版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆江蘇省無錫市部分市區(qū)市級名校中考數(shù)學五模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,一個斜坡長130m,坡頂離水平地面的距離為50m,那么這個斜坡的坡度為(
)A. B. C. D.2.若點P(﹣3,y1)和點Q(﹣1,y2)在正比例函數(shù)y=﹣k2x(k≠0)圖象上,則y1與y2的大小關系為()A.y1>y2B.y1≥y2C.y1<y2D.y1≤y23.將弧長為2πcm、圓心角為120°的扇形圍成一個圓錐的側面,則這個圓錐的高是()A.cm B.2cm C.2cm D.cm4.3點40分,時鐘的時針與分針的夾角為()A.140° B.130° C.120° D.110°5.如圖,將△ABC繞點C旋轉60°得到△A′B′C′,已知AC=6,BC=4,則線段AB掃過的圖形面積為()A. B. C.6π D.以上答案都不對6.如圖,C,B是線段AD上的兩點,若,,則AC與CD的關系為()A. B. C. D.不能確定7.在“朗讀者”節(jié)目的影響下,某中學開展了“好書伴我成長”讀書活動.為了解5月份八年級300名學生讀書情況,隨機調查了八年級50名學生讀書的冊數(shù),統(tǒng)計數(shù)據(jù)如下表所示:冊數(shù)01234人數(shù)41216171關于這組數(shù)據(jù),下列說法正確的是()A.中位數(shù)是2 B.眾數(shù)是17 C.平均數(shù)是2 D.方差是28.如圖,△ABC是⊙O的內接三角形,AC是⊙O的直徑,∠C=50°,∠ABC的平分線BD交⊙O于點D,則∠BAD的度數(shù)是()A.45° B.85° C.90° D.95°9.一個六邊形的六個內角都是120°(如圖),連續(xù)四條邊的長依次為1,3,3,2,則這個六邊形的周長是()A.13 B.14 C.15 D.1610.定義:一個自然數(shù),右邊的數(shù)字總比左邊的數(shù)字小,我們稱之為“下滑數(shù)”(如:32,641,8531等).現(xiàn)從兩位數(shù)中任取一個,恰好是“下滑數(shù)”的概率為()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,某校根據(jù)學生上學方式的一次抽樣調查結果,繪制出一個未完成的扇形統(tǒng)計圖,若該校共有學生1500人,則據(jù)此估計步行的有_____.12.方程x-1=的解為:______.13.如圖,菱形ABCD的邊AD⊥y軸,垂足為點E,頂點A在第二象限,頂點B在y軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象經(jīng)過頂點C、D,若點C的橫坐標為5,BE=3DE,則k的值為______.14.化簡:x2-4x+4x15.已知一紙箱中,裝有5個只有顏色不同的球,其中2個白球,3個紅球,若往原紙箱中再放入x個白球,然后從箱中隨機取出一個白球的概率是2316.若m﹣n=4,則2m2﹣4mn+2n2的值為_____.三、解答題(共8題,共72分)17.(8分)為給鄧小平誕辰周年獻禮,廣安市政府對城市建設進行了整改,如圖所示,已知斜坡長60米,坡角(即)為,,現(xiàn)計劃在斜坡中點處挖去部分斜坡,修建一個平行于水平線的休閑平臺和一條新的斜坡(下面兩個小題結果都保留根號).若修建的斜坡BE的坡比為:1,求休閑平臺的長是多少米?一座建筑物距離點米遠(即米),小亮在點測得建筑物頂部的仰角(即)為.點、、、,在同一個平面內,點、、在同一條直線上,且,問建筑物高為多少米?18.(8分)已知⊙O的直徑為10,點A,點B,點C在⊙O上,∠CAB的平分線交⊙O于點D.(I)如圖①,若BC為⊙O的直徑,求BD、CD的長;(II)如圖②,若∠CAB=60°,求BD、BC的長.19.(8分)填空并解答:某單位開設了一個窗口辦理業(yè)務,并按顧客“先到達,先辦理”的方式服務,該窗口每2分鐘服務一位顧客.已知早上8:00上班窗口開始工作時,已經(jīng)有6位顧客在等待,在窗口工作1分鐘后,又有一位“新顧客”到達,且以后每5分鐘就有一位“新顧客”到達.該單位上午8:00上班,中午11:30下班.(1)問哪一位“新顧客”是第一個不需要排隊的?分析:可設原有的6為顧客分別為a1、a2、a3、a4、a5、a6,“新顧客”為c1、c2、c3、c4….窗口開始工作記為0時刻.a(chǎn)1a2a3a4a5a6c1c2c3c4…到達窗口時刻000000161116…服務開始時刻024681012141618…每人服務時長2222222222…服務結束時刻2468101214161820…根據(jù)上述表格,則第位,“新顧客”是第一個不需要排隊的.(2)若其他條件不變,若窗口每a分鐘辦理一個客戶(a為正整數(shù)),則當a最小取什么值時,窗口排隊現(xiàn)象不可能消失.分析:第n個“新顧客”到達窗口時刻為,第(n﹣1)個“新顧客”服務結束的時刻為.20.(8分)先化簡代數(shù)式,再從-2,2,0三個數(shù)中選一個恰當?shù)臄?shù)作為a的值代入求值.21.(8分)如圖,在?ABCD中,∠BAC=90°,對角線AC,BD相交于點P,以AB為直徑的⊙O分別交BC,BD于點E,Q,連接EP并延長交AD于點F.(1)求證:EF是⊙O的切線;(2)求證:=4BP?QP.22.(10分)如圖,拋物線y=ax2+bx(a<0)過點E(10,0),矩形ABCD的邊AB在線段OE上(點A在點B的左邊),點C,D在拋物線上.設A(t,0),當t=2時,AD=1.求拋物線的函數(shù)表達式.當t為何值時,矩形ABCD的周長有最大值?最大值是多少?保持t=2時的矩形ABCD不動,向右平移拋物線.當平移后的拋物線與矩形的邊有兩個交點G,H,且直線GH平分矩形的面積時,求拋物線平移的距離.23.(12分)我校對全校學生進傳統(tǒng)文化禮儀知識測試,為了了解測試結果,隨機抽取部分學生的成績進行分析,現(xiàn)將成績分為三個等級:不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計圖(不完整).請你根據(jù)圖中所給的信息解答下列問題:(1)本次隨機抽取的人數(shù)是人,并將以上兩幅統(tǒng)計圖補充完整;(2)若“一般”和“優(yōu)秀”均被視為達標成績,則我校被抽取的學生中有人達標;(3)若我校學生有1200人,請你估計此次測試中,全校達標的學生有多少人?24.正方形ABCD中,點P為直線AB上一個動點(不與點A,B重合),連接DP,將DP繞點P旋轉90°得到EP,連接DE,過點E作CD的垂線,交射線DC于M,交射線AB于N.問題出現(xiàn):(1)當點P在線段AB上時,如圖1,線段AD,AP,DM之間的數(shù)量關系為;題探究:(2)①當點P在線段BA的延長線上時,如圖2,線段AD,AP,DM之間的數(shù)量關系為;②當點P在線段AB的延長線上時,如圖3,請寫出線段AD,AP,DM之間的數(shù)量關系并證明;問題拓展:(3)在(1)(2)的條件下,若AP=,∠DEM=15°,則DM=.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】試題解析:∵一個斜坡長130m,坡頂離水平地面的距離為50m,∴這個斜坡的水平距離為:=10m,∴這個斜坡的坡度為:50:10=5:1.故選A.點睛:本題考查解直角三角形的應用-坡度坡角問題,解題的關鍵是明確坡度的定義.坡度是坡面的鉛直高度h和水平寬度l的比,又叫做坡比,它是一個比值,反映了斜坡的陡峭程度,一般用i表示,常寫成i=1:m的形式.2、A【解析】
分別將點P(﹣3,y1)和點Q(﹣1,y2)代入正比例函數(shù)y=﹣k2x,求出y1與y2的值比較大小即可.【詳解】∵點P(﹣3,y1)和點Q(﹣1,y2)在正比例函數(shù)y=﹣k2x(k≠0)圖象上,∴y1=﹣k2×(-3)=3k2,y2=﹣k2×(-1)=k2,∵k≠0,∴y1>y2.故答案選A.【點睛】本題考查了正比例函數(shù),解題的關鍵是熟練的掌握正比例函數(shù)的知識點.3、B【解析】
由弧長公式可求解圓錐母線長,再由弧長可求解圓錐底面半徑長,再運用勾股定理即可求解圓錐的高.【詳解】解:設圓錐母線長為Rcm,則2π=,解得R=3cm;設圓錐底面半徑為rcm,則2π=2πr,解得r=1cm.由勾股定理可得圓錐的高為=2cm.故選擇B.【點睛】本題考查了圓錐的概念和弧長的計算.4、B【解析】
根據(jù)時針與分針相距的份數(shù)乘以每份的度數(shù),可得答案.【詳解】解:3點40分時針與分針相距4+=份,30°×=130,故選B.【點睛】本題考查了鐘面角,確定時針與分針相距的份數(shù)是解題關鍵.5、D【解析】
從圖中可以看出,線段AB掃過的圖形面積為一個環(huán)形,環(huán)形中的大圓半徑是AC,小圓半徑是BC,圓心角是60度,所以陰影面積=大扇形面積-小扇形面積.【詳解】陰影面積=π.
故選D.【點睛】本題的關鍵是理解出,線段AB掃過的圖形面積為一個環(huán)形.6、B【解析】
由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.【詳解】∵AB=CD,∴AC+BC=BC+BD,即AC=BD,又∵BC=2AC,∴BC=2BD,∴CD=3BD=3AC.故選B.【點睛】本題考查了線段長短的比較,在不同的情況下靈活選用它的不同表示方法,有利于解題的簡潔性.同時,靈活運用線段的和、差、倍轉化線段之間的數(shù)量關系是十分關鍵的一點.7、A【解析】試題解析:察表格,可知這組樣本數(shù)據(jù)的平均數(shù)為:(0×4+1×12+2×16+3×17+4×1)÷50=;∵這組樣本數(shù)據(jù)中,3出現(xiàn)了17次,出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)是3;∵將這組樣本數(shù)據(jù)按從小到大的順序排列,其中處于中間的兩個數(shù)都是2,∴這組數(shù)據(jù)的中位數(shù)為2,故選A.考點:1.方差;2.加權平均數(shù);3.中位數(shù);4.眾數(shù).8、B【解析】
解:∵AC是⊙O的直徑,∴∠ABC=90°,∵∠C=50°,∴∠BAC=40°,∵∠ABC的平分線BD交⊙O于點D,∴∠ABD=∠DBC=45°,∴∠CAD=∠DBC=45°,∴∠BAD=∠BAC+∠CAD=40°+45°=85°,故選B.【點睛】本題考查圓周角定理;圓心角、弧、弦的關系.9、C【解析】
解:如圖所示,分別作直線AB、CD、EF的延長線和反向延長線使它們交于點G、H、I.因為六邊形ABCDEF的六個角都是120°,所以六邊形ABCDEF的每一個外角的度數(shù)都是60°.所以都是等邊三角形.所以所以六邊形的周長為3+1+4+2+2+3=15;故選C.10、A【解析】分析:根據(jù)概率的求法,找準兩點:①全部情況的總數(shù):根據(jù)題意得知這樣的兩位數(shù)共有90個;
②符合條件的情況數(shù)目:從總數(shù)中找出符合條件的數(shù)共有45個;二者的比值就是其發(fā)生的概率.詳解:兩位數(shù)共有90個,下滑數(shù)有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45個,
概率為.
故選A.點睛:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】
∵騎車的學生所占的百分比是×100%=35%,∴步行的學生所占的百分比是1﹣10%﹣15%﹣35%=40%,∴若該校共有學生1500人,則據(jù)此估計步行的有1500×40%=1(人),故答案為1.12、【解析】
兩邊平方解答即可.【詳解】原方程可化為:(x-1)2=1-x,
解得:x1=0,x2=1,
經(jīng)檢驗,x=0不是原方程的解,x=1是原方程的解
故答案為.【點睛】此題考查無理方程的解法,關鍵是把兩邊平方解答,要注意解答后一定要檢驗.13、【解析】
過點D作DF⊥BC于點F,由菱形的性質可得BC=CD,AD∥BC,可證四邊形DEBF是矩形,可得DF=BE,DE=BF,在Rt△DFC中,由勾股定理可求DE=1,DF=3,由反比例函數(shù)的性質可求k的值.【詳解】如圖,過點D作DF⊥BC于點F,∵四邊形ABCD是菱形,∴BC=CD,AD∥BC,∵∠DEB=90°,AD∥BC,∴∠EBC=90°,且∠DEB=90°,DF⊥BC,∴四邊形DEBF是矩形,∴DF=BE,DE=BF,∵點C的橫坐標為5,BE=3DE,∴BC=CD=5,DF=3DE,CF=5﹣DE,∵CD2=DF2+CF2,∴25=9DE2+(5﹣DE)2,∴DE=1,∴DF=BE=3,設點C(5,m),點D(1,m+3),∵反比例函數(shù)y=圖象過點C,D,∴5m=1×(m+3),∴m=,∴點C(5,),∴k=5×=,故答案為:【點睛】本題考查了反比例函數(shù)圖象點的坐標特征,菱形的性質,勾股定理,求出DE的長度是本題的關鍵.14、﹣x-2x【解析】
直接利用分式的混合運算法則即可得出.【詳解】原式====-x-2故答案為:-x-2【點睛】此題主要考查了分式的化簡,正確掌握運算法則是解題關鍵.15、1.【解析】
先根據(jù)概率公式得到2+x5+x=2【詳解】根據(jù)題意得2+x5+x解得x=4.故答案為:4.【點睛】本題考查了概率公式:隨機事件A的概率PA=事件16、1【解析】解:∵2m2﹣4mn+2n2=2(m﹣n)2,∴當m﹣n=4時,原式=2×42=1.故答案為:1.三、解答題(共8題,共72分)17、(1)m(2)米【解析】分析:(1)由三角函數(shù)的定義,即可求得AM與AF的長,又由坡度的定義,即可求得NF的長,繼而求得平臺MN的長;(2)在RT△BMK中,求得BK=MK=50米,從而求得EM=84米;在RT△HEM中,求得,繼而求得米.詳解:(1)∵MF∥BC,∴∠AMF=∠ABC=45°,∵斜坡AB長米,M是AB的中點,∴AM=(米),∴AF=MF=AM?cos∠AMF=(米),在中,∵斜坡AN的坡比為∶1,∴,∴,∴MN=MF-NF=50-=.(2)在RT△BMK中,BM=,∴BK=MK=50(米),
EM=BG+BK=34+50=84(米)在RT△HEM中,∠HME=30°,∴,∴,∴(米)答:休閑平臺DE的長是米;建筑物GH高為米.點睛:本題考查了坡度坡角的問題以及俯角仰角的問題.解題的關鍵是根據(jù)題意構造直角三角形,將實際問題轉化為解直角三角形的問題;掌握數(shù)形結合思想與方程思想在題中的運用.18、(1)BD=CD=5;(2)BD=5,BC=5.【解析】
(1)利用圓周角定理可以判定△DCB是等腰直角三角形,利用勾股定理即可解決問題;(2)如圖②,連接OB,OD.由圓周角定理、角平分線的性質以及等邊三角形的判定推知△OBD是等邊三角形,則BD=OB=OD=5,再根據(jù)垂徑定理求出BE即可解決問題.【詳解】(1)∵BC是⊙O的直徑,∴∠CAB=∠BDC=90°.∵AD平分∠CAB,∴,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴BD=CD=5,(2)如圖②,連接OB,OD,OC,∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等邊三角形,∴BD=OB=OD.∵⊙O的直徑為10,則OB=5,∴BD=5,∵AD平分∠CAB,∴,∴OD⊥BC,設垂足為E,∴BE=EC=OB?sin60°=,∴BC=5.【點睛】本題考查圓周角定理,垂徑定理,解直角三角形等知識,解題的關鍵是學會添加常用輔助線,屬于中考??碱}型.19、(1)5;(2)5n﹣4,na+6a.【解析】
(1)第5位,“新顧客”到達時間是20分鐘,第11位顧客結束服務的時間是20分鐘,所以第5位“新顧客”是第一個不需要排隊的;(2)由表格中信息可得,“新顧客”到達時間為1,6,11,16,…,則第n個“新顧客”到達窗口時刻為5n﹣4,由表格可知,“新顧客”服務開始的時間為6a,7a,8a,…,第n﹣1個“新顧客”服務開始的時間為(6+n﹣1)a=(5+n)a,第n﹣1個“新顧客”服務結束的時間為(5+n)a+a=na+6a.【詳解】(1)第5位,“新顧客”到達時間是20分鐘,第11位顧客結束服務的時間是20分鐘,所以第5位“新顧客”是第一個不需要排隊的;故答案為:5;(2)由表格中信息可得,“新顧客”到達時間為1,6,11,16,…,∴第n個“新顧客”到達窗口時刻為5n﹣4,由表格可知,“新顧客”服務開始的時間為6a,7a,8a,…,∴第n個“新顧客”服務開始的時間為(6+n)a,∴第n﹣1個“新顧客”服務開始的時間為(6+n﹣1)a=(5+n)a,∵每a分鐘辦理一個客戶,∴第n﹣1個“新顧客”服務結束的時間為(5+n)a+a=na+6a,故答案為:5n﹣4,na+6a.【點睛】本題考查了列代數(shù)式,用代數(shù)式表示數(shù)的規(guī)律,解題關鍵是要讀懂題目的意思,根據(jù)題目給出的條件,尋找規(guī)律,列出代數(shù)式.20、,2【解析】試題分析:首先將括號里面的進行通分,然后將除法改成乘法進行分式的化簡,選擇a的值時,不能使原分式?jīng)]有意義,即a不能取2和-2.試題解析:原式=·=當a=0時,原式==2.考點:分式的化簡求值.21、(1)證明見解析;(2)證明見解析.【解析】試題分析:(1)連接OE,AE,由AB是⊙O的直徑,得到∠AEB=∠AEC=90°,根據(jù)四邊形ABCD是平行四邊形,得到PA=PC推出∠OEP=∠OAC=90°,根據(jù)切線的判定定理即可得到結論;(2)由AB是⊙O的直徑,得到∠AQB=90°根據(jù)相似三角形的性質得到=PB?PQ,根據(jù)全等三角形的性質得到PF=PE,求得PA=PE=EF,等量代換即可得到結論.試題解析:(1)連接OE,AE,∵AB是⊙O的直徑,∴∠AEB=∠AEC=90°,∵四邊形ABCD是平行四邊形,∴PA=PC,∴PA=PC=PE,∴∠PAE=∠PEA,∵OA=OE,∴∠OAE=∠OEA,∴∠OEP=∠OAC=90°,∴EF是⊙O的切線;(2)∵AB是⊙O的直徑,∴∠AQB=90°,∴△APQ∽△BPA,∴,∴=PB?PQ,在△AFP與△CEP中,∵∠PAF=∠PCE,∠APF=∠CPE,PA=PC,∴△AFP≌△CEP,∴PF=PE,∴PA=PE=EF,∴=4BP?QP.考點:切線的判定;平行四邊形的性質;相似三角形的判定與性質.22、(1);(2)當t=1時,矩形ABCD的周長有最大值,最大值為;(3)拋物線向右平移的距離是1個單位.【解析】
(1)由點E的坐標設拋物線的交點式,再把點D的坐標(2,1)代入計算可得;
(2)由拋物線的對稱性得BE=OA=t,據(jù)此知AB=10-2t,再由x=t時AD=,根據(jù)矩形的周長公式列出函數(shù)解析式,配方成頂點式即可得;
(3)由t=2得出點A、B、C、D及對角線交點P的坐標,由直線GH平分矩形的面積知直線GH必過點P,根據(jù)AB∥CD知線段OD平移后得到的線段是GH,由線段OD的中點Q平移后的對應點是P知PQ是△OBD中位線,據(jù)此可得.【詳解】(1)設拋物線解析式為,當時,,點的坐標為,將點坐標代入解析式得,解得:,拋物線的函數(shù)表達式為;(2)由拋物線的對稱性得,,當時,,矩形的周長,,,,當時,矩形的周長有最大值,最大值為;(3)如圖,當時,點、、、的坐標分別為、、、,矩形對角線的交點的坐標為,直線平分矩形的面積,點是和的中點,,由平移知,是的中位線,,所以拋物線向右平移的距離是1個單位.【點睛】本題主要考查二次函數(shù)的綜合問題,解題的關鍵是掌握待定系數(shù)法求函數(shù)解析式、二次函數(shù)的性質及平移變換的性質等知識點.23、(1)120,補圖見解析;(2)96;(3)960人.【解析】
(1)由“不合格”的人數(shù)除以占的百分比求出總人數(shù),確定出“優(yōu)秀”的人數(shù),以及一般的百分比,補全統(tǒng)計圖即可;
(2)求出“一般”與“優(yōu)秀”占的百分比,乘以總人數(shù)即可得到結果;
(3)求出達標占的百分比,乘以1200即可得到結果.【詳解】(1)根據(jù)題意得:24÷20%=120(人),則“優(yōu)秀”人數(shù)為120﹣(24+36)=60(人),“一般”占的百分比為×100%=30%,補全統(tǒng)計圖,如圖所示:(2)根據(jù)題意得:36+60=96(人),則達標的人數(shù)為96人;(3)根據(jù)題意得:×1200=960(人),則全校達標的學生有960人.故答案為(1)120;(2)96人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.24、(1)DM=AD+AP;(2)①DM=AD﹣AP;②DM=AP﹣AD;(3)3﹣或﹣1.【解析】
(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版房地產(chǎn)項目融資補充協(xié)議合同樣本3篇
- 二零二五年度別墅建筑節(jié)能與可再生能源利用合同3篇
- 2025年運動鞋類品牌授權區(qū)域代理合同2篇
- 二零二五年酒店式公寓開荒保潔驗收規(guī)范合同3篇
- 二零二四團購協(xié)議書:汽車團購服務合同3篇
- 2025年度園林綠化苗木種植與養(yǎng)護服務合同4篇
- 2025年度承重墻拆除施工安全協(xié)議及風險評估
- 二零二五年度企業(yè)食堂檔口租賃合同與員工餐飲安全知識普及協(xié)議
- 二零二五不銹鋼欄桿綠色生產(chǎn)與環(huán)保認證合同3篇
- 二零二五年度酒店泊車服務合同版
- 公司設備轉讓合同協(xié)議書
- 2023年全國統(tǒng)一建筑工程預算工程量計算規(guī)則完整版
- 教科版四年級科學下冊第三單元巖石與土壤4.制作巖石和礦物標本(教學設計)教案
- 大學《工程力學》期末考試試題庫含詳細答案
- 2022年湖北省武漢市中考數(shù)學試卷含解析
- TLFSA 003-2020 危害分析與關鍵控制點(HACCP)體系調味面制品生產(chǎn)企業(yè)要求
- LY/T 2244.3-2014自然保護區(qū)保護成效評估技術導則第3部分:景觀保護
- 紀律教育月批評與自我批評五篇
- GB/T 26480-2011閥門的檢驗和試驗
- GB/T 13342-2007船用往復式液壓缸通用技術條件
- 藥店員工教育培訓資料
評論
0/150
提交評論