2023-2024學(xué)年浙江省浙北名校高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第1頁
2023-2024學(xué)年浙江省浙北名校高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第2頁
2023-2024學(xué)年浙江省浙北名校高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第3頁
2023-2024學(xué)年浙江省浙北名校高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第4頁
2023-2024學(xué)年浙江省浙北名校高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年浙江省浙北名校高三六校第一次聯(lián)考數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.“且”是“”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既不充分也不必要條件2.等比數(shù)列的各項(xiàng)均為正數(shù),且,則()A.12 B.10 C.8 D.3.如圖所示,網(wǎng)絡(luò)紙上小正方形的邊長為1,粗線畫出的是某四棱錐的三視圖,則該幾何體的體積為()A.2 B. C.6 D.84.已知全集,集合,,則()A. B. C. D.5.展開式中x2的系數(shù)為()A.-1280 B.4864 C.-4864 D.12806.已知點(diǎn)為雙曲線的右焦點(diǎn),直線與雙曲線交于A,B兩點(diǎn),若,則的面積為()A. B. C. D.7.如圖,四邊形為平行四邊形,為中點(diǎn),為的三等分點(diǎn)(靠近)若,則的值為()A. B. C. D.8.已知定義在上的函數(shù)滿足,且當(dāng)時,,則方程的最小實(shí)根的值為()A. B. C. D.9.已知平行于軸的直線分別交曲線于兩點(diǎn),則的最小值為()A. B. C. D.10.正三棱錐底面邊長為3,側(cè)棱與底面成角,則正三棱錐的外接球的體積為()A. B. C. D.11.已知直線:與橢圓交于、兩點(diǎn),與圓:交于、兩點(diǎn).若存在,使得,則橢圓的離心率的取值范圍為()A. B. C. D.12.設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿足約束條件,則的最小值為______.14.已知a,b均為正數(shù),且,的最小值為________.15.如圖,在矩形中,為邊的中點(diǎn),,,分別以、為圓心,為半徑作圓弧、(在線段上).由兩圓弧、及邊所圍成的平面圖形繞直線旋轉(zhuǎn)一周,則所形成的幾何體的體積為.16.在中,為定長,,若的面積的最大值為,則邊的長為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若,解關(guān)于的不等式;(2)若當(dāng)時,恒成立,求實(shí)數(shù)的取值范圍.18.(12分)已知分別是的內(nèi)角的對邊,且.(Ⅰ)求.(Ⅱ)若,,求的面積.(Ⅲ)在(Ⅱ)的條件下,求的值.19.(12分)如圖,在直角中,,,,點(diǎn)在線段上.(1)若,求的長;(2)點(diǎn)是線段上一點(diǎn),,且,求的值.20.(12分)己知點(diǎn),分別是橢圓的上頂點(diǎn)和左焦點(diǎn),若與圓相切于點(diǎn),且點(diǎn)是線段靠近點(diǎn)的三等分點(diǎn).求橢圓的標(biāo)準(zhǔn)方程;直線與橢圓只有一個公共點(diǎn),且點(diǎn)在第二象限,過坐標(biāo)原點(diǎn)且與垂直的直線與圓相交于,兩點(diǎn),求面積的取值范圍.21.(12分)已知函數(shù),.(1)判斷函數(shù)在區(qū)間上的零點(diǎn)的個數(shù);(2)記函數(shù)在區(qū)間上的兩個極值點(diǎn)分別為、,求證:.22.(10分)在數(shù)列中,已知,且,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),數(shù)列的前項(xiàng)和為,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

畫出“,,,所表示的平面區(qū)域,即可進(jìn)行判斷.【詳解】如圖,“且”表示的區(qū)域是如圖所示的正方形,記為集合P,“”表示的區(qū)域是單位圓及其內(nèi)部,記為集合Q,顯然是的真子集,所以答案是充分非必要條件,故選:.【點(diǎn)睛】本題考查了不等式表示的平面區(qū)域問題,考查命題的充分條件和必要條件的判斷,難度較易.2、B【解析】

由等比數(shù)列的性質(zhì)求得,再由對數(shù)運(yùn)算法則可得結(jié)論.【詳解】∵數(shù)列是等比數(shù)列,∴,,∴.故選:B.【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì),考查對數(shù)的運(yùn)算法則,掌握等比數(shù)列的性質(zhì)是解題關(guān)鍵.3、A【解析】

先由三視圖確定該四棱錐的底面形狀,以及四棱錐的高,再由體積公式即可求出結(jié)果.【詳解】由三視圖可知,該四棱錐為斜著放置的四棱錐,四棱錐的底面為直角梯形,上底為1,下底為2,高為2,四棱錐的高為2,所以該四棱錐的體積為.故選A【點(diǎn)睛】本題主要考查幾何的三視圖,由幾何體的三視圖先還原幾何體,再由體積公式即可求解,屬于??碱}型.4、B【解析】

直接利用集合的基本運(yùn)算求解即可.【詳解】解:全集,集合,,則,故選:.【點(diǎn)睛】本題考查集合的基本運(yùn)算,屬于基礎(chǔ)題.5、A【解析】

根據(jù)二項(xiàng)式展開式的公式得到具體為:化簡求值即可.【詳解】根據(jù)二項(xiàng)式的展開式得到可以第一個括號里出項(xiàng),第二個括號里出項(xiàng),或者第一個括號里出,第二個括號里出,具體為:化簡得到-1280x2故得到答案為:A.【點(diǎn)睛】求二項(xiàng)展開式有關(guān)問題的常見類型及解題策略:(1)求展開式中的特定項(xiàng).可依據(jù)條件寫出第項(xiàng),再由特定項(xiàng)的特點(diǎn)求出值即可.(2)已知展開式的某項(xiàng),求特定項(xiàng)的系數(shù).可由某項(xiàng)得出參數(shù)項(xiàng),再由通項(xiàng)寫出第項(xiàng),由特定項(xiàng)得出值,最后求出其參數(shù).6、D【解析】

設(shè)雙曲線C的左焦點(diǎn)為,連接,由對稱性可知四邊形是平行四邊形,設(shè),得,求出的值,即得解.【詳解】設(shè)雙曲線C的左焦點(diǎn)為,連接,由對稱性可知四邊形是平行四邊形,所以,.設(shè),則,又.故,所以.故選:D【點(diǎn)睛】本題主要考查雙曲線的簡單幾何性質(zhì),考查余弦定理解三角形和三角形面積的計(jì)算,意在考查學(xué)生對這些知識的理解掌握水平.7、D【解析】

使用不同方法用表示出,結(jié)合平面向量的基本定理列出方程解出.【詳解】解:,又解得,所以故選:D【點(diǎn)睛】本題考查了平面向量的基本定理及其意義,屬于基礎(chǔ)題.8、C【解析】

先確定解析式求出的函數(shù)值,然后判斷出方程的最小實(shí)根的范圍結(jié)合此時的,通過計(jì)算即可得到答案.【詳解】當(dāng)時,,所以,故當(dāng)時,,所以,而,所以,又當(dāng)時,的極大值為1,所以當(dāng)時,的極大值為,設(shè)方程的最小實(shí)根為,,則,即,此時令,得,所以最小實(shí)根為411.故選:C.【點(diǎn)睛】本題考查函數(shù)與方程的根的最小值問題,涉及函數(shù)極大值、函數(shù)解析式的求法等知識,本題有一定的難度及高度,是一道有較好區(qū)分度的壓軸選這題.9、A【解析】

設(shè)直線為,用表示出,,求出,令,利用導(dǎo)數(shù)求出單調(diào)區(qū)間和極小值、最小值,即可求出的最小值.【詳解】解:設(shè)直線為,則,,而滿足,那么設(shè),則,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以故選:.【點(diǎn)睛】本題考查導(dǎo)數(shù)知識的運(yùn)用:求單調(diào)區(qū)間和極值、最值,考查化簡整理的運(yùn)算能力,正確求導(dǎo)確定函數(shù)的最小值是關(guān)鍵,屬于中檔題.10、D【解析】

由側(cè)棱與底面所成角及底面邊長求得正棱錐的高,再利用勾股定理求得球半徑后可得球體積.【詳解】如圖,正三棱錐中,是底面的中心,則是正棱錐的高,是側(cè)棱與底面所成的角,即=60°,由底面邊長為3得,∴.正三棱錐外接球球心必在上,設(shè)球半徑為,則由得,解得,∴.故選:D.【點(diǎn)睛】本題考查球體積,考查正三棱錐與外接球的關(guān)系.掌握正棱錐性質(zhì)是解題關(guān)鍵.11、A【解析】

由題意可知直線過定點(diǎn)即為圓心,由此得到坐標(biāo)的關(guān)系,再根據(jù)點(diǎn)差法得到直線的斜率與坐標(biāo)的關(guān)系,由此化簡并求解出離心率的取值范圍.【詳解】設(shè),且線過定點(diǎn)即為的圓心,因?yàn)?,所以,又因?yàn)?,所以,所以,所以,所以,所以,所以,所?故選:A.【點(diǎn)睛】本題考查橢圓與圓的綜合應(yīng)用,著重考查了橢圓離心率求解以及點(diǎn)差法的運(yùn)用,難度一般.通過運(yùn)用點(diǎn)差法達(dá)到“設(shè)而不求”的目的,大大簡化運(yùn)算.12、B【解析】

先解不等式化簡兩個條件,利用集合法判斷充分必要條件即可【詳解】解不等式可得,解絕對值不等式可得,由于為的子集,據(jù)此可知“”是“”的必要不充分條件.故選:B【點(diǎn)睛】本題考查了必要不充分條件的判定,考查了學(xué)生數(shù)學(xué)運(yùn)算,邏輯推理能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】

作出可行域,平移基準(zhǔn)直線到處,求得的最小值.【詳解】畫出可行域如下圖所示,由圖可知平移基準(zhǔn)直線到處時,取得最小值為.故答案為:【點(diǎn)睛】本小題主要考查線性規(guī)劃求最值,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.14、【解析】

本題首先可以根據(jù)將化簡為,然后根據(jù)基本不等式即可求出最小值.【詳解】因?yàn)?,所以,?dāng)且僅當(dāng),即、時取等號,故答案為:.【點(diǎn)睛】本題考查根據(jù)基本不等式求最值,基本不等式公式為,在使用基本不等式的時候要注意“”成立的情況,考查化歸與轉(zhuǎn)化思想,是中檔題.15、【解析】由題意,可得所得到的幾何體是由一個圓柱挖去兩個半球而成;其中,圓柱的底面半徑為1,母線長為2;體積為;兩個半球的半徑都為1,則兩個半球的體積為;則所求幾何體的體積為.考點(diǎn):旋轉(zhuǎn)體的組合體.16、【解析】

設(shè),以為原點(diǎn),為軸建系,則,,設(shè),,,利用求向量模的公式,可得,根據(jù)三角形面積公式進(jìn)一步求出的值即為所求.【詳解】解:設(shè),以為原點(diǎn),為軸建系,則,,設(shè),,則,即,由,可得.則.故答案為:.【點(diǎn)睛】本題考查向量模的計(jì)算,建系是關(guān)鍵,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)利用零點(diǎn)分段法將表示為分段函數(shù)的形式,由此求得不等式的解集.(2)對分成三種情況,求得的最小值,由此求得的取值范圍.【詳解】(1)當(dāng)時,,由此可知,的解集為(2)當(dāng)時,的最小值為和中的最小值,其中,.所以恒成立.當(dāng)時,,且,不恒成立,不符合題意.當(dāng)時,,若,則,故不恒成立,不符合題意;若,則,故不恒成立,不符合題意.綜上,.【點(diǎn)睛】本小題主要考查絕對值不等式的解法,考查根據(jù)絕對值不等式恒成立求參數(shù)的取值范圍,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.18、(Ⅰ);(Ⅱ);(Ⅲ).【解析】

(Ⅰ)由已知結(jié)合正弦定理先進(jìn)行代換,然后結(jié)合和差角公式及正弦定理可求;(Ⅱ)由余弦定理可求,然后結(jié)合三角形的面積公式可求;(Ⅲ)結(jié)合二倍角公式及和角余弦公式即可求解.【詳解】(Ⅰ)因?yàn)?,所以,所以,由正弦定理可得,;(Ⅱ)由余弦定理可得,,整理可得,,解可得,,因?yàn)?,所以;(Ⅲ)由于,.所以.【點(diǎn)睛】本題主要考查了正弦定理、余弦定理、和角余弦公式,二倍角公式及三角形的面積公式的綜合應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平.19、(1)3;(2).【解析】

(1)在中,利用正弦定理即可得到答案;(2)由可得,在中,利用及余弦定理得,解方程組即可.【詳解】(1)在中,已知,,,由正弦定理,得,解得.(2)因?yàn)?,所以,解?在中,由余弦定理得,,即,,故.【點(diǎn)睛】本題考查正余弦定理在解三角形中的應(yīng)用,考查學(xué)生的計(jì)算能力,是一道中檔題.20、;.【解析】

連接,由三角形相似得,,進(jìn)而得出,,寫出橢圓的標(biāo)準(zhǔn)方程;由得,,因?yàn)橹本€與橢圓相切于點(diǎn),,解得,,因?yàn)辄c(diǎn)在第二象限,所以,,所以,設(shè)直線與垂直交于點(diǎn),則是點(diǎn)到直線的距離,設(shè)直線的方程為,則,求出面積的取值范圍.【詳解】解:連接,由可得,,,橢圓的標(biāo)準(zhǔn)方程;由得,,因?yàn)橹本€與橢圓相切于點(diǎn),所以,即,解得,,即點(diǎn)的坐標(biāo)為,因?yàn)辄c(diǎn)在第二象限,所以,,所以,所以點(diǎn)的坐標(biāo)為,設(shè)直線與垂直交于點(diǎn),則是點(diǎn)到直線的距離,設(shè)直線的方程為,則,當(dāng)且僅當(dāng),即時,有最大值,所以,即面積的取值范圍為.【點(diǎn)睛】本題考查直線和橢圓位置關(guān)系的應(yīng)用,利用基本不等式,屬于難題.21、(1);(2)見解析.【解析】

(1)利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性與極值,結(jié)合零點(diǎn)存在定理可得出結(jié)論;(2)設(shè)函數(shù)的極大值點(diǎn)和極小值點(diǎn)分別為、,由(1)知,,且滿足,,于是得出,由得,利用正切函數(shù)的單調(diào)性推導(dǎo)出,再利用正弦函數(shù)的單調(diào)性可得出結(jié)論.【詳解】(1),,,當(dāng)時,,,,則函數(shù)在上單調(diào)遞增;當(dāng)時,,,,則函數(shù)在上單調(diào)遞減;當(dāng)時,,,,則函數(shù)在上單調(diào)遞增.,,,,.所以,函數(shù)在與不存在零點(diǎn),在區(qū)間和上各存在一個零點(diǎn).綜上所述,函數(shù)在區(qū)間上的零點(diǎn)的個數(shù)為;(2),.由(1)得,在區(qū)間與上存在零點(diǎn),所以,函數(shù)在區(qū)間與上各存在一個極值點(diǎn)、,且,,且滿足即,,,又,即,,,,,由在上單調(diào)遞增,得,再由在上單

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論