF=AE,設(shè)AE=x,則FC=AF=x,DF=8-x,依據(jù)Rt△ADF中,AD2+DF2=AF2,即可得到方程,即可得到AE的長.【詳解】解:(1)∵矩形ABCD中,AB∥CD,

∴∠FCH=∠EAG,

又∵CD=AB,BE=DF,

∴CF=AE,

又∵CH=AG,

∴△AEG≌△CFH,

∴GE=FH,∠CHF=∠AGE,

∴∠FHG=∠EGH,

∴FH∥GE,

∴四邊形EGFH是平行四邊形;(2)如圖,連接EF,AF,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論