反比例函數(shù)課件人教版數(shù)學(xué)九年級下冊1_第1頁
反比例函數(shù)課件人教版數(shù)學(xué)九年級下冊1_第2頁
反比例函數(shù)課件人教版數(shù)學(xué)九年級下冊1_第3頁
反比例函數(shù)課件人教版數(shù)學(xué)九年級下冊1_第4頁
反比例函數(shù)課件人教版數(shù)學(xué)九年級下冊1_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

反比例函數(shù)第二十六章反比例函數(shù)學(xué)習(xí)目標(biāo)312理解反比例函數(shù)的概念.能根據(jù)實際問題中的條件確定反比例函數(shù)的解析式.能判斷一個函數(shù)是否為反比例函數(shù).1.函數(shù)的定義一般地,在一個變化的過程中,如果有兩個變量x與y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應(yīng),那么我們就說x是自變量,y是x的函數(shù).3.二次函數(shù)

2.一次函數(shù)與正比例函數(shù)

溫故知新合作探究

例1

下列問題中,變量間具有函數(shù)關(guān)系嗎?如果有,請寫出它們的解析式.(1)x人共飲水10kg,平均每人飲水

ykg.

合作探究

(2)某住宅小區(qū)要種植一塊面積為1000m2

的矩形草坪,草坪的長y(單位:m)隨寬x(單位:m)的變化而變化.

合作探究

(3)已知北京市的總面積為1.68×104km2

,人均占有面積S(km2/人)隨全市總?cè)丝趎(單位:人)的變化而變化.

觀察以上三個解析式,你覺得它們有什么共同特點?都具有

的形式,其中

是常數(shù).

(k為常數(shù),k≠0)的函數(shù),叫做反比例函數(shù),其中x是自變量,y

是函數(shù).一般地,形如分式分子

待定系數(shù)法例1確定反比例函數(shù)的解析式

解:

例2

請完成上表并寫出這個反比例函數(shù)的解析式.

4

解:

A.

B.

C.

D.1.

下列函數(shù)中,y是x的反比例函數(shù)的是()A當(dāng)堂練習(xí)2.

填空

(1)若是反比例函數(shù),則m的取值范圍是

.

(2)若是反比例函數(shù),則m的取值范

圍是

.

(3)若是反比例函數(shù),則m的取值范圍是

.

m≠1m≠0且m≠-2m=1

反比例函數(shù)值的大小比較3.在函數(shù)y=-(a為常數(shù))的圖象上有三點(-3,y1),(-1,y2),(2,y3),則函數(shù)值y1,y2,y3的大小關(guān)系是

(

)

A.y2<y3<y1B.y3<y2<y1

C.y1<y2<y3D.y3<y1<y2

失分點D

∵y=-是反比例函數(shù),且k=-(a2+1)<0,∴在第二象限內(nèi),y隨x的增大而增大,且

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論