山西省太原師范院附屬中學2023-2024學年中考二模數學試題含解析_第1頁
山西省太原師范院附屬中學2023-2024學年中考二模數學試題含解析_第2頁
山西省太原師范院附屬中學2023-2024學年中考二模數學試題含解析_第3頁
山西省太原師范院附屬中學2023-2024學年中考二模數學試題含解析_第4頁
山西省太原師范院附屬中學2023-2024學年中考二模數學試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山西省太原師范院附屬中學2023-2024學年中考二模數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.若關于x的一元二次方程x2-2x-k=0沒有實數根,則k的取值范圍是()A.k>-1 B.k≥-1 C.k<-1 D.k≤-12.計算(﹣)﹣1的結果是()A.﹣ B. C.2 D.﹣23.如圖,直線a∥b,一塊含60°角的直角三角板ABC(∠A=60°)按如圖所示放置.若∠1=55°,則∠2的度數為()A.105° B.110° C.115° D.120°4.如圖,△ABC中,AB=AC=15,AD平分∠BAC,點E為AC的中點,連接DE,若△CDE的周長為21,則BC的長為()A.16 B.14 C.12 D.65.如圖,,且.、是上兩點,,.若,,,則的長為()A. B. C. D.6.已知x=1是方程x2+mx+n=0的一個根,則代數式m2+2mn+n2的值為()A.–1B.2C.1D.–27.人的大腦每天能記錄大約8600萬條信息,數據8600用科學記數法表示為()A.0.86×104 B.8.6×102 C.8.6×103 D.86×1028.某種圓形合金板材的成本y(元)與它的面積(cm2)成正比,設半徑為xcm,當x=3時,y=18,那么當半徑為6cm時,成本為()A.18元 B.36元 C.54元 D.72元9.下列各數3.1415926,,,,,中,無理數有()A.2個 B.3個 C.4個 D.5個10.如圖,數軸A、B上兩點分別對應實數a、b,則下列結論正確的是()A.a+b>0 B.ab>0 C.1a+二、填空題(本大題共6個小題,每小題3分,共18分)11.在△ABC中,∠C=30°,∠A﹣∠B=30°,則∠A=_____.12.不等式組有2個整數解,則m的取值范圍是_____.13.有一張三角形紙片ABC,∠A=80°,點D是AC邊上一點,沿BD方向剪開三角形紙片后,發(fā)現所得兩張紙片均為等腰三角形,則∠C的度數可以是__________.14.如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為E,如果AB=26,CD=24,那么sin∠OCE=▲.15.中國的陸地面積約為9600000km2,把9600000用科學記數法表示為.16.已知正方形ABCD,AB=1,分別以點A、C為圓心畫圓,如果點B在圓A外,且圓A與圓C外切,那么圓C的半徑長r的取值范圍是_____.三、解答題(共8題,共72分)17.(8分)如果a2+2a-1=0,求代數式的值.18.(8分)如圖,以D為頂點的拋物線y=﹣x2+bx+c交x軸于A、B兩點,交y軸于點C,直線BC的表達式為y=﹣x+1.求拋物線的表達式;在直線BC上有一點P,使PO+PA的值最小,求點P的坐標;在x軸上是否存在一點Q,使得以A、C、Q為頂點的三角形與△BCD相似?若存在,請求出點Q的坐標;若不存在,請說明理由.19.(8分)如圖,C是⊙O上一點,點P在直徑AB的延長線上,⊙O的半徑為3,PB=2,PC=1.(1)求證:PC是⊙O的切線.(2)求tan∠CAB的值.20.(8分)如圖,在平面直角坐標系中,直線:與軸,軸分別交于,兩點,且點,點在軸正半軸上運動,過點作平行于軸的直線.(1)求的值和點的坐標;(2)當時,直線與直線交于點,反比例函數的圖象經過點,求反比例函數的解析式;(3)當時,若直線與直線和(2)反比例函數的圖象分別交于點,,當間距離大于等于2時,求的取值范圍.21.(8分)如圖,已知AD是的中線,M是AD的中點,過A點作,CM的延長線與AE相交于點E,與AB相交于點F.(1)求證:四邊形是平行四邊形;(2)如果,求證四邊形是矩形.22.(10分)如圖,AB是半圓O的直徑,D為弦BC的中點,延長OD交弧BC于點E,點F為OD的延長線上一點且滿足∠OBC=∠OFC,求證:CF為⊙O的切線;若四邊形ACFD是平行四邊形,求sin∠BAD的值.23.(12分)如圖,在平面直角坐標系中,直線經過點和,雙曲線經過點B.(1)求直線和雙曲線的函數表達式;(2)點C從點A出發(fā),沿過點A與y軸平行的直線向下運動,速度為每秒1個單位長度,點C的運動時間為t(0<t<12),連接BC,作BD⊥BC交x軸于點D,連接CD,①當點C在雙曲線上時,求t的值;②在0<t<6范圍內,∠BCD的大小如果發(fā)生變化,求tan∠BCD的變化范圍;如果不發(fā)生變化,求tan∠BCD的值;③當時,請直接寫出t的值.24.某中學課外活動小組準備圍建一個矩形生物苗圃園,其中一邊靠墻,另外三邊用長為30米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊的長為x米.若平行于墻的一邊長為y米,直接寫出y與x的函數關系式及其自變量x的取值范圍.垂直于墻的一邊的長為多少米時,這個苗圃園的面積最大,并求出這個最大值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:由題意可得根的判別式,即可得到關于k的不等式,解出即可.由題意得,解得故選C.考點:一元二次方程的根的判別式點評:解答本題的關鍵是熟練掌握一元二次方程,當時,方程有兩個不相等實數根;當時,方程的兩個相等的實數根;當時,方程沒有實數根.2、D【解析】

根據負整數指數冪與正整數指數冪互為倒數,可得答案.【詳解】解:,

故選D.【點睛】本題考查了負整數指數冪,負整數指數冪與正整數指數冪互為倒數.3、C【解析】

如圖,首先證明∠AMO=∠2,然后運用對頂角的性質求出∠ANM=55°;借助三角形外角的性質求出∠AMO即可解決問題.【詳解】如圖,對圖形進行點標注.∵直線a∥b,∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°,∴∠ANM=55°,∴∠2=∠AMO=∠A+∠ANM=60°+55°=115°,故選C.【點睛】本題考查了平行線的性質,三角形外角的性質,熟練掌握和靈活運用相關知識是解題的關鍵.4、C【解析】

先根據等腰三角形三線合一知D為BC中點,由點E為AC的中點知DE為△ABC中位線,故△ABC的周長是△CDE的周長的兩倍,由此可求出BC的值.【詳解】∵AB=AC=15,AD平分∠BAC,∴D為BC中點,∵點E為AC的中點,∴DE為△ABC中位線,∴DE=AB,∴△ABC的周長是△CDE的周長的兩倍,由此可求出BC的值.∴AB+AC+BC=42,∴BC=42-15-15=12,故選C.【點睛】此題主要考查三角形的中位線定理,解題的關鍵是熟知等腰三角形的三線合一定理.5、D【解析】分析:詳解:如圖,∵AB⊥CD,CE⊥AD,∴∠1=∠2,又∵∠3=∠4,∴180°-∠1-∠4=180°-∠2-∠3,即∠A=∠C.∵BF⊥AD,∴∠CED=∠BFD=90°,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,ED=BF=b,又∵EF=c,∴AD=a+b-c.故選:D.點睛:本題主要考查全等三角形的判定與性質,證明△ABF≌△CDE是關鍵.6、C【解析】

把x=1代入x2+mx+n=0,可得m+n=-1,然后根據完全平方公式把m2+2mn+n2變形后代入計算即可.【詳解】把x=1代入x2+mx+n=0,代入1+m+n=0,∴m+n=-1,∴m2+2mn+n2=(m+n)2=1.故選C.【點睛】本題考查了方程的根和整體代入法求代數式的值,能使方程兩邊相等的未知數的值叫做方程的根.7、C【解析】

科學記數法就是將一個數字表示成a×10的n次冪的形式,其中1≤|a|<10,n表示整數.n為整數位數減1,即從左邊第一位開始,在首位非零的后面加上小數點,再乘以10的n次冪.【詳解】數據8600用科學記數法表示為8.6×103故選C.【點睛】用科學記數法表示一個數的方法是(1)確定a:a是只有一位整數的數;(2)確定n:當原數的絕對值≥10時,n為正整數,n等于原數的整數位數減1;當原數的絕對值<1時,n為負整數,n的絕對值等于原數中左起第一個非零數前零的個數(含整數位數上的零).8、D【解析】

設y與x之間的函數關系式為y=kπx2,由待定系數法就可以求出解析式,再求出x=6時y的值即可得.【詳解】解:根據題意設y=kπx2,∵當x=3時,y=18,∴18=kπ?9,則k=,∴y=kπx2=?π?x2=2x2,當x=6時,y=2×36=72,故選:D.【點睛】本題考查了二次函數的應用,解答時求出函數的解析式是關鍵.9、B【解析】

根據無理數的定義即可判定求解.【詳解】在3.1415926,,,,,中,,3.1415926,是有理數,,,是無理數,共有3個,故選:B.【點睛】本題主要考查了無理數的定義,其中初中范圍內學習的無理數有:等;開方開不盡的數;以及像0.1010010001…,等有這樣規(guī)律的數.10、C【解析】

本題要先觀察a,b在數軸上的位置,得b<-1<0<a<1,然后對四個選項逐一分析.【詳解】A、因為b<-1<0<a<1,所以|b|>|a|,所以a+b<0,故選項A錯誤;B、因為b<0<a,所以ab<0,故選項B錯誤;C、因為b<-1<0<a<1,所以1a+1D、因為b<-1<0<a<1,所以1a-1故選C.【點睛】本題考查了實數與數軸的對應關系,數軸上右邊的數總是大于左邊的數.二、填空題(本大題共6個小題,每小題3分,共18分)11、90°.【解析】

根據三角形內角和得到∠A+∠B+∠C=180°,而∠C=30°,則可計算出∠A+∠B+=150°,由于∠A﹣∠B=30°,把兩式相加消去∠B即可求得∠A的度數.【詳解】解:∵∠A+∠B+∠C=180°,∠C=30°,∴∠A+∠B+=150°,∵∠A﹣∠B=30°,∴2∠A=180°,∴∠A=90°.故答案為:90°.【點睛】本題考查了三角形內角和定理:三角形內角和是180°.主要用在求三角形中角的度數.①直接根據兩已知角求第三個角;②依據三角形中角的關系,用代數方法求三個角;③在直角三角形中,已知一銳角可利用兩銳角互余求另一銳角.12、1<m≤2【解析】

首先根據不等式恰好有個整數解求出不等式組的解集為,再確定.【詳解】不等式組有個整數解,其整數解有、這個,.故答案為:.【點睛】此題主要考查了解不等式組,關鍵是正確理解解集的規(guī)律:同大取大,同小取小,大小小大中間找,大大小小找不到.13、25°或40°或10°【解析】【分析】分AB=AD或AB=BD或AD=BD三種情況根據等腰三角形的性質求出∠ADB,再求出∠BDC,然后根據等腰三角形兩底角相等列式計算即可得解.【詳解】由題意知△ABD與△DBC均為等腰三角形,對于△ABD可能有①AB=BD,此時∠ADB=∠A=80°,∴∠BDC=180°-∠ADB=180°-80°=100°,∠C=(180°-100°)=40°,②AB=AD,此時∠ADB=(180°-∠A)=(180°-80°)=50°,∴∠BDC=180°-∠ADB=180°-50°=130°,∠C=(180°-130°)=25°,③AD=BD,此時,∠ADB=180°-2×80°=20°,∴∠BDC=180°-∠ADB=180°-20°=160°,∠C=(180°-160°)=10°,綜上所述,∠C度數可以為25°或40°或10°故答案為25°或40°或10°【點睛】本題考查了等腰三角形的性質,難點在于分情況討論.14、【解析】垂徑定理,勾股定理,銳角三角函數的定義?!痉治觥咳鐖D,設AB與CD相交于點E,則根據直徑AB=26,得出半徑OC=13;由CD=24,CD⊥AB,根據垂徑定理得出CE=12;在Rt△OCE中,利用勾股定理求出OE=5;再根據正弦函數的定義,求出sin∠OCE的度數:。15、9.6×1.【解析】

將9600000用科學記數法表示為9.6×1.故答案為9.6×1.16、﹣1<r<.【解析】

首先根據題意求得對角線AC的長,設圓A的半徑為R,根據點B在圓A外,得出0<R<1,則-1<-R<0,再根據圓A與圓C外切可得R+r=,利用不等式的性質即可求出r的取值范圍.【詳解】∵正方形ABCD中,AB=1,

∴AC=,

設圓A的半徑為R,

∵點B在圓A外,

∴0<R<1,

∴-1<-R<0,

∴-1<-R<.

∵以A、C為圓心的兩圓外切,

∴兩圓的半徑的和為,

∴R+r=,r=-R,

∴-1<r<.

故答案為:-1<r<.【點睛】本題考查了圓與圓的位置關系,點與圓的位置關系,正方形的性質,勾股定理,不等式的性質.掌握位置關系與數量之間的關系是解題的關鍵.三、解答題(共8題,共72分)17、1【解析】==1.故答案為1.18、(1)y=﹣x2+2x+1;(2)P(,);(1)當Q的坐標為(0,0)或(9,0)時,以A、C、Q為頂點的三角形與△BCD相似.【解析】

(1)先求得點B和點C的坐標,然后將點B和點C的坐標代入拋物線的解析式得到關于b、c的方程,從而可求得b、c的值;(2)作點O關于BC的對稱點O′,則O′(1,1),則OP+AP的最小值為AO′的長,然后求得AO′的解析式,最后可求得點P的坐標;(1)先求得點D的坐標,然后求得CD、BC、BD的長,依據勾股定理的逆定理證明△BCD為直角三角形,然后分為△AQC∽△DCB和△ACQ∽△DCB兩種情況求解即可.【詳解】(1)把x=0代入y=﹣x+1,得:y=1,∴C(0,1).把y=0代入y=﹣x+1得:x=1,∴B(1,0),A(﹣1,0).將C(0,1)、B(1,0)代入y=﹣x2+bx+c得:,解得b=2,c=1.∴拋物線的解析式為y=﹣x2+2x+1.(2)如圖所示:作點O關于BC的對稱點O′,則O′(1,1).∵O′與O關于BC對稱,∴PO=PO′.∴OP+AP=O′P+AP≤AO′.∴OP+AP的最小值=O′A==2.O′A的方程為y=P點滿足解得:所以P(,)(1)y=﹣x2+2x+1=﹣(x﹣1)2+4,∴D(1,4).又∵C(0,1,B(1,0),∴CD=,BC=1,DB=2.∴CD2+CB2=BD2,∴∠DCB=90°.∵A(﹣1,0),C(0,1),∴OA=1,CO=1.∴.又∵∠AOC=DCB=90°,∴△AOC∽△DCB.∴當Q的坐標為(0,0)時,△AQC∽△DCB.如圖所示:連接AC,過點C作CQ⊥AC,交x軸與點Q.∵△ACQ為直角三角形,CO⊥AQ,∴△ACQ∽△AOC.又∵△AOC∽△DCB,∴△ACQ∽△DCB.∴,即,解得:AQ=3.∴Q(9,0).綜上所述,當Q的坐標為(0,0)或(9,0)時,以A、C、Q為頂點的三角形與△BCD相似.【點睛】本題考查了二次函數的綜合應用,解題的關鍵是掌握待定系數法求二次函數的解析式、軸對稱圖形的性質、相似三角形的性質和判定,分類討論的思想.19、(1)見解析;(2)12【解析】

(1)連接OC、BC,根據題意可得OC2+PC2=OP2,即可證得OC⊥PC,由此可得出結論.(2)先根據題意證明出△PBC∽△PCA,再根據相似三角形的性質得出邊的比值,由此可得出結論.【詳解】(1)如圖,連接OC、BC∵⊙O的半徑為3,PB=2∴OC=OB=3,OP=OB+PB=5∵PC=1∴OC2+PC2=OP2∴△OCP是直角三角形,∴OC⊥PC∴PC是⊙O的切線.(2)∵AB是直徑∴∠ACB=90°∴∠ACO+∠OCB=90°∵OC⊥PC∴∠BCP+∠OCB=90°∴∠BCP=∠ACO∵OA=OC∴∠A=∠ACO∴∠A=∠BCP在△PBC和△PCA中:∠BCP=∠A,∠P=∠P∴△PBC∽△PCA,∴∴tan∠CAB=【點睛】本題考查了切線與相似三角形的判定與性質,解題的關鍵是熟練的掌握切線的判定與相似三角形的判定與性質.20、(1),;(2);的取值范圍是:.【解析】

(1)把代入得出的值,進而得出點坐標;(2)當時,將代入,進而得出的值,求出點坐標得出反比例函數的解析式;(3)可得,當向下運動但是不超過軸時,符合要求,進而得出的取值范圍.【詳解】解:(1)∵直線:經過點,∴,∴,∴;(2)當時,將代入,得,,∴代入得,,∴;(3)當時,即,而,如圖,,當向下運動但是不超過軸時,符合要求,∴的取值范圍是:.【點睛】本題考查了反比例函數與一次函數的交點,當有兩個函數的時候,著重使用一次函數,體現了方程思想,綜合性較強.21、(1)見解析;(2)見解析.【解析】

(1)先判定,可得,再根據是的中線,即可得到,依據,即可得出四邊形是平行四邊形;(2)先判定,即可得到,依據,可得根據是的中線,可得,進而得出四邊形是矩形.【詳解】證明:(1)是的中點,,,,又,,,又是的中線,,又,四邊形是平行四邊形;(2),,∴,即,,又,,又是的中線,,又四邊形是平行四邊形,四邊形是矩形.【點睛】本題主要考查了平行四邊形、矩形的判定,等腰三角形的性質以及相似三角形的性質的運用,解題時注意:對角線相等的平行四邊形是矩形.22、(1)見解析;(2).【解析】

(1)連接OC,根據等腰三角形的性質得到∠OCB=∠B,∠OCB=∠F,根據垂徑定理得到OF⊥BC,根據余角的性質得到∠OCF=90°,于是得到結論;

(2)過D作DH⊥AB于H,根據三角形的中位線的想知道的OD=AC,根據平行四邊形的性質得到DF=AC,設OD=x,得到AC=DF=2x,根據射影定理得到CD=x,求得BD=x,根據勾股定理得到AD=x,于是得到結論.【詳解】解:(1)連接OC,

∵OC=OB,

∴∠OCB=∠B,

∵∠B=∠F,

∴∠OCB=∠F,

∵D為BC的中點,

∴OF⊥BC,

∴∠F+∠FCD=90°,

∴∠OCB+∠FCD=90°,

∴∠OCF=90°,

∴CF為⊙O的切線;

(2)過D作DH⊥AB于H,

∵AO=OB,CD=DB,

∴OD=AC,

∵四邊形ACFD是平行四邊形,

∴DF=AC,

設OD=x,

∴AC=DF=2x,

∵∠OCF=90°,CD⊥OF,

∴CD2=OD?DF=2x2,

∴CD=x,

∴BD=x,

∴AD=x,

∵OD=x,BD=x,

∴OB=x,

∴DH=x,

∴sin∠BAD==.【點睛】本題考查了切線的判定和性質,平行四邊形的性質,垂徑定理,射影定理,勾股定理,三角函數的定義,正確的作出輔助線是解題的關鍵.23、(1)直線的表達式為,雙曲線的表達式為;(2)①;②當時,的大小不發(fā)生變化,的值為;③t的值為或.【解析】

(1)由點利用待定系數法可求出直線的表達式;再由直線的表達式求出點B的坐標,然后利用待定系數法即可求出雙曲線的表達式;(2)①先求出點C的橫坐標,再將其代入雙曲線的表達式求出點C的縱坐標,從而即可得出t的值;②如圖1(見解析),設直線AB交y軸于M,則,取CD的中點K,連接AK、BK.利用直角三角形的性質證明A、D、B、C四點共圓,再根據圓周角定理可得,從而得出,即可解決問題;③如圖2(見解析),過點B作于M,先求出點D與點M重合的臨界位置時t的值,據此分和兩種情況討論:根據三點坐標求出的長,再利

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論