四川省射洪市2024年中考數(shù)學(xué)考試模擬沖刺卷含解析_第1頁
四川省射洪市2024年中考數(shù)學(xué)考試模擬沖刺卷含解析_第2頁
四川省射洪市2024年中考數(shù)學(xué)考試模擬沖刺卷含解析_第3頁
四川省射洪市2024年中考數(shù)學(xué)考試模擬沖刺卷含解析_第4頁
四川省射洪市2024年中考數(shù)學(xué)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

四川省射洪市2024年中考數(shù)學(xué)考試模擬沖刺卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖是由五個(gè)相同的小立方塊搭成的幾何體,則它的俯視圖是()A. B. C. D.2.2019年4月份,某市市區(qū)一周空氣質(zhì)量報(bào)告中某項(xiàng)污染指數(shù)的數(shù)據(jù)是:31,35,31,34,30,32,31,這組數(shù)據(jù)的中位數(shù)、眾數(shù)分別是()A.32,31 B.31,32 C.31,31 D.32,353.如圖,點(diǎn)E是四邊形ABCD的邊BC延長線上的一點(diǎn),則下列條件中不能判定AD∥BE的是()A. B. C. D.4.如圖,把一張矩形紙片ABCD沿EF折疊后,點(diǎn)A落在CD邊上的點(diǎn)A′處,點(diǎn)B落在點(diǎn)B′處,若∠2=40°,則圖中∠1的度數(shù)為()A.115° B.120° C.130° D.140°5.已知a+b=4,c﹣d=﹣3,則(b+c)﹣(d﹣a)的值為()A.7 B.﹣7 C.1 D.﹣16.二次函數(shù)y=x2+bx–1的圖象如圖,對(duì)稱軸為直線x=1,若關(guān)于x的一元二次方程x2–2x–1–t=0(t為實(shí)數(shù))在–1<x<4的范圍內(nèi)有實(shí)數(shù)解,則t的取值范圍是A.t≥–2 B.–2≤t<7C.–2≤t<2 D.2<t<77.如圖,在?ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點(diǎn)E.若BF=8,AB=5,則AE的長為()A.5 B.6 C.8 D.128.如圖,已知直線a∥b∥c,直線m,n與a,b,c分別交于點(diǎn)A,C,E,B,D,F(xiàn),若AC=4,CE=6,BD=3,則DF的值是()A.4 B.4.5 C.5 D.5.59.如圖,某地修建高速公路,要從A地向B地修一條隧道(點(diǎn)A、B在同一水平面上).為了測(cè)量A、B兩地之間的距離,一架直升飛機(jī)從A地出發(fā),垂直上升800米到達(dá)C處,在C處觀察B地的俯角為α,則A、B兩地之間的距離為()A.800sinα米 B.800tanα米 C.米 D.米10.若一組數(shù)據(jù)2,3,4,5,x的平均數(shù)與中位數(shù)相等,則實(shí)數(shù)x的值不可能是()A.6 B.3.5 C.2.5 D.1二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,直線m∥n,△ABC為等腰直角三角形,∠BAC=90°,則∠1=度.12.如圖,已知直線y=x+4與雙曲線y=(x<0)相交于A、B兩點(diǎn),與x軸、y軸分別相交于D、C兩點(diǎn),若AB=2,則k=_____.13.某航空公司規(guī)定,旅客乘機(jī)所攜帶行李的質(zhì)量x(kg)與其運(yùn)費(fèi)y(元)由如圖所示的一次函數(shù)圖象確定,則旅客可攜帶的免費(fèi)行李的最大質(zhì)量為kg14.若2a﹣b=5,a﹣2b=4,則a﹣b的值為________.15.如圖,角α的一邊在x軸上,另一邊為射線OP,點(diǎn)P(2,2),則tanα=_____.16.已知AD、BE是△ABC的中線,AD、BE相交于點(diǎn)F,如果AD=6,那么AF的長是_____.三、解答題(共8題,共72分)17.(8分)某縣教育局為了豐富初中學(xué)生的大課間活動(dòng),要求各學(xué)校開展形式多樣的陽光體育活動(dòng).某中學(xué)就“學(xué)生體育活動(dòng)興趣愛好”的問題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:(1)在這次調(diào)查中,喜歡籃球項(xiàng)目的同學(xué)有______人,在扇形統(tǒng)計(jì)圖中,“乒乓球”的百分比為______%,如果學(xué)校有800名學(xué)生,估計(jì)全校學(xué)生中有______人喜歡籃球項(xiàng)目.(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.(3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表班級(jí)參加?;@球隊(duì),請(qǐng)直接寫出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.18.(8分)問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點(diǎn)D,則D為BC的中點(diǎn),∠BAD=∠BAC=60°,于是==遷移應(yīng)用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點(diǎn)在同一條直線上,連接BD.(1)求證:△ADB≌△AEC;(2)若AD=2,BD=3,請(qǐng)計(jì)算線段CD的長;拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點(diǎn)C關(guān)于BM的對(duì)稱點(diǎn)E,連接AE并延長交BM于點(diǎn)F,連接CE,CF.(3)證明:△CEF是等邊三角形;(4)若AE=4,CE=1,求BF的長.19.(8分)如圖,已知正比例函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4,(1)求k的值;(2)根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時(shí)x的取值范圍;(3)過原點(diǎn)O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(diǎn)(P點(diǎn)在第一象限),若由點(diǎn)A、P、B、Q為頂點(diǎn)組成的四邊形面積為224,求點(diǎn)P的坐標(biāo).20.(8分)小麗和哥哥小明分別從家和圖書館同時(shí)出發(fā),沿同一條路相向而行,小麗開始跑步,遇到哥哥后改為步行,到達(dá)圖書館恰好用35分鐘,小明勻速騎自行車直接回家,騎行10分鐘后遇到了妹妺,再繼續(xù)騎行5分鐘,到家兩人距離家的路程y(m)與各自離開出發(fā)的時(shí)間x(min)之間的函數(shù)圖象如圖所示:(1)求兩人相遇時(shí)小明離家的距離;(2)求小麗離距離圖書館500m時(shí)所用的時(shí)間.21.(8分)計(jì)算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)22.(10分)如圖,已知∠A=∠B,AE=BE,點(diǎn)D在AC邊上,∠1=∠2,AE與BD相交于點(diǎn)O.求證:EC=ED.23.(12分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A(-3,m+8),B(n,-6)兩點(diǎn).(1)求一次函數(shù)與反比例函數(shù)的解析式;(2)求△AOB的面積.24.小明參加某個(gè)智力競(jìng)答節(jié)目,答對(duì)最后兩道單選題就順利通關(guān).第一道單選題有3個(gè)選項(xiàng),第二道單選題有4個(gè)選項(xiàng),這兩道題小明都不會(huì),不過小明還有一個(gè)“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個(gè)錯(cuò)誤選項(xiàng)).如果小明第一題不使用“求助”,那么小明答對(duì)第一道題的概率是.如果小明將“求助”留在第二題使用,請(qǐng)用樹狀圖或者列表來分析小明順利通關(guān)的概率.從概率的角度分析,你建議小明在第幾題使用“求助”.(直接寫出答案)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】試題分析:從上面看易得上面一層有3個(gè)正方形,下面中間有一個(gè)正方形.故選A.【考點(diǎn)】簡(jiǎn)單組合體的三視圖.2、C【解析】分析:找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個(gè)數(shù)(或兩個(gè)數(shù)的平均數(shù))為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不只一個(gè).解答:解:從小到大排列此數(shù)據(jù)為:30、1、1、1、32、34、35,數(shù)據(jù)1出現(xiàn)了三次最多為眾數(shù),1處在第4位為中位數(shù).所以本題這組數(shù)據(jù)的中位數(shù)是1,眾數(shù)是1.故選C.3、A【解析】

利用平行線的判定方法判斷即可得到結(jié)果.【詳解】∵∠1=∠2,∴AB∥CD,選項(xiàng)A符合題意;∵∠3=∠4,∴AD∥BC,選項(xiàng)B不合題意;∵∠D=∠5,∴AD∥BC,選項(xiàng)C不合題意;∵∠B+∠BAD=180°,∴AD∥BC,選項(xiàng)D不合題意,故選A.【點(diǎn)睛】此題考查了平行線的判定,熟練掌握平行線的判定方法是解本題的關(guān)鍵.4、A【解析】解:∵把一張矩形紙片ABCD沿EF折疊后,點(diǎn)A落在CD邊上的點(diǎn)A′處,點(diǎn)B落在點(diǎn)B′處,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故選A.5、C【解析】試題分析:原式去括號(hào)可得b-c+d+a=(a+b)-(c-d)=4-(-3)=1.故選A.考點(diǎn):代數(shù)式的求值;整體思想.6、B【解析】

利用對(duì)稱性方程求出b得到拋物線解析式為y=x2﹣2x﹣1,則頂點(diǎn)坐標(biāo)為(1,﹣2),再計(jì)算當(dāng)﹣1<x<4時(shí)對(duì)應(yīng)的函數(shù)值的范圍為﹣2≤y<7,由于關(guān)于x的一元二次方程x2﹣2x﹣1﹣t=0(t為實(shí)數(shù))在﹣1<x<4的范圍內(nèi)有實(shí)數(shù)解可看作二次函數(shù)y=x2﹣2x﹣1與直線y=t有交點(diǎn),然后利用函數(shù)圖象可得到t的范圍.【詳解】拋物線的對(duì)稱軸為直線x=﹣=1,解得b=﹣2,∴拋物線解析式為y=x2﹣2x﹣1,則頂點(diǎn)坐標(biāo)為(1,﹣2),當(dāng)x=﹣1時(shí),y=x2﹣2x﹣1=2;當(dāng)x=4時(shí),y=x2﹣2x﹣1=7,當(dāng)﹣1<x<4時(shí),﹣2≤y<7,而關(guān)于x的一元二次方程x2﹣2x﹣1﹣t=0(t為實(shí)數(shù))在﹣1<x<4的范圍內(nèi)有實(shí)數(shù)解可看作二次函數(shù)y=x2﹣2x﹣1與直線y=t有交點(diǎn),∴﹣2≤t<7,故選B.【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì)、拋物線與x軸的交點(diǎn)、二次函數(shù)與一元二次方程,把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點(diǎn)坐標(biāo)問題轉(zhuǎn)化為解關(guān)于x的一元二次方程是解題的關(guān)鍵.7、B【解析】試題分析:由基本作圖得到AB=AF,AG平分∠BAD,故可得出四邊形ABEF是菱形,由菱形的性質(zhì)可知AE⊥BF,故可得出OB=4,再由勾股定理即可得出OA=3,進(jìn)而得出AE=2AO=1.故選B.考點(diǎn):1、作圖﹣基本作圖,2、平行四邊形的性質(zhì),3、勾股定理,4、平行線的性質(zhì)8、B【解析】試題分析:根據(jù)平行線分線段成比例可得,然后根據(jù)AC=1,CE=6,BD=3,可代入求解DF=1.2.故選B考點(diǎn):平行線分線段成比例9、D【解析】【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根據(jù)tanα=,即可解決問題.【詳解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB=,故選D.【點(diǎn)睛】本題考查解直角三角形的應(yīng)用﹣仰角俯角問題,解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考常考題型.10、C【解析】

因?yàn)橹形粩?shù)的值與大小排列順序有關(guān),而此題中x的大小位置未定,故應(yīng)該分類討論x所處的所有位置情況:從小到大(或從大到?。┡帕性谥虚g;結(jié)尾;開始的位置.【詳解】(1)將這組數(shù)據(jù)從小到大的順序排列為2,3,4,5,x,

處于中間位置的數(shù)是4,

∴中位數(shù)是4,

平均數(shù)為(2+3+4+5+x)÷5,

∴4=(2+3+4+5+x)÷5,

解得x=6;符合排列順序;

(2)將這組數(shù)據(jù)從小到大的順序排列后2,3,4,x,5,

中位數(shù)是4,

此時(shí)平均數(shù)是(2+3+4+5+x)÷5=4,

解得x=6,不符合排列順序;

(3)將這組數(shù)據(jù)從小到大的順序排列后2,3,x,4,5,

中位數(shù)是x,

平均數(shù)(2+3+4+5+x)÷5=x,

解得x=3.5,符合排列順序;

(4)將這組數(shù)據(jù)從小到大的順序排列后2,x,3,4,5,

中位數(shù)是3,

平均數(shù)(2+3+4+5+x)÷5=3,

解得x=1,不符合排列順序;

(5)將這組數(shù)據(jù)從小到大的順序排列后x,2,3,4,5,

中位數(shù)是3,

平均數(shù)(2+3+4+5+x)÷5=3,

解得x=1,符合排列順序;

∴x的值為6、3.5或1.

故選C.【點(diǎn)睛】考查了確定一組數(shù)據(jù)的中位數(shù),涉及到分類討論思想,較難,要明確中位數(shù)的值與大小排列順序有關(guān),一些學(xué)生往往對(duì)這個(gè)概念掌握不清楚,計(jì)算方法不明確而解答不完整.注意找中位數(shù)的時(shí)候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個(gè)來確定中位數(shù).如果數(shù)據(jù)有奇數(shù)個(gè),則正中間的數(shù)字即為所求;如果是偶數(shù)個(gè),則找中間兩位數(shù)的平均數(shù).二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1.【解析】試題分析:∵△ABC為等腰直角三角形,∠BAC=90°,∴∠ABC=∠ACB=1°,∵m∥n,∴∠1=1°;故答案為1.考點(diǎn):等腰直角三角形;平行線的性質(zhì).12、-3【解析】設(shè)A(a,a+4),B(c,c+4),則解得:x+4=,即x2+4x?k=0,∵直線y=x+4與雙曲線y=相交于A、B兩點(diǎn),∴a+c=?4,ac=-k,∴(c?a)2=(c+a)2?4ac=16+4k,∵AB=,∴由勾股定理得:(c?a)2+[c+4?(a+4)]2=()2,2(c?a)2=8,(c?a)2=4,∴16+4k=4,解得:k=?3,故答案為?3.點(diǎn)睛:本題考查了一次函數(shù)與反比例函數(shù)的交點(diǎn)問題、根與系數(shù)的關(guān)系、勾股定理、圖象上點(diǎn)的坐標(biāo)特征等,題目具有一定的代表性,綜合性強(qiáng),有一定難度.13、20【解析】設(shè)函數(shù)表達(dá)式為y=kx+b把(30,300)、(50、900)代入可得:y=30x-600當(dāng)y=0時(shí)x=20所以免費(fèi)行李的最大質(zhì)量為20kg14、1.【解析】試題分析:把這兩個(gè)方程相加可得1a-1b=9,兩邊同時(shí)除以1可得a-b=1.考點(diǎn):整體思想.15、【解析】解:過P作PA⊥x軸于點(diǎn)A.∵P(2,),∴OA=2,PA=,∴tanα=.故答案為.點(diǎn)睛:本題考查了解直角三角形,正切的定義,坐標(biāo)與圖形的性質(zhì),熟記三角函數(shù)的定義是解題的關(guān)鍵.16、4【解析】由三角形的重心的概念和性質(zhì),由AD、BE為△ABC的中線,且AD與BE相交于點(diǎn)F,可知F點(diǎn)是三角形ABC的重心,可得AF=AD=×6=4.故答案為4.點(diǎn)睛:此題考查了重心的概念和性質(zhì):三角形的重心是三角形三條中線的交點(diǎn),且重心到頂點(diǎn)的距離是它到對(duì)邊中點(diǎn)的距離的2倍.三、解答題(共8題,共72分)17、(1)5,20,80;(2)圖見解析;(3).【解析】【分析】(1)根據(jù)喜歡跳繩的人數(shù)以及所占的比例求得總?cè)藬?shù),然后用總?cè)藬?shù)減去喜歡跳繩、乒乓球、其它的人數(shù)即可得;(2)用乒乓球的人數(shù)除以總?cè)藬?shù)即可得;(3)用800乘以喜歡籃球人數(shù)所占的比例即可得;(4)根據(jù)(1)中求得的喜歡籃球的人數(shù)即可補(bǔ)全條形圖;(5)畫樹狀圖可得所有可能的情況,根據(jù)樹狀圖求得2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的結(jié)果,根據(jù)概率公式進(jìn)行計(jì)算即可.【詳解】(1)調(diào)查的總?cè)藬?shù)為20÷40%=50(人),喜歡籃球項(xiàng)目的同學(xué)的人數(shù)=50﹣20﹣10﹣15=5(人);(2)“乒乓球”的百分比==20%;(3)800×=80,所以估計(jì)全校學(xué)生中有80人喜歡籃球項(xiàng)目;(4)如圖所示,(5)畫樹狀圖為:共有20種等可能的結(jié)果數(shù),其中所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的結(jié)果數(shù)為12,所以所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率=.18、(1)見解析;(2)CD=;(3)見解析;(4)【解析】試題分析:遷移應(yīng)用:(1)如圖2中,只要證明∠DAB=∠CAE,即可根據(jù)SAS解決問題;

(2)結(jié)論:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD?cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解決問題;

拓展延伸:(3)如圖3中,作BH⊥AE于H,連接BE.由BC=BE=BD=BA,F(xiàn)E=FC,推出A、D、E、C四點(diǎn)共圓,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等邊三角形;

(4)由AE=4,EC=EF=1,推出AH=HE=2,F(xiàn)H=3,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解決問題.試題解析:遷移應(yīng)用:(1)證明:如圖2,

∵∠BAC=∠DAE=120°,

∴∠DAB=∠CAE,

在△DAE和△EAC中,

DA=EA,∠DAB=∠EAC,AB=AC,

∴△DAB≌△EAC,

(2)結(jié)論:CD=AD+BD.

理由:如圖2-1中,作AH⊥CD于H.

∵△DAB≌△EAC,

∴BD=CE,

在Rt△ADH中,DH=AD?cos30°=AD,

∵AD=AE,AH⊥DE,

∴DH=HE,

∵CD=DE+EC=2DH+BD=AD+BD=.

拓展延伸:(3)如圖3中,作BH⊥AE于H,連接BE.

∵四邊形ABCD是菱形,∠ABC=120°,

∴△ABD,△BDC是等邊三角形,

∴BA=BD=BC,

∵E、C關(guān)于BM對(duì)稱,

∴BC=BE=BD=BA,F(xiàn)E=FC,

∴A、D、E、C四點(diǎn)共圓,

∴∠ADC=∠AEC=120°,

∴∠FEC=60°,

∴△EFC是等邊三角形,

(4)∵AE=4,EC=EF=1,

∴AH=HE=2,F(xiàn)H=3,

在Rt△BHF中,∵∠BFH=30°,

∴=cos30°,

∴BF=.19、(1)32;(2)x<﹣4或0<x<4;(3)點(diǎn)P的坐標(biāo)是P(﹣7+,14+2);或P(7+,﹣14+2).【解析】分析:(1)先將x=4代入正比例函數(shù)y=2x,可得出y=8,求得點(diǎn)A(4,8),再根據(jù)點(diǎn)A與B關(guān)于原點(diǎn)對(duì)稱,得出B點(diǎn)坐標(biāo),即可得出k的值;(2)正比例函數(shù)的值小于反比例函數(shù)的值即正比例函數(shù)的圖象在反比例函數(shù)的圖象下方,根據(jù)圖形可知在交點(diǎn)的右邊正比例函數(shù)的值小于反比例函數(shù)的值.(3)由于雙曲線是關(guān)于原點(diǎn)的中心對(duì)稱圖形,因此以A、B、P、Q為頂點(diǎn)的四邊形應(yīng)該是平行四邊形,那么△POA的面積就應(yīng)該是四邊形面積的四分之一即1.可根據(jù)雙曲線的解析式設(shè)出P點(diǎn)的坐標(biāo),然后表示出△POA的面積,由于△POA的面積為1,由此可得出關(guān)于P點(diǎn)橫坐標(biāo)的方程,即可求出P點(diǎn)的坐標(biāo).詳解:(1)∵點(diǎn)A在正比例函數(shù)y=2x上,∴把x=4代入正比例函數(shù)y=2x,解得y=8,∴點(diǎn)A(4,8),把點(diǎn)A(4,8)代入反比例函數(shù)y=,得k=32,(2)∵點(diǎn)A與B關(guān)于原點(diǎn)對(duì)稱,∴B點(diǎn)坐標(biāo)為(﹣4,﹣8),由交點(diǎn)坐標(biāo),根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時(shí)x的取值范圍,x<﹣8或0<x<8;(3)∵反比例函數(shù)圖象是關(guān)于原點(diǎn)O的中心對(duì)稱圖形,∴OP=OQ,OA=OB,∴四邊形APBQ是平行四邊形,∴S△POA=S平行四邊形APBQ×=×224=1,設(shè)點(diǎn)P的橫坐標(biāo)為m(m>0且m≠4),得P(m,),過點(diǎn)P、A分別做x軸的垂線,垂足為E、F,∵點(diǎn)P、A在雙曲線上,∴S△POE=S△AOF=16,若0<m<4,如圖,∵S△POE+S梯形PEFA=S△POA+S△AOF,∴S梯形PEFA=S△POA=1.∴(8+)?(4﹣m)=1.∴m1=﹣7+3,m2=﹣7﹣3(舍去),∴P(﹣7+3,16+);若m>4,如圖,∵S△AOF+S梯形AFEP=S△AOP+S△POE,∴S梯形PEFA=S△POA=1.∴×(8+)?(m﹣4)=1,解得m1=7+3,m2=7﹣3(舍去),∴P(7+3,﹣16+).∴點(diǎn)P的坐標(biāo)是P(﹣7+3,16+);或P(7+3,﹣16+).點(diǎn)睛:本題考查了待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式和反比例函數(shù)y=中k的幾何意義.這里體現(xiàn)了數(shù)形結(jié)合的思想,做此類題一定要正確理解k的幾何意義.利用數(shù)形結(jié)合的思想,求得三角形的面積.20、(1)兩人相遇時(shí)小明離家的距離為1500米;(2)小麗離距離圖書館500m時(shí)所用的時(shí)間為分.【解析】

(1)根據(jù)題意得出小明的速度,進(jìn)而得出得出小明離家的距離;(2)由(1)的結(jié)論得出小麗步行的速度,再列方程解答即可.【詳解】解:(1)根據(jù)題意可得小明的速度為:4500÷(10+5)=300(米/分),300×5=1500(米),∴兩人相遇時(shí)小明離家的距離為1500米;(2)小麗步行的速度為:(4500﹣1500)÷(35﹣10)=120(米/分),設(shè)小麗離距離圖書館500m時(shí)所用的時(shí)間為x分,根據(jù)題意得,1500+120(x﹣10)=4500﹣500,解得x=.答:小麗離距離圖書館500m時(shí)所用的時(shí)間為分.【點(diǎn)睛】本題由函數(shù)圖像獲取信息,以及一元一次方程的應(yīng)用,由函數(shù)圖像正確獲取信息是解答本題的關(guān)鍵.21、-17.1【解析】

按照有理數(shù)混合運(yùn)算的順序,先乘方后乘除最后算加減,有括號(hào)的先算括號(hào)里面的.【詳解】解:原式=﹣8+(﹣3)×18﹣9÷(﹣2),=﹣8﹣14﹣9÷(﹣2),=﹣62+4.1,=﹣17.1.【點(diǎn)睛】此題要注意正確掌握運(yùn)算順序以及符號(hào)的處理.22、見解析【解析】

由∠1=∠2,可得∠BED=∠AEC,根據(jù)利用ASA可判定△BED≌△AEC,然后根據(jù)全等三角形的性質(zhì)即可得證.【詳解】解:∵∠1=∠2,∴∠1+∠AED=∠2+∠AED,即∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC(ASA),∴ED

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論