2024屆江西省贛州市于都縣二中高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第1頁(yè)
2024屆江西省贛州市于都縣二中高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第2頁(yè)
2024屆江西省贛州市于都縣二中高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第3頁(yè)
2024屆江西省贛州市于都縣二中高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第4頁(yè)
2024屆江西省贛州市于都縣二中高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆江西省贛州市于都縣二中高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若,,,則()A. B.C. D.2.已知復(fù)數(shù)滿(mǎn)足:,則的共軛復(fù)數(shù)為()A. B. C. D.3.設(shè)橢圓:的右頂點(diǎn)為A,右焦點(diǎn)為F,B、C為橢圓上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩點(diǎn),直線BF交直線AC于M,且M為AC的中點(diǎn),則橢圓E的離心率是()A. B. C. D.4.已知點(diǎn)是拋物線的對(duì)稱(chēng)軸與準(zhǔn)線的交點(diǎn),點(diǎn)為拋物線的焦點(diǎn),點(diǎn)在拋物線上且滿(mǎn)足,若取得最大值時(shí),點(diǎn)恰好在以為焦點(diǎn)的橢圓上,則橢圓的離心率為()A. B. C. D.5.已知命題若,則,則下列說(shuō)法正確的是()A.命題是真命題B.命題的逆命題是真命題C.命題的否命題是“若,則”D.命題的逆否命題是“若,則”6.已知P是雙曲線漸近線上一點(diǎn),,是雙曲線的左、右焦點(diǎn),,記,PO,的斜率為,k,,若,-2k,成等差數(shù)列,則此雙曲線的離心率為()A. B. C. D.7.已知復(fù)數(shù)滿(mǎn)足,且,則()A.3 B. C. D.8.已知集合,,則()A. B. C. D.9.已知點(diǎn),是函數(shù)的函數(shù)圖像上的任意兩點(diǎn),且在點(diǎn)處的切線與直線AB平行,則()A.,b為任意非零實(shí)數(shù) B.,a為任意非零實(shí)數(shù)C.a(chǎn)、b均為任意實(shí)數(shù) D.不存在滿(mǎn)足條件的實(shí)數(shù)a,b10.函數(shù)圖像可能是()A. B. C. D.11.已知方程表示的曲線為的圖象,對(duì)于函數(shù)有如下結(jié)論:①在上單調(diào)遞減;②函數(shù)至少存在一個(gè)零點(diǎn);③的最大值為;④若函數(shù)和圖象關(guān)于原點(diǎn)對(duì)稱(chēng),則由方程所確定;則正確命題序號(hào)為()A.①③ B.②③ C.①④ D.②④12.記為等差數(shù)列的前項(xiàng)和.若,,則()A.5 B.3 C.-12 D.-13二、填空題:本題共4小題,每小題5分,共20分。13.能說(shuō)明“在數(shù)列中,若對(duì)于任意的,,則為遞增數(shù)列”為假命題的一個(gè)等差數(shù)列是______.(寫(xiě)出數(shù)列的通項(xiàng)公式)14.已知函數(shù),則曲線在處的切線斜率為_(kāi)_______.15.過(guò)且斜率為的直線交拋物線于兩點(diǎn),為的焦點(diǎn)若的面積等于的面積的2倍,則的值為_(kāi)__________.16.在正方體中,為棱的中點(diǎn),是棱上的點(diǎn),且,則異面直線與所成角的余弦值為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)函數(shù)(其中),且函數(shù)在處的切線與直線平行.(1)求的值;(2)若函數(shù),求證:恒成立.18.(12分)為調(diào)研高中生的作文水平.在某市普通高中的某次聯(lián)考中,參考的文科生與理科生人數(shù)之比為,且成績(jī)分布在的范圍內(nèi),規(guī)定分?jǐn)?shù)在50以上(含50)的作文被評(píng)為“優(yōu)秀作文”,按文理科用分層抽樣的方法抽取400人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖,如圖所示.其中構(gòu)成以2為公比的等比數(shù)列.(1)求的值;(2)填寫(xiě)下面列聯(lián)表,能否在犯錯(cuò)誤的概率不超過(guò)0.01的情況下認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān)?文科生理科生合計(jì)獲獎(jiǎng)6不獲獎(jiǎng)合計(jì)400(3)將上述調(diào)查所得的頻率視為概率,現(xiàn)從全市參考學(xué)生中,任意抽取2名學(xué)生,記“獲得優(yōu)秀作文”的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.附:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82819.(12分)如圖,三棱錐中,,,,,.(1)求證:;(2)求直線與平面所成角的正弦值.20.(12分)如圖,在四棱錐中,底面是矩形,四條側(cè)棱長(zhǎng)均相等.(1)求證:平面;(2)求證:平面平面.21.(12分)車(chē)工劉師傅利用數(shù)控車(chē)床為某公司加工一種高科技易損零件,對(duì)之前加工的100個(gè)零件的加工時(shí)間進(jìn)行統(tǒng)計(jì),結(jié)果如下:加工1個(gè)零件用時(shí)(分鐘)20253035頻數(shù)(個(gè))15304015以加工這100個(gè)零件用時(shí)的頻率代替概率.(1)求的分布列與數(shù)學(xué)期望;(2)劉師傅準(zhǔn)備給幾個(gè)徒弟做一個(gè)加工該零件的講座,用時(shí)40分鐘,另外他打算在講座前、講座后各加工1個(gè)該零件作示范.求劉師傅講座及加工2個(gè)零件作示范的總時(shí)間不超過(guò)100分鐘的概率.22.(10分)已知函數(shù),其中.(1)函數(shù)在處的切線與直線垂直,求實(shí)數(shù)的值;(2)若函數(shù)在定義域上有兩個(gè)極值點(diǎn),且.①求實(shí)數(shù)的取值范圍;②求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性比較、、三個(gè)數(shù)與和的大小關(guān)系,進(jìn)而可得出、、三個(gè)數(shù)的大小關(guān)系.【詳解】對(duì)數(shù)函數(shù)為上的增函數(shù),則,即;指數(shù)函數(shù)為上的增函數(shù),則;指數(shù)函數(shù)為上的減函數(shù),則.綜上所述,.故選:C.【點(diǎn)睛】本題考查指數(shù)冪與對(duì)數(shù)式的大小比較,一般利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性結(jié)合中間值法來(lái)比較,考查推理能力,屬于基礎(chǔ)題.2、B【解析】

轉(zhuǎn)化,為,利用復(fù)數(shù)的除法化簡(jiǎn),即得解【詳解】復(fù)數(shù)滿(mǎn)足:所以故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的除法和復(fù)數(shù)的基本概念,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.3、C【解析】

連接,為的中位線,從而,且,進(jìn)而,由此能求出橢圓的離心率.【詳解】如圖,連接,橢圓:的右頂點(diǎn)為A,右焦點(diǎn)為F,B、C為橢圓上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩點(diǎn),不妨設(shè)B在第二象限,直線BF交直線AC于M,且M為AC的中點(diǎn)為的中位線,,且,,解得橢圓的離心率.故選:C【點(diǎn)睛】本題考查了橢圓的幾何性質(zhì),考查了運(yùn)算求解能力,屬于基礎(chǔ)題.4、B【解析】

設(shè),利用兩點(diǎn)間的距離公式求出的表達(dá)式,結(jié)合基本不等式的性質(zhì)求出的最大值時(shí)的點(diǎn)坐標(biāo),結(jié)合橢圓的定義以及橢圓的離心率公式求解即可.【詳解】設(shè),因?yàn)槭菕佄锞€的對(duì)稱(chēng)軸與準(zhǔn)線的交點(diǎn),點(diǎn)為拋物線的焦點(diǎn),所以,則,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)且僅當(dāng)時(shí)取等號(hào),此時(shí),,點(diǎn)在以為焦點(diǎn)的橢圓上,,由橢圓的定義得,所以橢圓的離心率,故選B.【點(diǎn)睛】本題主要考查橢圓的定義及離心率,屬于難題.離心率的求解在圓錐曲線的考查中是一個(gè)重點(diǎn)也是難點(diǎn),一般求離心率有以下幾種情況:①直接求出,從而求出;②構(gòu)造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來(lái)求解.5、B【解析】

解不等式,可判斷A選項(xiàng)的正誤;寫(xiě)出原命題的逆命題并判斷其真假,可判斷B選項(xiàng)的正誤;利用原命題與否命題、逆否命題的關(guān)系可判斷C、D選項(xiàng)的正誤.綜合可得出結(jié)論.【詳解】解不等式,解得,則命題為假命題,A選項(xiàng)錯(cuò)誤;命題的逆命題是“若,則”,該命題為真命題,B選項(xiàng)正確;命題的否命題是“若,則”,C選項(xiàng)錯(cuò)誤;命題的逆否命題是“若,則”,D選項(xiàng)錯(cuò)誤.故選:B.【點(diǎn)睛】本題考查四種命題的關(guān)系,考查推理能力,屬于基礎(chǔ)題.6、B【解析】

求得雙曲線的一條漸近線方程,設(shè)出的坐標(biāo),由題意求得,運(yùn)用直線的斜率公式可得,,,再由等差數(shù)列中項(xiàng)性質(zhì)和離心率公式,計(jì)算可得所求值.【詳解】設(shè)雙曲線的一條漸近線方程為,且,由,可得以為圓心,為半徑的圓與漸近線交于,可得,可取,則,設(shè),,則,,,由,,成等差數(shù)列,可得,化為,即,可得,故選:.【點(diǎn)睛】本題考查雙曲線的方程和性質(zhì),主要是漸近線方程和離心率,考查方程思想和運(yùn)算能力,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.7、C【解析】

設(shè),則,利用和求得,即可.【詳解】設(shè),則,因?yàn)?則,所以,又,即,所以,所以,故選:C【點(diǎn)睛】本題考查復(fù)數(shù)的乘法法則的應(yīng)用,考查共軛復(fù)數(shù)的應(yīng)用.8、B【解析】

求出集合,利用集合的基本運(yùn)算即可得到結(jié)論.【詳解】由,得,則集合,所以,.故選:B.【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,利用函數(shù)的性質(zhì)求出集合是解決本題的關(guān)鍵,屬于基礎(chǔ)題.9、A【解析】

求得的導(dǎo)函數(shù),結(jié)合兩點(diǎn)斜率公式和兩直線平行的條件:斜率相等,化簡(jiǎn)可得,為任意非零實(shí)數(shù).【詳解】依題意,在點(diǎn)處的切線與直線AB平行,即有,所以,由于對(duì)任意上式都成立,可得,為非零實(shí)數(shù).故選:A【點(diǎn)睛】本題考查導(dǎo)數(shù)的運(yùn)用,求切線的斜率,考查兩點(diǎn)的斜率公式,以及化簡(jiǎn)運(yùn)算能力,屬于中檔題.10、D【解析】

先判斷函數(shù)的奇偶性可排除選項(xiàng)A,C,當(dāng)時(shí),可分析函數(shù)值為正,即可判斷選項(xiàng).【詳解】,,即函數(shù)為偶函數(shù),故排除選項(xiàng)A,C,當(dāng)正數(shù)越來(lái)越小,趨近于0時(shí),,所以函數(shù),故排除選項(xiàng)B,故選:D【點(diǎn)睛】本題主要考查了函數(shù)的奇偶性,識(shí)別函數(shù)的圖象,屬于中檔題.11、C【解析】

分四類(lèi)情況進(jìn)行討論,然后畫(huà)出相對(duì)應(yīng)的圖象,由圖象可以判斷所給命題的真假性.【詳解】(1)當(dāng)時(shí),,此時(shí)不存在圖象;(2)當(dāng)時(shí),,此時(shí)為實(shí)軸為軸的雙曲線一部分;(3)當(dāng)時(shí),,此時(shí)為實(shí)軸為軸的雙曲線一部分;(4)當(dāng)時(shí),,此時(shí)為圓心在原點(diǎn),半徑為1的圓的一部分;畫(huà)出的圖象,由圖象可得:對(duì)于①,在上單調(diào)遞減,所以①正確;對(duì)于②,函數(shù)與的圖象沒(méi)有交點(diǎn),即沒(méi)有零點(diǎn),所以②錯(cuò)誤;對(duì)于③,由函數(shù)圖象的對(duì)稱(chēng)性可知③錯(cuò)誤;對(duì)于④,函數(shù)和圖象關(guān)于原點(diǎn)對(duì)稱(chēng),則中用代替,用代替,可得,所以④正確.故選:C【點(diǎn)睛】本題主要考查了雙曲線的簡(jiǎn)單幾何性質(zhì),函數(shù)的圖象與性質(zhì),函數(shù)的零點(diǎn)概念,考查了數(shù)形結(jié)合的數(shù)學(xué)思想.12、B【解析】

由題得,,解得,,計(jì)算可得.【詳解】,,,,解得,,.故選:B【點(diǎn)睛】本題主要考查了等差數(shù)列的通項(xiàng)公式,前項(xiàng)和公式,考查了學(xué)生運(yùn)算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13、答案不唯一,如【解析】

根據(jù)等差數(shù)列的性質(zhì)可得到滿(mǎn)足條件的數(shù)列.【詳解】由題意知,不妨設(shè),則,很明顯為遞減數(shù)列,說(shuō)明原命題是假命題.所以,答案不唯一,符合條件即可.【點(diǎn)睛】本題考查對(duì)等差數(shù)列的概念和性質(zhì)的理解,關(guān)鍵是假設(shè)出一個(gè)遞減的數(shù)列,還需檢驗(yàn)是否滿(mǎn)足命題中的條件,屬基礎(chǔ)題.14、【解析】

求導(dǎo)后代入可構(gòu)造方程求得,即為所求斜率.【詳解】,,解得:,即在處的切線斜率為.故答案為:.【點(diǎn)睛】本題考查切線斜率的求解問(wèn)題,考查導(dǎo)數(shù)的幾何意義,屬于基礎(chǔ)題.15、2【解析】

聯(lián)立直線與拋物線的方程,根據(jù)一元二次方程的根與系數(shù)的關(guān)系以及面積關(guān)系求解即可.【詳解】如圖,設(shè),由,則,由可得,由,則,所以,得.故答案為:2【點(diǎn)睛】此題考查了拋物線的性質(zhì),屬于中檔題.16、【解析】

根據(jù)題意畫(huà)出幾何題,建立空間直角坐標(biāo)系,寫(xiě)個(gè)各個(gè)點(diǎn)的坐標(biāo),并求得.由空間向量的夾角求法即可求得異面直線與所成角的余弦值.【詳解】根據(jù)題意畫(huà)出幾何圖形,以為原點(diǎn)建立空間直角坐標(biāo)系:設(shè)正方體的棱長(zhǎng)為1,則所以所以,所以異面直線與所成角的余弦值為,故答案為:.【點(diǎn)睛】本題考查了異面直線夾角的求法,利用空間向量求異面直線夾角,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)證明見(jiàn)解析【解析】

(1)求導(dǎo)得到,解得答案.(2)變形得到,令函數(shù),求導(dǎo)得到函數(shù)單調(diào)區(qū)間得到,,得到證明.【詳解】(1),,解得.(2)得,變形得,令函數(shù),,令解得,當(dāng)時(shí),時(shí).函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,,而函數(shù)在區(qū)間上單調(diào)遞增,,,即,即,恒成立.【點(diǎn)睛】本題考查了根據(jù)切線求參數(shù),證明不等式,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力,綜合應(yīng)用能力.18、(1),,.(2)填表見(jiàn)解析;在犯錯(cuò)誤的概率不超過(guò)0.01的情況下,不能認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān)(3)詳見(jiàn)解析【解析】

(1)根據(jù)頻率分步直方圖和構(gòu)成以2為公比的等比數(shù)列,即可得解;(2)由頻率分步直方圖算出相應(yīng)的頻數(shù)即可填寫(xiě)列聯(lián)表,再用的計(jì)算公式運(yùn)算即可;(3)獲獎(jiǎng)的概率為,隨機(jī)變量,再根據(jù)二項(xiàng)分布即可求出其分布列與期望.【詳解】解:(1)由頻率分布直方圖可知,,因?yàn)闃?gòu)成以2為公比的等比數(shù)列,所以,解得,所以,.故,,.(2)獲獎(jiǎng)的人數(shù)為人,因?yàn)閰⒖嫉奈目粕c理科生人數(shù)之比為,所以400人中文科生的數(shù)量為,理科生的數(shù)量為.由表可知,獲獎(jiǎng)的文科生有6人,所以獲獎(jiǎng)的理科生有人,不獲獎(jiǎng)的文科生有人.于是可以得到列聯(lián)表如下:文科生理科生合計(jì)獲獎(jiǎng)61420不獲獎(jiǎng)74306380合計(jì)80320400所以在犯錯(cuò)誤的概率不超過(guò)0.01的情況下,不能認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān).(3)由(2)可知,獲獎(jiǎng)的概率為,的可能取值為0,1,2,,,,分布列如下:012數(shù)學(xué)期望為.【點(diǎn)睛】本題考查頻率分布直方圖、統(tǒng)計(jì)案例和離散型隨機(jī)變量的分布列與期望,考查學(xué)生的閱讀理解能力和計(jì)算能力,屬于中檔題.19、(1)證明見(jiàn)詳解;(2)【解析】

(1)取中點(diǎn),根據(jù),利用線面垂直的判定定理,可得平面,最后可得結(jié)果.(2)利用建系,假設(shè)長(zhǎng)度,可得,以及平面的一個(gè)法向量,然后利用向量的夾角公式,可得結(jié)果.【詳解】(1)取中點(diǎn),連接,如圖由,所以由,平面所以平面,又平面所以(2)假設(shè),由,,.所以則,所以又,平面所以平面,所以,又,故建立空間直角坐標(biāo)系,如圖設(shè)平面的一個(gè)法向量為則令,所以則直線與平面所成角的正弦值為【點(diǎn)睛】本題考查線面垂直、線線垂直的應(yīng)用,還考查線面角,學(xué)會(huì)使用建系的方法來(lái)解決立體幾何問(wèn)題,將幾何問(wèn)題代數(shù)化,化繁為簡(jiǎn),屬中檔題.20、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.【解析】

證明:(1)在矩形中,,又平面,平面,所以平面.(2)連結(jié),交于點(diǎn),連結(jié),在矩形中,點(diǎn)為的中點(diǎn),又,故,,又,平面,所以平面,又平面,所以平面平面.21、(1)分布列見(jiàn)解析,;(2)0.8575【解析】

(1)根據(jù)題目所給數(shù)據(jù)求得分布列,并計(jì)算出數(shù)學(xué)期望.(2)根據(jù)對(duì)立事件概率計(jì)算公式、相互獨(dú)立事件概率計(jì)算公式,計(jì)算出劉師傅講座及加工個(gè)零件作示范的總時(shí)間不超過(guò)分鐘的概率.【詳解】(1)的分布列如下:202530350.150.300.400.15.(2)設(shè),分別表示講座前

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論