2024屆天津市津南區(qū)咸水沽三中中考五模數(shù)學(xué)試題含解析_第1頁
2024屆天津市津南區(qū)咸水沽三中中考五模數(shù)學(xué)試題含解析_第2頁
2024屆天津市津南區(qū)咸水沽三中中考五模數(shù)學(xué)試題含解析_第3頁
2024屆天津市津南區(qū)咸水沽三中中考五模數(shù)學(xué)試題含解析_第4頁
2024屆天津市津南區(qū)咸水沽三中中考五模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆天津市津南區(qū)咸水沽三中中考五模數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.下列運算正確的是()A. B. C. D.2.如圖,已知點A在反比例函數(shù)y=上,AC⊥x軸,垂足為點C,且△AOC的面積為4,則此反比例函數(shù)的表達式為()A.y= B.y= C.y= D.y=﹣3.函數(shù)y=自變量x的取值范圍是()A.x≥1 B.x≥1且x≠3 C.x≠3 D.1≤x≤34.如果關(guān)于x的方程沒有實數(shù)根,那么c在2、1、0、中取值是()A.; B.; C.; D..5.計算的結(jié)果是()A. B. C. D.16.的整數(shù)部分是()A.3 B.5 C.9 D.67.有兩組數(shù)據(jù),A組數(shù)據(jù)為2、3、4、5、6;B組數(shù)據(jù)為1、7、3、0、9,這兩組數(shù)據(jù)的()A.中位數(shù)相等B.平均數(shù)不同C.A組數(shù)據(jù)方差更大D.B組數(shù)據(jù)方差更大8.如圖,A、B、C三點在正方形網(wǎng)格線的交點處,若將△ABC繞著點A逆時針旋轉(zhuǎn)得到△AC′B′,則tanB′的值為()A. B. C. D.9.“射擊運動員射擊一次,命中靶心”這個事件是()A.確定事件B.必然事件C.不可能事件D.不確定事件10.函數(shù)y=中,自變量x的取值范圍是()A.x>3 B.x<3 C.x=3 D.x≠3二、填空題(本大題共6個小題,每小題3分,共18分)11.含角30°的直角三角板與直線,的位置關(guān)系如圖所示,已知,∠1=60°,以下三個結(jié)論中正確的是____(只填序號).①AC=2BC②△BCD為正三角形③AD=BD12.如圖1是我國古代著名的“趙爽弦圖”的示意圖,它是由四個全等的直角三角形圍成.若較短的直角邊BC=5,將四個直角三角形中較長的直角邊分別向外延長一倍,得到圖2所示的“數(shù)學(xué)風(fēng)車”,若△BCD的周長是30,則這個風(fēng)車的外圍周長是_____.13.點A(-2,1)在第_______象限.14.某文化用品商店計劃同時購進一批A、B兩種型號的計算器,若購進A型計算器10只和B型計算器8只,共需要資金880元;若購進A型計算器2只和B型計算器5只,共需要資金380元.則A型號的計算器的每只進價為_____元.15.如果一個三角形兩邊為3cm,7cm,且第三邊為奇數(shù),則三角形的周長是_________.16.如圖,在菱形ABCD中,對角線AC、BD相交于點O,點E是線段BO上的一個動點,點F為射線DC上一點,若∠ABC=60°,∠AEF=120°,AB=4,則EF可能的整數(shù)值是_____.三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標系中,拋物線C1經(jīng)過點A(﹣4,0)、B(﹣1,0),其頂點為.(1)求拋物線C1的表達式;(2)將拋物線C1繞點B旋轉(zhuǎn)180°,得到拋物線C2,求拋物線C2的表達式;(3)再將拋物線C2沿x軸向右平移得到拋物線C3,設(shè)拋物線C3與x軸分別交于點E、F(E在F左側(cè)),頂點為G,連接AG、DF、AD、GF,若四邊形ADFG為矩形,求點E的坐標.18.(8分)如圖,在△ABC中,∠ABC=90°,以AB為直徑的⊙O與AC邊交于點D,過點D的直線交BC邊于點E,∠BDE=∠A.判斷直線DE與⊙O的位置關(guān)系,并說明理由.若⊙O的半徑R=5,tanA=,求線段CD的長.19.(8分)如圖,以40m/s的速度將小球沿與地面成30°角的方向擊出時,小球的飛行路線是一條拋物線.如果不考慮空氣阻力,小球的飛行高度h(單位:m)與飛行時間t(單位:s)之間具有函數(shù)關(guān)系h=10t﹣5t1.小球飛行時間是多少時,小球最高?最大高度是多少?小球飛行時間t在什么范圍時,飛行高度不低于15m?20.(8分)解不等式組:并求它的整數(shù)解的和.21.(8分)△ABC內(nèi)接于⊙O,AC為⊙O的直徑,∠A=60°,點D在AC上,連接BD作等邊三角形BDE,連接OE.如圖1,求證:OE=AD;如圖2,連接CE,求證:∠OCE=∠ABD;如圖3,在(2)的條件下,延長EO交⊙O于點G,在OG上取點F,使OF=2OE,延長BD到點M使BD=DM,連接MF,若tan∠BMF=,OD=3,求線段CE的長.22.(10分)如圖,△ABC內(nèi)接于⊙O,∠B=600,CD是⊙O的直徑,點P是CD延長線上的一點,且AP=AC.(1)求證:PA是⊙O的切線;(2)若PD=,求⊙O的直徑.23.(12分)先化簡,再求值:()÷,其中a=+1.24.某興趣小組為了了解本校男生參加課外體育鍛煉情況,隨機抽取本校300名男生進行了問卷調(diào)查,統(tǒng)計整理并繪制了如下兩幅尚不完整的統(tǒng)計圖.請根據(jù)以上信息解答下列問題:課外體育鍛煉情況扇形統(tǒng)計圖中,“經(jīng)常參加”所對應(yīng)的圓心角的度數(shù)為______;請補全條形統(tǒng)計圖;該校共有1200名男生,請估計全校男生中經(jīng)常參加課外體育鍛煉并且最喜歡的項目是籃球的人數(shù);小明認為“全校所有男生中,課外最喜歡參加的運動項目是乒乓球的人數(shù)約為1200×=108”,請你判斷這種說法是否正確,并說明理由.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據(jù)冪的乘方:底數(shù)不變,指數(shù)相乘.合并同類項即可解答.【詳解】解:A、B兩項不是同類項,所以不能合并,故A、B錯誤,C、D考查冪的乘方運算,底數(shù)不變,指數(shù)相乘.,故D正確;【點睛】本題考查冪的乘方和合并同類項,熟練掌握運算法則是解題的關(guān)鍵.2、C【解析】

由雙曲線中k的幾何意義可知據(jù)此可得到|k|的值;由所給圖形可知反比例函數(shù)圖象的兩支分別在第一、三象限,從而可確定k的正負,至此本題即可解答.【詳解】∵S△AOC=4,∴k=2S△AOC=8;∴y=;故選C.【點睛】本題是關(guān)于反比例函數(shù)的題目,需結(jié)合反比例函數(shù)中系數(shù)k的幾何意義解答;3、B【解析】由題意得,x-1≥0且x-3≠0,∴x≥1且x≠3.故選B.4、A【解析】分析:由方程根的情況,根據(jù)根的判別式可求得c的取值范圍,則可求得答案.詳解:∵關(guān)于x的方程x1+1x+c=0沒有實數(shù)根,∴△<0,即11﹣4c<0,解得:c>1,∴c在1、1、0、﹣3中取值是1.故選A.點睛:本題主要考查了根的判別式,熟練掌握一元二次方程根的個數(shù)與根的判別式的關(guān)系是解題的關(guān)鍵.5、D【解析】

根據(jù)同分母分式的加法法則計算可得結(jié)論.【詳解】===1.故選D.【點睛】本題考查了分式的加減法,解題的關(guān)鍵是掌握同分母分式的加減運算法則.6、C【解析】解:∵=﹣1,=﹣…=﹣+,∴原式=﹣1+﹣+…﹣+=﹣1+10=1.故選C.7、D【解析】

分別求出兩組數(shù)據(jù)的中位數(shù)、平均數(shù)、方差,比較即可得出答案.【詳解】A組數(shù)據(jù)的中位數(shù)是:4,平均數(shù)是:(2+3+4+5+6)÷5=4,方差是:[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2]÷5=2;B組數(shù)據(jù)的中位數(shù)是:3,平均數(shù)是:(1+7+3+0+9)÷5=4,方差是:[(1-4)2+(7-4)2+(3-4)2+(0-4)2+(9-4)2]÷5=12;∴兩組數(shù)據(jù)的中位數(shù)不相等,平均數(shù)相等,B組方差更大.故選D.【點睛】本題考查了中位數(shù)、平均數(shù)、方差的計算,熟練掌握中位數(shù)、平均數(shù)、方差的計算方法是解答本題的關(guān)鍵.8、D【解析】

過C點作CD⊥AB,垂足為D,根據(jù)旋轉(zhuǎn)性質(zhì)可知,∠B′=∠B,把求tanB′的問題,轉(zhuǎn)化為在Rt△BCD中求tanB.【詳解】過C點作CD⊥AB,垂足為D.根據(jù)旋轉(zhuǎn)性質(zhì)可知,∠B′=∠B.在Rt△BCD中,tanB=,∴tanB′=tanB=.故選D.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),旋轉(zhuǎn)后對應(yīng)角相等;三角函數(shù)的定義及三角函數(shù)值的求法.9、D【解析】試題分析:“射擊運動員射擊一次,命中靶心”這個事件是隨機事件,屬于不確定事件,故選D.考點:隨機事件.10、D【解析】由題意得,x﹣1≠0,解得x≠1.故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、②③【解析】

根據(jù)平行線的性質(zhì)以及等邊三角形的性質(zhì)即可求出答案.【詳解】由題意可知:∠A=30°,∴AB=2BC,故①錯誤;∵l1∥l2,∴∠CDB=∠1=60°.∵∠CBD=60°,∴△BCD是等邊三角形,故②正確;∵△BCD是等邊三角形,∴∠BCD=60°,∴∠ACD=∠A=30°,∴AD=CD=BD,故③正確.故答案為②③.【點睛】本題考查了平行的性質(zhì)以及等邊三角形的性質(zhì),解題的關(guān)鍵是熟練運用平行線的性質(zhì),等邊三角形的性質(zhì),含30度角的直角三角形的性質(zhì),本題屬于中等題型.12、71【解析】分析:由題意∠ACB為直角,利用勾股定理求得外圍中一條邊,又由AC延伸一倍,從而求得風(fēng)車的一個輪子,進一步求得四個.詳解:依題意,設(shè)“數(shù)學(xué)風(fēng)車”中的四個直角三角形的斜邊長為x,AC=y,則x2=4y2+52,∵△BCD的周長是30,∴x+2y+5=30則x=13,y=1.∴這個風(fēng)車的外圍周長是:4(x+y)=4×19=71.故答案是:71.點睛:本題考查了勾股定理在實際情況中的應(yīng)用,注意隱含的已知條件來解答此類題.13、二【解析】

根據(jù)點在第二象限的坐標特點解答即可.【詳解】∵點A的橫坐標-2<0,縱坐標1>0,∴點A在第二象限內(nèi).故答案為:二.【點睛】本題主要考查了平面直角坐標系中各個象限的點的坐標的符號特點:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).14、40【解析】

設(shè)A型號的計算器的每只進價為x元,B型號的計算器的每只進價為y元,根據(jù)“若購進A型計算器10只和B型計算器8只,共需要資金880元;若購進A型計算器2只和B型計算器5只,共需要資金380元”,即可得出關(guān)于x、y的二元一次方程組,解之即可得出結(jié)論.【詳解】設(shè)A型號的計算器的每只進價為x元,B型號的計算器的每只進價為y元,根據(jù)題意得:,解得:.答:A型號的計算器的每只進價為40元.【點睛】本題考查了二元一次方程組的應(yīng)用,找準等量關(guān)系,正確列出二元一次方程組是解題的關(guān)鍵.15、15cm、17cm、19cm.【解析】試題解析:設(shè)三角形的第三邊長為xcm,由題意得:7-3<x<7+3,即4<x<10,則x=5,7,9,三角形的周長:3+7+5=15(cm),3+7+7=17(cm),3+7+9=19(cm).考點:三角形三邊關(guān)系.16、2,3,1.【解析】分析:根據(jù)題意得出EF的取值范圍,從而得出EF的值.詳解:∵AB=1,∠ABC=60°,∴BD=1,當(dāng)點E和點B重合時,∠FBD=90°,∠BDC=30°,則EF=1;當(dāng)點E和點O重合時,∠DEF=30°,則△EFD為等腰三角形,則EF=FD=2,∴EF可能的整數(shù)值為2、3、1.點睛:本題主要考查的就是菱形的性質(zhì)以及直角三角形的勾股定理,屬于中等難度的題型.解決這個問題的關(guān)鍵就是找出當(dāng)點E在何處時取到最大值和最小值,從而得出答案.三、解答題(共8題,共72分)17、(1)y;(2);(3)E(,0).【解析】

(1)根據(jù)拋物線C1的頂點坐標可設(shè)頂點式將點B坐標代入求解即可;(2)由拋物線C1繞點B旋轉(zhuǎn)180°得到拋物線C2知拋物線C2的頂點坐標,可設(shè)拋物線C2的頂點式,根據(jù)旋轉(zhuǎn)后拋物線C2開口朝下,且形狀不變即可確定其表達式;(3)作GK⊥x軸于G,DH⊥AB于H,由題意GK=DH=3,AH=HB=EK=KF,結(jié)合矩形的性質(zhì)利用兩組對應(yīng)角分別相等的兩個三角形相似可證△AGK∽△GFK,由其對應(yīng)線段成比例的性質(zhì)可知AK長,結(jié)合A、B點坐標可知BK、BE、OE長,可得點E坐標.【詳解】解:(1)∵拋物線C1的頂點為,∴可設(shè)拋物線C1的表達式為y,將B(﹣1,0)代入拋物線解析式得:,∴,解得:a,∴拋物線C1的表達式為y,即y.(2)設(shè)拋物線C2的頂點坐標為∵拋物線C1繞點B旋轉(zhuǎn)180°,得到拋物線C2,即點與點關(guān)于點B(﹣1,0)對稱∴拋物線C2的頂點坐標為()可設(shè)拋物線C2的表達式為y∵拋物線C2開口朝下,且形狀不變∴拋物線C2的表達式為y,即.(3)如圖,作GK⊥x軸于G,DH⊥AB于H.由題意GK=DH=3,AH=HB=EK=KF,∵四邊形AGFD是矩形,∴∠AGF=∠GKF=90°,∴∠AGK+∠KGF=90°,∠KGF+∠GFK=90°,∴∠AGK=∠GFK.∵∠AKG=∠FKG=90°,∴△AGK∽△GFK,∴,∴,∴AK=6,,∴BE=BK﹣EK=3,∴OE,∴E(,0).【點睛】本題考查了二次函數(shù)與幾何的綜合,涉及了待定系數(shù)法求二次函數(shù)解析式、矩形的性質(zhì)、相似三角形的判定和性質(zhì)、旋轉(zhuǎn)變換的性質(zhì),靈活的利用待定系數(shù)法求二次函數(shù)解析式是解前兩問的關(guān)鍵,熟練掌握相似三角形的判定與性質(zhì)是解(3)的關(guān)鍵.18、(1)DE與⊙O相切;理由見解析;(2).【解析】

(1)連接OD,利用圓周角定理以及等腰三角形的性質(zhì)得出OD⊥DE,進而得出答案;(2)得出△BCD∽△ACB,進而利用相似三角形的性質(zhì)得出CD的長.【詳解】解:(1)直線DE與⊙O相切.理由如下:連接OD.∵OA=OD∴∠ODA=∠A又∵∠BDE=∠A∴∠ODA=∠BDE∵AB是⊙O直徑∴∠ADB=90°即∠ODA+∠ODB=90°∴∠BDE+∠ODB=90°∴∠ODE=90°∴OD⊥DE∴DE與⊙O相切;(2)∵R=5,∴AB=10,在Rt△ABC中∵tanA=∴BC=AB?tanA=10×,∴AC=,∵∠BDC=∠ABC=90°,∠BCD=∠ACB∴△BCD∽△ACB∴∴CD=.【點睛】本題考查切線的判定、勾股定理及相似三角形的判定與性質(zhì),掌握相關(guān)性質(zhì)定理靈活應(yīng)用是本題的解題關(guān)鍵.19、(1)小球飛行時間是1s時,小球最高為10m;(1)1≤t≤3.【解析】

(1)將函數(shù)解析式配方成頂點式可得最值;(1)畫圖象可得t的取值.【詳解】(1)∵h=﹣5t1+10t=﹣5(t﹣1)1+10,∴當(dāng)t=1時,h取得最大值10米;答:小球飛行時間是1s時,小球最高為10m;(1)如圖,由題意得:15=10t﹣5t1,解得:t1=1,t1=3,由圖象得:當(dāng)1≤t≤3時,h≥15,則小球飛行時間1≤t≤3時,飛行高度不低于15m.【點睛】本題考查了二次函數(shù)的應(yīng)用,主要考查了二次函數(shù)的最值問題,以及利用二次函數(shù)圖象求不等式,并熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.20、0【解析】分析:先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分即可求出不等式組的解集.詳解:,由①去括號得:﹣3x﹣3﹣x+3<8,解得:x>﹣2,由②去分母得:4x+2﹣3+3x≤6,解得:x≤1,則不等式組的解集為﹣2<x≤1.點睛:本題考查了一元一次不等式組的解法,先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分.不等式組解集的確定方法是:同大取大,同小取小,大小小大取中間,大大小小無解.21、(1)證明見解析;(2)證明見解析;(3)CE=.【解析】

(1)連接OB,證明△ABD≌△OBE,即可證出OE=AD.(2)連接OB,證明△OCE≌△OBE,則∠OCE=∠OBE,由(1)的全等可知∠ABD=∠OBE,則∠OCE=∠ABD.(3)過點M作AB的平行線交AC于點Q,過點D作DN垂直EG于點N,則△ADB≌△MQD,四邊形MQOG為平行四邊形,∠DMF=∠EDN,再結(jié)合特殊角度和已知的線段長度求出CE的長度即可.【詳解】解:(1)如圖1所示,連接OB,∵∠A=60°,OA=OB,∴△AOB為等邊三角形,∴OA=OB=AB,∠A=∠ABO=∠AOB=60°,∵△DBE為等邊三角形,∴DB=DE=BE,∠DBE=∠BDE=∠DEB=60°,∴∠ABD=∠OBE,∴△ADB≌△OBE(SAS),∴OE=AD;(2)如圖2所示,由(1)可知△ADB≌△OBE,∴∠BOE=∠A=60°,∠ABD=∠OBE,∵∠BOA=60°,∴∠EOC=∠BOE=60°,又∵OB=OC,OE=OE,∴△BOE≌△COE(SAS),∴∠OCE=∠OBE,∴∠OCE=∠ABD;(3)如圖3所示,過點M作AB的平行線交AC于點Q,過點D作DN垂直EG于點N,∵BD=DM,∠ADB=∠QDM,∠QMD=∠ABD,∴△ADB≌△MQD(ASA),∴AB=MQ,∵∠A=60°,∠ABC=90°,∴∠ACB=30°,∴AB==AO=CO=OG,∴MQ=OG,∵AB∥GO,∴MQ∥GO,∴四邊形MQOG為平行四邊形,設(shè)AD為x,則OE=x,OF=2x,∵OD=3,∴OA=OG=3+x,GF=3﹣x,∵DQ=AD=x,∴OQ=MG=3﹣x,∴MG=GF,∵∠DOG=60°,∴∠MGF=120°,∴∠GMF=∠GFM=30°,∵∠QMD=∠ABD=∠ODE,∠ODN=30°,∴∠DMF=∠EDN,∵OD=3,∴ON=,DN=,∵tan∠BMF=,∴tan∠NDE=,∴,解得x=1,∴NE=,∴DE=,∴CE=.故答案為(1)證明見解析;(2)證明見解析;(3)CE=.【點睛】本題考查圓的相關(guān)性質(zhì)以及與圓有關(guān)的計算,全等三角形的性質(zhì)和判定,第三問構(gòu)造

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論